

ECAL data analysis considering signal time parameters

Petr Alekseev on behalf of BMN ECAL group

6th Collaboration Meeting of the BM@N Experiment at the NICA Facility JINR October 26–27, 2020

BM@N Schematic drawing of the ECAL position in the BM@N setup

- 2018 year ECAL setup (run 7)
 - one shoulder 7x7 modules, 441 cells
- New ECAL setup
 - two shoulders of 8x7 modules, 1008 cells

Position 1, Run 7 (SRC) ECAL calibration runs C 3.17 AGeV \rightarrow Pb, run ids 3503-3511, ~2M ev.

Position 4, Run 7 (BMN) ECAL data analysis Kr 2.6 AGeV \rightarrow Sn, run ids 4921-4966, ~5.7M ev.

- Minimal cell energy is 30 MeV, other cells are ignored
- Cluster radius is 10 cm (21 cells of 5x5 area)
- Cluster parameters are:
 - energy Ο
 - center gravity Ο
 - weighted average time (t_{wa}) Ο
 - Ο
 - time spread (t_{sp}) normalized moment (M_{norm}) Ο

$$egin{aligned} t_{wa} &= rac{\sum E_i \cdot t_i}{\sum E_i} & t_{sp} &= rac{\sum E_i \cdot (t_i - t_0)^2}{\sum E_i} \ M_{norm} &= rac{\sum E_i imes ((x_i - x_0)^2 + (y_i - y_0)^2 + (z_i - z_0)^2)}{\sum E_i} \end{aligned}$$

BM@N Simulation: GEANT4, DCMQGSM KrSn 2.36AGeV mb, ~2M ev

BM@N ECAL signal raw to digi conversion

- 1. Pedestal mean of slices 0..7
- 2. Novosibirsk fit
- 3. Peak amplitude \mathbf{A}_{peak} and time \mathbf{T}_{peak}
- 4. Cell start time T_{cell}
- 5. Amplitude **A** mean of $T_0...T_0$ +20 slices
- 6. Get coords from geometry file

Novosibirsk function:

$$f(x) = e^{-\frac{\ln^2 q_y}{2\Lambda^2} + \Lambda^2}, \quad q_y = 1 + \frac{\Lambda(x - x_0)}{\sigma} \times \frac{\sinh(\Lambda \sqrt{\ln 4})}{\Lambda \sqrt{\ln 4}}$$

BM@N ECAL cells time T_{cell}

 T_{cell} ECAL cell time, ns T_0 Start time of the event, ns

ECAL cell time reconstruction flow

- 1. Subtract T0
- 2. Apply each ADC board mean time
- 3. Shift some ADC boards by 8 ns
- 4. Collapse all the slices with 16 ns step
- 5. Fine tune each channel time by its mean value

Kr 2.6 AGeV→ Sn (2.57), runs 4921...4966, ~5.7M events

BM@N ECAL

BM@N ECAL cluster time vs energy (Monte-Carlo) GEANT4, DCMQGSM KrSn 2.36AGeV mb, ~2M events

Cell time calculated as weighted average time of MC points

WLS fiber delay considered

BM@N ECAL clusters energy spectra

Events selected that has primary vertex found

Experimental data spectrum of all clusters involved into effective mass calculation

BM@N Time parameters of ECAL cells and clusters

BM@N Cluster shape parameters.

Cluster normalized moment (M_{norm}) vs time spread (t_{sp})

BM@N Effective mass spectra with cut on cluster time

BM@N Effective mass spectra without cut on cluster time

• Hardware

- Two shoulders ECAL (work in progress)
- Replace ADC by TQDC

• Software

- Optimize cut by cluster shape
- Include other detectors data into the analysis

BACKUP

BM@N Cluster normalized moment

BM@N ECAL cells time averaged over the ADC ids

BM@N ECAL cell time reconstruction flow

BM@N Syne-like distortion (in the final result also)

All channels together

Single ADC

BM@N TvsE_Vertex / TvsE_All (bin >= 5)

T vs E (All)

