Status of adaptation of Monte Carlo to experimental data for the SRC experiment

Andrei Driuk¹, Sergei Merts²

¹Saint Petersburg State University ²Joint Institute for Nuclear Research

VI Collaboration meeting, October 2020

Outline

Motivation

- The arm triggers in the geometry
- Experimental data and simulation procedure
- The efficiency of the arm triggers
- Momentum and efficiency
- Distributions in GEM stations
- Summary

- The main goal is analysis of nuclear cross section in the C+p reaction
- The efficiency of reconstruction can be obtained from the same analysis of Monte Carlo (MC) data.
- The problem of adaptation of MC data for experimental data arose

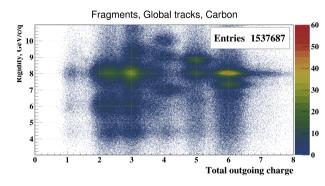
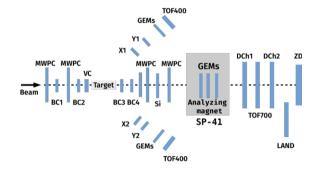



Figure: 1. Fragments of the reaction

The arm triggers in the geometry

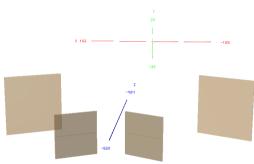


Figure: 2.The experimental setup. The arm triggers are X1-2, Y1-2

Figure: 3. In the simulation chain

A. Driuk, S. Merts Status of adaptation of Monte Carlo to experimental data for the SRC experiment

Experimental Data

№ of Run	Triggers	Energy GeV	Target	Amount
3425	SRCT2 Full Trigger = IT & (X1 & Y1) & (X2 & Y2)	3.17	H2 (300mm)	50k

Simulation Data

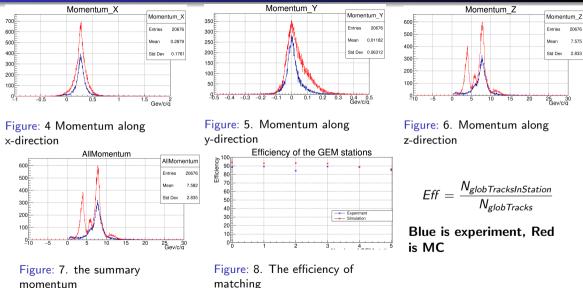
```
TString inFile = "DQGSM_Cp_3.17 GeV_mb_100k_1.r12"
Bool_t useRealEffects = kFALSE;
```

```
primGen->SetBeam (0.5, -4.6, 1.2, 1.2);
primGen->SetTarget (-647.5, 30.0);
primGen->SmearVertexZ (kTRUE);
primGen->SmearVertexXY (kTRUE);
```

```
MpdLAQGSMGenerator* guGen = new MpdLAQGSMGenerator(inFile.Data(), kFALSE);
primGen->AddGenerator(guGen);
```

Table: Efficiency of triggers

Efficiency of triggers	MC	Experiment	
X1	96.0	98.0	
X2	98.3	96.3	
Y1	95.9	96.7	
Y2	97.4	96.0	
X1 & Y1	91.5	93.8	
X2 & Y2	95.0	90.5	


$$Eff_{X_i} = \frac{NumberOfEvents_{X_i, Y_i, GEM_i, TOF400_i}}{NumberOfEvents_{Y_i, GEM_i, TOF400_i}}$$

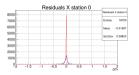
$$Eff_{Y_i} = \frac{NumberOfEvents_{X_i, Y_i, GEM_i, TOF400_i}}{NumberOfEvents_{X_i, GEM_i, TOF400_i}}$$

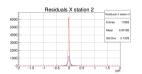
$$Eff_{X_i\&Y_i} = \frac{NumberOfEvents_{X_i,Y_i,GEM_i,TOF400_i}}{NumberOfEvents_{GEM_i,TOF400_i}}$$

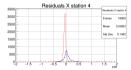
A. Driuk, S. Merts Status of adaptation of Monte Carlo to experimental data for the SRC experiment

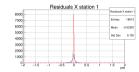
Momentum and matching efficiency

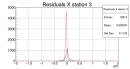
momentum

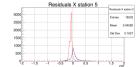

A. Driuk, S. Merts Status of adaptation of Monte Carlo to experimental data for the SRC experiment

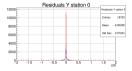

ヘロト ヘ回ト ヘヨト ヘヨト

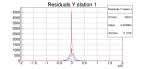

Distributions in GEM stations

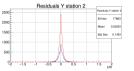

residuals X

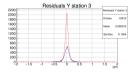

residuals Y

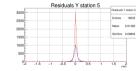


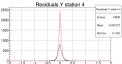












A D A A B A A B A A B э

The main results

- The arm triggers were added in the simulation procedure. It allows us to choose the events in which the triggers worked.
- The efficiency of arm triggers was calculated.

We plan:

- to use D-tracks and U-tracks in reconstruction procedure
- to use Lorentz shift in the simulation procedure
- to add BC3 and BC4 triggers in the simulation procedure