Studies of reconstruction algorithms for SPD ECAL

Andrei Maltsev

SPD Physics & MC Meeting 09.09.2020

Side note: ECAL in SPDROOT

ECAL modules: SpdEcalTB2 (barrel) / SpdEcalTEC2 (endcaps)

Examples macros: geometry drawing: macro/geom/ConstructEcalTB2.C (ConstructEcalTEC2.C),

simulation: macro/SimuQsl.C

analysis: macro/analysis/ecalt/CheckEcalTB2Points.C (CheckEcalTEC2Points.C)

Geometry works fine by default; what can be changed:

cell size, absorber/scintillator layer widths, number of layers (barrel);

barrel only flags: force cell size (otherwise optimize), option to trim module length

SPD wiki entry will be written within one week

Please write bugs and questions to <u>andrii.maltsev@cern.ch</u>

SPD ECAL

The following studies were done for Shashlyk Crystal ECAL: different absolute figures for energy/position resolution, but same algorithms and patterns also apply

Outline:

- Energy resolution: energy sum vs Lednev's shower profile fit
- Position resolution: linear/log weighting vs Lednev's shower profile fit
- Fast ECAL reconstruction: photon detection efficiency/cell multiplicity

Lednev's shower fitting algorithm

• A.A.Lednev NIM A 366 (1995) 292-297

- A χ^2 fit with 3 variables to minimize: x,y, energy
- For each cell, difference between predicted (from shower profile) and "measured" energy is calculated
- Using shower profiles from MC (cutting corners a bit: ideally obtained from data)
- Bordering cells are also included in the fit
- Free parameter: cutoff value: energy in cells which border the cluster cells

Resolution with cutoff = threshold/2:

SPD ECAL resolution

5.5 cm cell size

200 layers: 0.5 mm lead/1.5 mm scintillator, inc. photoelectron statistics and light attenuation

Effect of cutoff cell energy value

1 GeV particle, threshold:

12 MeV in scintillator (\sim 50 MeV total),

6.41% resolution from energy sum

cutoff [MeV]	resolution [%]
3.6	6.84
1.2	5.75
0.6	5.71
0.0	5.70

4 GeV particle, threshold:

12 MeV in scintillator (\sim 50 MeV total),

2.76% resolution from energy sum

cutoff [MeV]	resolution [%]
12	3.58
8.4	3.02
1.8	2.64
0	2.65

Energy resolution with Lednev's shower profile fit

the improvement is there, but not significant

Bug fix: energy resolution for high energies (sum of energies, no fit)

SPD ECAL resolution

at high angles it's not as bad as was previously thought

Bug fix: energy resolution for high energies (sum of energies, no fit)

SPD ECAL resolution

at high angles it's not as bad as was previously thought

Position resolution

See talk by Adel Terkulov

http://spd.jinr.ru/wp-content/uploads/2020/05/2020-05-13_terkulov.pdf

$$x_{c} = \frac{\sum_{i} W_{i}(E_{i}) x_{i}}{\sum_{i} W_{i}(E_{i})} \quad W_{i}^{(log)}(E_{i}) = E_{i}, \\ W_{i}^{(log)}(E_{i}) = Max\{0, a_{0} + ln(E_{i}) - ln(E_{total})\}$$

RECO - TRUE x using simple averaging for energy 2500.000000 MeV and parameter 3.800000

Optimal log.parameter vs energy

Scan of log parameter for energy 800.000000 MeV

Scan of log parameter for energy 2000.000000 MeV

log.parameter also changes with energy

Optimal log.parameter vs energy

Parameter value

Position resolution using different methods

- Linear weighting
- Log weighting
- Lednev's shower fit
- Linear weighting + Lednev's correction function:

 $\Delta(X_c) = a t (t^4 + b t^2 + c) (t^2 - \frac{1}{4}) (t^2 - q),$

12

Position resolution using different methods

Coordinate resolution vs photon energy

Position resolution using different methods

Coordinate resolution vs photon energy

for large angles, log average and mean average yield best resolutions

Position resolutions for log weighting method

0 degrees 10 degrees 20 degrees 30 degrees 40 degrees

Fast reconstruction: photon detection efficiency

Photon detection efficiency for different cell energy thresholds

Photon detection efficiency for different angles, threshold = 50 MeV

50 MeV threshold

Fast reconstruction: cell multiplicities (for data flow estimates)

0 deg | 50 MeV threshold photons π+ πprotons

Conclusions and outlook

- Lednev's shower fitting algorithm doesn't improve energy resolution significantly with present ECAL setup at low energies
- Energy resolution doesn't depend significantly on the particle angle (except for angles > 40 degrees and energies < 0.8 GeV)
- Log. weighting algorithm yields position resolutions similar to Lednev's algorithm
- Due to requests of multiple people, fast(pseudo-)recontruction of ECAL is in development and will be available soon (next week)

BACKUP

sidenote: MC shower profiles

PHOTONS

50 MeV threshold | 0 deg 100 MeV threshold | 0 deg 50 MeV threshold | 30 deg 100 MeV threshold | 30 deg

π-

50 MeV threshold | 0 deg 100 MeV threshold | 0 deg 50 MeV threshold | 30 deg 100 MeV threshold | 30 deg

π+

50 MeV threshold | 0 deg 100 MeV threshold | 0 deg 50 MeV threshold | 30 deg 100 MeV threshold | 30 deg

PROTONS

50 MeV threshold | 0 deg 100 MeV threshold | 0 deg 50 MeV threshold | 30 deg 100 MeV threshold | 30 deg

Momentum [MeV]

Number of fired cells in ECAL

0 deg | 100 MeV threshold photons π+ πprotons

30 deg | 50 MeV threshold photons π+ πprotons

photons

Momentum [MeV]

Energy deposition breakdown

