Stochastic cooling system: Start-up and project modes

I.Gorelyshev, N.Shurkhno, A.Sidorin

NICA MAC 2017

Nuclotron-based Ion Collider fAcility

Stochastic cooling system – one of the crucial elements of NICA project

- **Tasks:** Beam accumulation(at low intensities)
 - Longitudinal emittance reduction during the bunching
 - Luminosity preservation(IBS counteration)

Start-up mode	Project mode		
RMS bunch length 1,2 m	RMS bunch length 0,6 m		
$U_{RF} = 50 \text{ kV}$	U _{RF} < 1000 kV		
h = 22	h = 66		
Ions ¹⁷⁹ Au ₉₇₊			
$\epsilon_{\perp_{max}} = 1,1 \pi mm mrad$			
Energy range 3-4,5 GeV/u			
Bandwidth 2-4 GHz			
Only longitudinal cooling	3-D cooling		

Project mode

Luminosity

Project luminosity attainment

β ^{IP} , m	0,35	0,7	1,0
E, GeV/u	3.0	3.2	3.4
N , 10 ⁹	2.3	2.85	3.25

Intrabeam scattering

Requirement: cooling rates has to exceed IBS rates

In the range from 3,3 to 4,5 GeV/u IBS times for compared structures does not significantly depend on β^{IP} and are about (700-1800 s)

Having bandwidth 2 – 4 GHz we have the absence of overlapping $1.5 - 4.6 \sigma_p$

Cooling Acceptance

At energies below 3.9 GeV/u cooling by the filter method does not cover the whole separatrix, which leads to additional beam loss.

The Filter method is rejected for the project mode due to the low acceptance

Cooling times(at optimal gain)

Time-of-Flight method does not provide faster cooling tempo than tempo of IBS heating.

Only Palmer method satisfied the requirements and it is chosen for the project mode.

E=3Gev/u	β*=35cm	β*=70cm	β*=100cm
IBS/CoolRMS	2,034	2,543	2,464
IBS/CoolFWHM	5,110	5,584	5,302

For the project mode the Palmer cooling rates 2-5 times exceed the IBS rates at any discussing choice of β -function in the interaction point

Start-up mode

Longitudinal cooling only IBS simulation condition

Intrabeam scattering

Required luminosity for start-up mode $L = 5 \cdot 10^{25} \text{ cm}^{-2} \text{s}^{-1}$

Bandwidth & Cooling Acceptance

Palmer and Filter methods are allowed to be implemented by acceptance criterion.

Filter method provides faster cooling rates therefore it is chosen for the start-up mode.

Luminosity (at equal IBS/Cooling rates)

For the core of the distribution the stochastic cooling system provides the required cooling rates

Power & Gain

Mode	Start-up	Project
Long. cool. method	Filter	Palmer
Optimal gain, dB	69	91
Equipment losses, dB	67	37
Total gain, dB	136	128

Gain is chosen 140 dB

List of Equipment

Low power(<-30dBm): Pickups, Low noise Preamplifiers, Couplers

Medium power: Preamplifiers, Feeder Cable, Optical Comb Filter, Attenuators, Phase Shifters

High power(>30dBm): Main Amplifiers, Dividers, Kickers

Placement & Delay

Min. constant delay: + Variable delay:

Channel 1 – 595 nsRange 32 nsChannel 2 – 490nsPrecision 1 ps

There is a reserve in delay for all channels and modes

Pickups, Kickers & Main Amplifiers

FZJ Ring-slot couplers are chosen as Pickups & Kickers

Basic structure – 16 rings High Impedance $Z_{//}^{PU} = 144\Omega$

Negotiations with FZJ concerning pickups & kickers are on the way Main 30W Amplifiers R&D is in progress (OKB TSP, Minsk)

Schottky diagnostics

Diagnostics

Equipment is being purchased

4-channel Vector Network Analyzer

BTF measurements

Power meter

Status & Plans

More detailed plan is in the database

Equipment	Status		Plans	
Diagnostics	Being Purchased		Finished by the end of 2017	
Optical Comb Filter	Components being purchased		Purchased (III 2017)	Assembled (I 2018)
4 Kickers	Test bench Production	Negotiations (FZJ)	First Tests (III-IV 2017)	Production + Assembly 1 unit/year starting 2018
6 Pickups	Negotiations (FZJ)		Production + Assembly 1 unit/year starting 2018	
Main amplifiers	R&D		R&D finished (end 2017)	16 units/yr starting 2018
Electronics	Being purchased		Purchase + Assembly 1 channel/year starting 2018	

Recent results

BTF measurements at FZJ

Conclusions

- Stochastic cooling system can provide the required luminosity at any discussing betafunction in the interaction point for both Start-up and Project modes.
- For longitudinal cooling in the Start-up mode the Filter method is chosen, Palmer method is chosen in the Project mode. Also main parameters are defined.
- For the Start-up mode the stochastic cooling system provides the required cooling rates for the core of the distribution. Evolution of the distribution function tails has to be investigated numerically.
- Equipment purchasing is started, main amplifiers R&D is in progress, negotiations with FZJ concerning pickups and kickers are on the way.

Thank you for attention