# Monte-Carlo study of $\Lambda(\overline{\Lambda})$ polarization at MPD

<u>Elizaveta Nazarova</u><sup>1</sup>, Alexander Zinchenko<sup>1</sup>, Oleg Teryaev<sup>1</sup>, Raimbek Akhat<sup>1,2</sup>, Baznat Mircea<sup>1,3</sup> (?)

On behalf of the MPD collaboration

The 5th international conference on particle physics and astrophysics (ICPPA-2020)

03.10.2020

NICA



<sup>1</sup> Joint Institute of Nuclear Research, Dubna, Russia
 <sup>2</sup> The Institute of Nuclear Physics, Almaty, Kazakhstan
 <sup>3</sup> Institute of Applied Physics, Chisinau, Moldova

# Outline



# Introduction

- Lambda polarization
- > NICA complex
- > MPD detector
- Analysis method
  - > Inclusive polarization
  - > Global polarization
- Results
  - Feasibility test of polarization extraction
- Conclusion

# $\Lambda(\bar{\Lambda})$ hyperon polarization



- Global polarization<sup>1,2</sup>
- w.r.t reaction plane
- Emerges in HIC due to the system angular momentum
- Sensitive to parity-odd characteristics of QCD medium and QCD anomalous transport

- Inclusive polarization<sup>3,4</sup>
- \* w.r.t scattering (production) plane
- > Measured in pp and pA collisions
- In HIC can be diluted due to the rescattering in the QCD medium



# $\Lambda(\bar{\Lambda})$ hyperon polarization



- PV primary vertex
- $V_0$  vertex of hyperon decay
- dca distance of closest approach
- path decay length
- In the case of global polarization one needs to calculate event plane and account for its resolution (R<sup>1</sup><sub>EP</sub>):

$$\overline{P}_{\Lambda/\bar{\Lambda}} = \frac{8}{\pi\alpha} \frac{1}{R_{\rm EP}^1} \left\langle \sin(\Psi_1 - \theta^*) \right\rangle$$

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = 1 + \alpha_{\Lambda}P_{\Lambda}\cos\theta^*$$

- $\theta^*$  angle between the decay particle and  $\vec{n} = \vec{p}_{\text{beam}} \times \vec{p}_{\Lambda}$
- $P_{\Lambda}$  inclusive polarization (w.r.t. production plane of  $\Lambda$ )



# **NICA** complex





- Beams: Luminosity:
  - > p (d)  $\rightarrow$  L = 10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - > Au (Bi)  $\longrightarrow$  L = 10<sup>27</sup> cm<sup>-2</sup>s<sup>-1</sup>

### **MPD** detector



#### Multi-Purpose Detector (MPD)

 energy and system size scan from 4 to 11 GeV (HI beams) to measure a variety of signals



- $2\pi$  acceptance in azimuth
- 3-D tracking (TPC)
- Powerful PID (TPC, TOF, ECAL):
  - $\,\,$   $\,\,\pi/{
    m K}$  up to 1.5 GeV/c

  - $\succ$  γ, e: 0.1 < p < 3 GeV/c
- High event rate
  - > Up to ~ 6 kHz

- <u>Stage I</u>:
  - TPC, TOF, ECAL, FHCAL, FFD
     + ITS(OB)
- <u>Stage II</u>:
  - ITS(IB) + EndCap (CPC, Straw, TOF, ECAL)

## Analysis method

- Data: MC simulation using DCM-QGSM generator<sup>1</sup>
  - $\,\,{}^{\scriptstyle \succ}\,$  Au-Au,  $\sqrt{s_{NN}}=9$  GeV, ~100000 events, b=0 fm
  - DeGrand-Markkanen-Miettinen approach<sup>2</sup>
  - > Inclusive  $\Lambda$  polarization (transverse to the scattering plane)
  - > No  $\bar{\Lambda}$  polarization
- Track selection criteria:
  - > Number of TOF hits:  $\rm N_{hits} > 10$
  - × |η|<1.3

$$\begin{aligned} \mathbf{P} &= -\left(\frac{12p_T}{\Delta x_0 \mathbf{M}^2} \frac{1-\xi(x)}{(1+3\xi(x))}\right)^2 \\ \xi(x) &= \frac{1-x}{3} + 0.1x, \, x = p_\Lambda/p_{\text{beam}} \\ \mathbf{M}^2 &= \left[\frac{m_{\mathrm{D}}^2 + p_{\mathrm{TD}}^2}{1-\xi(x)} + \frac{m_{\mathrm{s}}^2 + p_{\mathrm{Ts}}^2}{\xi(x)} - (m_\Lambda^2 + p_T^2)\right] \end{aligned}$$

<sup>1</sup> V.D. Toneev, K.K. Gudima, Nucl. Phys. A 400, 173 (1983) <sup>2</sup> T.A. Degrand, J. Markkanen, H.I. Miettinen, Phys. Rev. D: Part. Fields 32, 2445 (1985)



# **Analysis** method





• Realistic Monte-Carlo simulation using DCM-QGSM generator (inclusive  $\Lambda$  polarization)

Simulation of polarization effects in the detector via GEANT 3 (anisotropic decay of Λ hyperons)
 — can be switched on/off to study the effect

• Event reconstruction using realistic PID within mpdroot framework

•  $\Lambda(\bar{\Lambda})$  reconstruction through the weak decay channel  $\Lambda \to p + \pi^-$ 



#### Phase space for $\Lambda$ hyperon



03.10.2020

9/19





$$f(x) = [0] \exp\left(\frac{(-0.5(x-[1]))^2}{[2]^2}\right) + [3](L_0 + [4]L_1 + [5]L_2 + [6]L_3 + [7]L_4)$$





Comparison of extracted angular distributions (from invariant mass) with the true distributions (for «polarized» and «non-polarized» case)

- + Extracted (polarized case) + Extracted (non-polarized case)
  - True (polarized case)

—— True (non-polarized case)





Dividing extracted angular distributions obtained from polarized/non-polarized case (with or w/o anisotropic decay)

> Accounts for the detector acceptance  $\rightarrow$  shows net effect due to polarization of  $\Lambda$  hyperons





Polarized/non-polarized case (with or w/o anisotropic decay) (Right) true distributions, (Left) distributions from invariant mass





14/19







Polarization dependence on  $p_{T}$  (top) and  $x = p_{\Lambda}/p_{beam}$  (bottom).

- Large fraction of non-polarized secondary  $\Lambda$
- Reaches maximum at intermediate values of  $p_{_{\rm T}} \, \text{and} \, \, x$
- > Warrants a study in different regions of  $p_{T}(x)$



16/19



- Feasibility test of polarization extraction within the framework of the MPD experiment

# • Outlook:

- Perform feasibility test on MC simulation of global polarization
- Include polarization effects for other hyperons and account for rescattering





# Thank you for your attention!





# **Back Up**





true lambda polar(origs[0]>0) cos(reco)-cos(true) vs cos(reco)+cut



03.10.2020

true lambda polar(origs[0]>0) cos(reco)-cos(true) vs cos(reco)+cut



true lambda polar(origs[0]>0) cos(reco)-cos(true) vs cos(reco)+cut



MC study of lambda polarization at MPD