Anisotropic collective flow and development of the corresponding measurement techniques for the MPD experiment

<u>Arkadiy Taranenko¹</u>, Dim Idrisov¹, Vinh Ba Luong¹, Nikolay Geraksiev^{2,3}, Petr Parfenov¹, Alexander Demanov¹, Alexey Povarov¹, Ilya Selyuzhenkov¹, Viktor Kireyeu², Evgeny Volodihin¹, Anton Truttse¹, Mikhail Mamaev¹, Dmitri Blau⁴, Oleg Golosov¹, Evgeni Kashirin¹, Ilya Segal, Ilya Selyuzhenkov⁵

¹National Research Nuclear University MEPhl
 ²VBLHEP JINR
 ³FPT, Plovdiv University "Paisii Hilendarski"
 ⁴Kurchatov Institute, Moscow, ⁵GSI/FAIR

For the MPD Collaboration

6th MPD Collaboration Meeting, JINR, Dubna, 28-30 October 2020, Dubna, Russia

This work is supported by: the RFBR according to the research project No. 18-02-40086 the European Union's Horizon 2020 research and innovation program under grant agreement No. 871072

Anisotropic Flow at NICA energies: Data vs Models

Anisotropic flow at NICA energies Experimental Data:

- (1) E895 Collaboration Au+Au at 2.7, 3.32, 3.85 and 4.3 GeV
- (2) NA61/NA49 Pb+Pb at 5.1, 7.6 and 8.9 GeV
- (3) STAR Collaboration Au+Au at 3.0, 4.5, 7.7 and 11.5 GeV + new results from BES-II

Anisotropic flow at NICA energies Models:

(1) String/Hadronic Cascade Models: UrQMD, HSD, SMASH, JAM, DCM-QGSM

(2) Hybrid Models: viscous hydro+cascade (vHLLE+UrQMD и MUSIC+UrQMD) и parton/string models (AMPT, PHSD и PHQMD)

Goals: Reliable set of published vn results for comparison

Hybrid model constructor

Tools for a Bayesian analysis of Heavy Ion Collisions

2

vHLLE+UrQMD: Elliptic and triangular flow in Au + Au collisions at 200 GeV

3D hydro model vHHLE + UrQMD (XPT EOS), $\eta/s = 0.08 + \text{param from}$ Iu.A. Karpenko, P. Huovinen, H. Petersen, M. Bleicher, Phys.Rev. C91 (2015) no.6, 064901 Reasonable agreement between results of vHLLE+UrQMD model and published PHENIX data

Beam Energy dependence of ε_2 and ε_3

4

Beam-energy dependence of v_2 and v_3

5

Petr Parfenov for STAR Collaboration, ICPPA 2020

Integrated v_2 and v_3 decrease with decreasing collision energy Similar shape of p_T dependence of normalized v_2 and v_3 for all centralities and beam energies

Beam energy dependence of Relative elliptic flow fluctuations

Star data: L. Adamczyk et al. (STAR Collaboration). Phys. Rev. C 86, 054908 (2012) Analysis of the model data: Vinh Ba Luong, Dim Idrisov (MEPhI)

- Relative v₂ fluctuations (v₂{4}/v₂{2}) observed by STAR experiment can be reproduced both in the string/cascade models (UrQMD, SMASH) and hybrid model (AMPT with string melting)
 - Dominant source of v₂ fluctuations: participant eccentricity fluctuations in the initial geometry

6

Elliptic flow at NICA energies: Models vs Data comparison

Iu.A. Karpenko, P. Huovinen, H. Petersen, M. Bleicher , Phys.Rev. C91 (2015) no.6, 064901

Elliptic flow at NICA energies: Models vs Data comparison

Pure String/Hadronic Cascade models give smaller v₂ signal compared to STAR data for Au+Au $\sqrt{s_{NN}}$ =7.7 GeV and above

Elliptic flow at NICA energies: Models vs Data comparison

Pure String/Hadronic Cascade models give similar v_2 signal compared to STAR data for Au+Au $\sqrt{s_{NN}}$ =4.5 GeV

Beam-energy dependence of v_2 and v_3 particle-antiparticle difference

Petr Parfenov for STAR Collaboration (ICPPA2020)

New results

- Several theoretical scenarios of possible sources of the observed difference in v_2 :
 - Transported and produced protons (or quarks) have different v_2
 - Mean-field potentials in the hadronic phase: particles feel Coulomb attraction or repulsion corresponding to their charge sign
 - Possible artificial increase of the baryon-antibaryon difference may be attributed to the way event plane is defined in the measurements
- The difference cannot be quantitively reproduced within those scenarios

Elliptic flow: protons vs. antiprotons

• Both vHLLE+UrQMD and UrQMD predict $v_2(p) < v_2(\bar{p})$ but experimental data shows $v_2(p) > v_2(\bar{p})$

Elliptic flow: protons vs. antiprotons

- The same trend is apparent in both UrQMD and AMPT
- SMASH gives a different trend close to the data

Model vs. data comparison for $v_1(y)$

• DCM-QGSM-SMM and JAM XPT have the better agreement with STAR published data

• Slope dv_1/dy changes dramatically with centrality for protons

• What kind of additional information can we extract from (p_T , centrality)-dependence of v_1 from comparison with DCM-QGSM-SMM and JAM (XPT & 1PT EoS) models?

MPD Experiment at NICA

Event plane, centrality:

FHCal (2<|η|<5) or TPC (|η|<1.5)

Time Projection Chamber (TPC)

➤Tracking of charged particles

within ($|\eta| < 1.5$, 2π in ϕ)

➢PID at low momenta

Time of Flight (TOF)

➢PID at high momenta

2<η<5 **FHCal**

Setup, event and track selection

Elliptic flow measurements using v₂ of produced particles in TPC

$$u_{2} = \cos 2\varphi + i \sin 2\varphi = e^{2i\varphi}$$
(1)

$$Q_{2} = \sum_{j=1}^{M} \omega_{j} u_{2,j}, \Psi_{2,\text{TPC}} = \frac{1}{2} \tan^{-1} \left(\frac{Q_{2,y}}{Q_{2,x}} \right)$$
(2)
Scalar Product: $v_{2}^{\text{SP}} \{ Q_{2,\text{TPC}} \} = \frac{\langle u_{2,\eta \pm} Q_{2,\eta \mp}^{*} \rangle}{\sqrt{\langle Q_{2,\eta +} Q_{2,\eta -}^{*} \rangle}}$ (3)

$$(1) \qquad -5 < \eta < -2 \qquad -1.5 < \eta < 1.5 \qquad TPC \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad FHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad 0.2 < p_{T} < 3 \text{ GeV/c} \qquad fHCal \qquad f$$

Event Plane: $R_2^{\text{EP}}\{\Psi_{2,\text{TPC}}\} = \sqrt{\langle \cos[2(\Psi_{2,\eta+} - \Psi_{2,\eta-})] \rangle} \quad v_2^{\text{EP}}\{\Psi_{2,\text{TPC}}\} = \frac{\langle \cos[2(\varphi_{\eta\pm} - \Psi_{2,\eta\mp})] \rangle}{R_2^{\text{EP}}\{\Psi_{2,\text{TPC}}\}}$ (4)

Q-cumulants:

$$\langle 2 \rangle_2 = \frac{|Q_n|^2 - M}{M(M-1)} \approx v_2^2 + \delta \quad \langle 4 \rangle_2 = \frac{|Q_n|^4 + |Q_{2n}|^2 - 2|Q_{2n}Q_n^*Q_n^*| - 4M(M-2)|Q_n|^2 + 2M(M-3)}{M(M-1)(M-2)(M-3)} \approx v_2^4 + 4v_2^2\delta + 2\delta^2$$

$$v_{2}\{2\} = \sqrt{\langle\langle 2\rangle\rangle} \qquad v_{2}\{4\} = \sqrt{2\langle\langle 2\rangle\rangle^{2} - \langle\langle 4\rangle\rangle} \qquad (5)$$

Event plane method using v₁ of particles in FHCal

Using v_1 of particles in FHCal to determine Q_n

$$Q_{1} = \frac{\sum E_{i} e^{i\varphi_{i}}}{\sum E_{i}}, \Psi_{1,\text{FHCal}} = \tan^{-1}\left(\frac{Q_{1,y}}{Q_{1,x}}\right) \quad (1)$$

E – energy deposition in FHCal modules ($2 < |\eta| < 5$)

$$R_n\{\Psi_{1,\text{FHCal}}\} = \langle \cos[n(\Psi_{\text{RP}} - \Psi_{1,\text{FHCal}})] \rangle \quad (2)$$

$$v_2\{\Psi_{1,\text{FHCal}}\} = \frac{\langle \cos[n(\varphi - \Psi_{1,\text{FHCal}})]\rangle}{R_n\{\Psi_{1,\text{FHCal}}\}}$$
(3)

1(

- 1(

20

40

X, cm

v₂ of V0 particles: invariant mass fit method (Nikolay Geraksiev)

Data set:

• 25 million events, UrQMD 3.4 non-hydro, 11.0 GeV, minbias

Geant4 simulation, full reconstruction with:

• TPCv7, TOFv7, FHCal

Centrality by TPC multiplicity, Event-plane method with FHCal Particle decays reconstructed with MpdParticle realistic cuts Differential flow signal extraction by bins in transverse momentum (or rapidity) with a simultaneous fit

$$v_{2}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T}) = v_{2}^{S}(\mathbf{p}_{T}) \frac{\mathbf{N}^{S}(\mathbf{m}_{inv},\mathbf{p}_{T})}{\mathbf{N}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T})} + v_{2}^{B}(\mathbf{m}_{inv},\mathbf{p}_{T}) \frac{\mathbf{N}^{B}(\mathbf{m}_{inv},\mathbf{p}_{T})}{\mathbf{N}^{SB}(\mathbf{m}_{inv},\mathbf{p}_{T})}$$

Non-uniform acceptance

How robust the future measurements against non-uniform acceptance?

Acceptance correction

The applied acceptance corrections eliminated the influence of non-uniform acceptance Plans: QnTools Framework from CBM experiment https://github.com/HeavyIonAnalysis/QnTools

Sensitivity of different methods to flow fluctuations

Elliptic flow fluctuations:

 $\sigma_{v_2}^2 = \left\langle v_2^2 \right\rangle - \left\langle v_2 \right\rangle^2$

The difference between v_2 {2} and v_2 {4}:

$$v_2\{2\} \approx \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}, v_2\{4\} \approx \langle v_2 \rangle - \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}$$

The difference between $v_2^{EP}\{\Psi_{1,FHCal}\}$ and $v_2^{EP}\{\Psi_{2,TPC}\}$:

$$v_2^{\text{EP}} \{ \Psi_{1,\text{FHCal}} \} \approx \langle v_2 \rangle, v_2^{\text{EP}} \{ \Psi_{2,\text{TPC}} \} \approx \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v_2}^2}{\langle v_2 \rangle}$$

J. Adam et al. The ALICE Collaboration Phys. Rev. Lett. 116 (2016) 132302

Comparison of v2 measurements using different method

Performance study of v₂ of pions and protons in MPD

Reconstructed and generated v_2 of pions and protons have a good agreement for all methods

Au+Au vs. Bi+Bi collisions for reconstructed data in MPD

TPC event plane

The results show a little difference for resolution and elliptic flow between two colliding systems

Au+Au vs. Bi+Bi collisions for reconstructed data in MPD

FHCal event plane

Expected small difference between colliding systems

v₁(y): Bi+Bi vs Au+Au

Expected small difference for v1 (y) for particles produced in Au+Au and Bi+Bi collisions.

Performance study for v₂ of V0 particles (Nikolay Geraksiev)

Reasonable agreement between reconstructed and generated v_2 signals for both K⁰ and A

Performance study for v₁ of V0 particles (Nikolay Geraksiev)

Reasonable agreement between reconstructed and generated v_1 signals for both K⁰ and A

Performance study for v_1 and v_2

30

Outlook: triangular flow with MPD at NICA

the existence of a QGP phase

In models, v_3 goes away when the QGP phase disappears???? 30 M of reconstructed vHLLE+UrQMD events

Summary and outlook

- v₂ at NICA energies shows strong energy dependence:
 - > At $\sqrt{s_{NN}}$ =4.5 GeV v₂ from UrQMD, SMASH are in a good agreement with the experimental data
 - > At $\sqrt{s_{NN}} \ge 7.7$ GeV UrQMD, SMASH underestimate v_2 need hybrid models with QGP phase
 - Lack of existing differential measurements of v₂ (p_T, centrality, PID, …)
- Comparison of methods for elliptic flow measurements using UrQMD model:
 - > The differences between methods are well understood and could be attributed to non-flow and fluctuations
- Feasibility study for directed and elliptic flow in MPD:
 - v_n of identified charged hadrons: results from reconstructed and generated data are in a good agreement for all methods
 - v_n of K⁰ and Λ particles: results from reconstructed (using invariant mass fits) and generated data are in a good agreement
- Small differences in v_n for 2 colliding systems (Au+Au, Bi+Bi) were observed as expected

Outlook:

> v_1, v_2 and v_3 measurements for the hybrid models (production of 60 M events for vHLLE+UrQMD at $\sqrt{s_{_{NN}}}$ = 11 GeV is ongoing)

Workshop on analysis techniques for centrality determination and flow measurements at FAIR and NICA, http://indico.oris.mephi.ru/event/181/ (24-28 August 2020)

Thank you for you attention

Backup

Setup, event and track selection

Results for v₂ from UrQMD model of Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV

 v_2 {4} is smaller than v_2 {2} due to fluctuations and nonflow

Description of event plane method

$$\mathbf{Q}_{n} = \sum_{j=1}^{N} w_{n}(j) e^{in\phi_{j}} = |\mathbf{Q}_{n}| e^{in\Phi_{n}}$$
 (1)

$$Q_n \cos(n\Psi_n) = X_n = \sum_i w_i \cos(n\phi_i),$$
$$Q_n \sin(n\Psi_n) = Y_n = \sum_i w_i \sin(n\phi_i),$$

$$\Psi_n = \left(\tan^{-1} \frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)} \right) / n$$
 (2)

• η -sub EP method: resolution of the reaction plane Ψ_2 obtained from 2 sub-events

LeftRight-1.5 <
$$\eta$$
 < -0.050.05 < η < 1.5Left half (η <-0.05) $\rightarrow \eta$.

Right half (η >0.05) $\rightarrow \eta_+$

$$v_{2}\{\eta \text{-sub,EP}\} = \frac{\langle \cos[n(\phi_{\eta\pm} - \Psi_{2,\eta\mp})]\rangle}{\sqrt{\langle \cos[n(\Psi_{2,\eta\pm} - \Psi_{2,\eta-})]\rangle}}$$
(3)

Description of scalar product method

$$u_n = \cos n\phi + i\sin n\phi = e^{in\phi} \qquad (1)$$

$$Q_n = \sum_{j=1}^M u_{n,j} = \sum_{j=1}^M e^{in\varphi_j}$$
 (2)

- u_n particle unit vector
- Q_n event flow vector(Q-vector)
- Elliptic flow measured using correlation between u_n and Q_n

Left	Right
-1.5 < η < -0.05	0.05 < η < 1.5

Left half (η <-0.05) $\rightarrow \eta_{-}$ Right half (η >0.05) $\rightarrow \eta_{+}$

$$\mathbf{v}_{2}^{SP}\{Q_{2,\mathrm{TPC}}\} = \frac{\left\langle u_{2,\eta\pm}Q_{2,\eta\mp}^{*}\right\rangle}{\sqrt{\left\langle Q_{2,\eta\mp}Q_{2,\eta\mp}^{*}\right\rangle}} \quad (3)$$

Results for v₂ for reconstructed events of MPD

39

Eccintricity: Bi+Bi vs Au+Au

UrQMD model predicts small difference between ϵ_n of Au+Au and Bi+Bi

Sensitivity of different orders cumulants to elliptic flow fluctuations

 How fluctuations affect the measured values of V_n. The effect of the fluctuations on V_n estimates can be obtained from

$$\langle \mathbf{v}_n^2 \rangle = \overline{\mathbf{v}}_n^2 + \sigma_{\mathbf{v}_n}^2, \quad \langle \mathbf{v}_n^4 \rangle = \overline{\mathbf{v}}_n^4 + 6\sigma_{\mathbf{v}_n}^2 \overline{\mathbf{v}}_n^2$$

 $\mathbf{v}_n\{2\} = \sqrt{\langle \mathbf{v}_n^2 \rangle}, \quad \mathbf{v}_n\{4\} = \sqrt[4]{2\langle \mathbf{v}_n^2 \rangle^2 - \langle \mathbf{v}_n^4 \rangle}$

The difference between v_n{2} and v_n{4} is sensitive to not only nonflow but also to the event-by-event v_n fluctuations.

$$\mathbf{v}_n\{2\} = \overline{\mathbf{v}}_n + \frac{1}{2} \frac{\sigma_{\overline{v}_n}^2}{\overline{\mathbf{v}}_n}, \quad \mathbf{v}_n\{4\} = \overline{\mathbf{v}}_n - \frac{1}{2} \frac{\sigma_{\overline{v}_n}^2}{\overline{\mathbf{v}}_n}$$

The difference between v_n {2} with and without $\Delta \eta$ gap is driven by the contribution from nonflow

Ilya Selyuzhenkov for the ALICE collaboration, Prog.Theor.Phys.Suppl. 193 (2012) 153-158

Cumulant results from Beam Energy Scans

The magnitude and trend of the fluctuations, have weak beam energy dependence Methods of flow measurements have different sensitivity to flow fluctuations

Cumulant results from Beam Energy Scans

Comprasssion of (a) v_2 {2} vs. $\langle N_{ch} \rangle$, (b) v_2 {4} vs. $\langle N_{ch} \rangle$ and (c) thir ratio for Au+Au collisions

Niseem Magdy, Nucl.Phys.A 982 (2019) 255-258

v₂ versus transverse momentum for protons measured in semi-central events and around mid-rapidity.

N. Bastid, et al., Phys.Rev. C72 (2005) 011901

arXiv:nucl-ex/0504002

Results for v₂ from UrQMD model of Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV

• Total number of generated minimum bias

events - 88 M

• Particle selection: charged hadrons,

 $0.2 < p_T < 3 \text{ GeV/c}$

- Configuration of cumulant method:
 - 1. RFP and POI: charged hadrons;
 - 2. calculations were performed taking into account

the effect of autocorrelation

• All 3 methods have the same kinematical cuts

Left	Right
-1.5 < η < -0.05	0.05 < η < 1.5

Left half (η <-0.05) $\rightarrow \eta_{-}$ Right half (η >0.05) $\rightarrow \eta_{+}$

Results for v₂ for reconstructed events of MPD

45