Hyperon global polarization studies

*Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Sinaloa ivonne.alicia.maldonado@gmail.com

October 30th, 2020

VI-th Collaboration Meeting of the MPD Experiment at the NICA Facility

Outline

Motivation

- 2 Measurement procedure
- 3 Analyzed data
- 4 Reconstruction
- 5 Event Plane Angle
- 6 Polarized Hyperons

Motivation: Core meets Corona

A two component source to explain Λ and $\overline{\Lambda}$ global polarization in semi-central heavy-ion collisions. J.Phys.Conf.Ser. 1602, 012032 (2020), Phys.Lett.B 810, 135818 (2020)

• $w \to \bar{\Lambda} / \Lambda$ ratio in periphery:

- QGP \rightarrow central region
- REC \rightarrow periphery region

I. Maldonado

/Ith MPD-NICA meeting

Clencias Nucleares UNAM

Measurement procedure of Hyperon Global Polarization

- ${\it 2}$ Measurement of the Event Plane angle Ψ_{EP} and its Resolution R_{EP}
- 8 Polarization as a function of the difference of these angles

yperon global polarization

I. Maldonado

- Generation of $\approx 100,000$ events of Bi+Bi for each different centrality sets of data
 - Minimum Bias,
 - Central collisions b < 4 fm,
 - Semi-Central collisions 6 fm < b < 8 fm
 - Peripheral collisions b > 10 fm
- Generator \rightarrow UrQMD
- Transport \rightarrow GEANT3
 - TPC, TOF, EMC, ZDC
- Reconstruction analysis \rightarrow Only TPCKalmanTracks

Data type: MC/Sim/Rec

Number of Λ and $\bar{\Lambda}$ per event in each data set

- MC data $\to \Lambda$ and $\bar{\Lambda}$ generated by UrQMD + particle decays, secondary interactions by GEANT3 transport package
- Sim data \rightarrow Findable Λ and $\bar{\Lambda}$, identified by the products of its charged decay and with $p_{T>0.001}$ (GeV/c) and $|\eta|<1.3$
- Rec data \to Reconstructed Λ and $\bar{\Lambda},$ identified by combination of secondary tracks of opposite charge.

Data	Generated		Simulated		Reconstructed	
Sample	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$	Λ	$ar{\Lambda}$
MB	11.8	0.22	6.36	0.14	0.66	0.02
$b < 4 \; {\rm fm}$	50.6	0.74	28.2	0.47	3.78	0.06
6 fm < b < 8 fm	24.0	0.45	13.1	0.28	1.16	0.04
$b>10~{\rm fm}$	2.12	0.07	1.10	0.04	0.05	0.004

Comparison: MC/Sim/Rec

Number of Λ and $\bar{\Lambda}$ per event at each level of analysis and impact parameters

lyperon global polarizatior

I. Maldonado

MPD-NICA meeti

Maximum efficiency for reconstruction in p_T

The efficiency for Λ and $\bar{\Lambda}$ for each data set is similar

Maximum efficiency with MC association

Reconstruction: Kinematical and topological variables

Ciencias Nucleares

Variable	Cut		
Cos of Angle	?		
DCA V^0	? cm		
DCA <i>p</i> -track	? cm		
DCA π -track	? cm		

I. Maldonado

Cuts for selection

Most of Λ and $\overline{\Lambda}$ are in:

- $\cos(\theta) > 0.98$
- DCA $V^o < 0.5 \text{ cm}$
- DCA p track > 0.1 cm
- DCA $\pi track > 0.3 cm$

Some cuts distinguish Λ from $\bar{\Lambda}$

Distinguish between Λ and $\bar{\Lambda}$

$$\alpha = \frac{p_L^+ - p_L^-}{p_L^+ + p_L^-}$$

We use:

- $\alpha > 0$ for Λ
- $\alpha < 0$ for $\bar{\Lambda}$

Even with cuts the background is difficult to , visualize $\bar{\Lambda} \to$ we use MC association

lyperon global polarization

I. Maldonad

MPD-NICA meeting

Ciencias

Invariant mass with preliminary cuts

 Λ - in MB data set

Significance measured in 3.5σ from the peak.

Stituto de Ciencias Nucleares

Invariant Mass at different b

Signal decreases with impact parameter

Hyperon global polarization

Invariant Mass ratio for Λ

Background subtraction and comparison with MC association of V^o candidates

I. Maldonado

Λ and $\bar{\Lambda}$ vs Impact Parameter

To do:

With the bin counting background subtraction method, we can clean the signal to get the impact parameter distributions

Code:

 $b = (FairMCEventHeader*) \rightarrow GetB();$

For these two distributions we get the MC identification of the reconstructed tracks after kinematical cuts

Measurement of Ψ_{EP} and R_{EP}

Example with **BeBe** \longrightarrow

Event Plane Angle $\Psi_{EP}^{(n)} = \frac{1}{n} \frac{\sum_{i} w_{i} sin(n\phi_{i})}{\sum_{i} w_{i} cos(n\phi_{i})}$

Resolution

$$R_{EP} = \left\langle \cos(\Psi_{EP}^{(1)} - \Psi_{RP}) \right\rangle$$

MEX NICA

distribution Number of Λ and $\overline{\Lambda}$ 9000 А 8000 estimated with Glauber Model . 5000 N c = 0.001 v= 11 GeV Periphery x **BiBi** collisions b 3000 + QGP 50 BEC OGE + d - random * • • fixed 0^E_____ 20 h (rad Fix an azimuthal Spectators distribution for Consider that baryon decay 12 14 16 b (fm) 0 10 $\mathcal{P}^{\Lambda}_{REC} = \mathcal{P}^{\Lambda}_{REC} = 0$ according to $N_{\Lambda QGP}$ Add a polarization proportional to $N_{\Lambda QGP}$

How to introduce a Polarization?

Selecting a subset of tracks in the simulated and reconstructed data that follows the characteristics described in the model

- $z(\overline{z})$ Intrinsic polarization
- $w \overline{\Lambda} / \Lambda$ ratio in periphery
- **QGP** Central

region

DEO

NICA

Hyperon global polarization

Proton azimuthal

Preliminary – $\sin(\phi_p - \Psi_{EP})$

inhomogeneous azimuthal baryon decay distribution leads to different estimations of polarization.

- We have presented a general overview of Λ and $\bar{\Lambda}$ reconstruction using the MPD, aimed at measuring the hyperon global polarization for NICA energies.
- We plan to get the polarization with the measured event plane and to improve the selection of Λ and $\overline{\Lambda}$ considering the particle identification for the decay product tracks and improving the topological cuts to increase the significance.
- We plan to model the azimuthal angular distributions of the decay baryons to simulate polarization of particles coming from the different density regions, and compare with results obtained with other generators such as DCM-SMM and DCM-QGSM.

¡GRACIAS!

/peron global polarizatior

I. Maldonado

VIth MPD-NICA meeti