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Outline of the talk

» About us
» Introduction to Generative Adversarial Networks (GANSs)
» Our approach to fast simulating TPC using GANs

» Preliminary results
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About us

» People involved:
— Artem Maevskiy (NRU HSE)
— Fedor Ratnikov (NRU HSE)

Members of the Lambda laboratory (https://cs.hse.ru/en/lambda/)

. Our lab specializes in the applications of machine learning
— Alexander Zinchenko (JINR) techniques to high energy physics problems.

We have similar projects in the LHCb experiment —
developing fast simulation models for the Cherenkov
detectors and the electromagneric calorimeter
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Generative Adversarial Networks



How can a neural network generate data?

Neural network

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/
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How can a neural network generate data?

Random noize
e.g. multivariate normal

Generated data

Neural network

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/
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How can a neural network generate data?

Random noize
e.g. multivariate normal

Generated data

Neural network

» This makes the generated object being a differentiable function of the network
parameters

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/
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How can a neural network generate data?

detector
response
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Generated data

Random noize
e.g. multivariate normal

Neural network

» This makes the generated object being a differentiable function of the network
parameters
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How to train such a generator?

» Generated object is a differentiable function of the network parameters

» Need a differentiable measure of similarity between the generated objects and
real ones

— (Can optimize with gradient descent

» How to find such a measure?
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Adversarial approach

Goodfellow et al., Generative Adversarial Networks,
arXiv:1406.2661 [stat.ML]
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Discriminator network

“Real” data

» Measure of similarity: how well can another neural network (discriminator) tell the

generated objects apart from the real ones
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GANs for fast simulation

K. Matchev, P. Shyamsundar, Uncertainties associated with GAN-generated datasets in high energy physics,

» Quite a developing field!

» Important note: one cannot
increase the statistics with
GANSs

» GANSs rather memorize and
interpolate the available
data
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Simulating TPC with a GAN



Time projection chamber

Outer area

Flange

(Aluminum)
Pad and wire planes

Support tubes for 95 232 pads Simulation

time:

C4
. field cage .

Central HV electrode 310 time
~25 sec/event

buckets

http://mpd.jinr.ru/wp-content/uploads/2019/01/TpcTdr-v07.pdf
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Objective

» For each event need to generate
the signal for:

— 95232 - 310 elements (pads x time
buckets)

— Conditioned on the track parameters
for the whole event

» Very large output space

» Input of varying dimensionality

» Need to simplify somehow!

Artem Maevskiy, et. al.
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Assumptions for fast simulation
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Assumptions for fast simulation

» Factorizing the pad rows

— dividing tracks to segments, each

contributing to a particular pad row

— can model such contributions

independently!

Pads
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Assumptions for fast simulation

» Factorizing the pad rows

— dividing tracks to segments, each

contributing to a particular pad row
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— can model such contributions

independently!

» Signal localization (both space &

time)

— model only a small area instead of the
full row

— model only a few time buckets
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Assumptions for fast simulation

» Factorizing the pad rows

— dividing tracks to segments, each

contributing to a particular pad row

— can model such contributions
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independently!

» Signal localization (both space &

time)

— model only a small area instead of the

full row

— model only a few time buckets

» Target dimensionality:
8 pads x 16 time buckets

Artem Maevskiy, et. al. 6th MPD meeting 18



Assumptions for fast simulation

» Factorizing the pad rows

— dividing tracks to segments, each

contributing to a particular pad row

&
L
&
q

— can model such contributions

independently!

» Signal localization (both space &

time)

— model only a small area instead of the

full row

— model only a few time buckets

» Target dimensionality: Input:

8 pads x 16 time buckets 2 angles +
3 coordinates per track segment
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Model details

» Model: WGAN-GP (arXiv:1704.00028 [cs.LG])

» Generator:
— Fully connected
— ELU activations

— 5layers

» Discriminator:
— Deep convolutional NN
— ELU activations

— Dropout layers

» Optimization: RMSprop, learning rate exponential decay

Artem Maevskiy, et. al. 6th MPD meeting
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Model details

» Model: WGAN-GP (arXiv:1704.00028 [cs.LG])

» Generator: Convolutional layers
are too slow on CPU
— Fully connected

— ELU activations

— 5layers

» Discriminator:
— Deep convolutional NN
— ELU activations

— Dropout layers

» Optimization: RMSprop, learning rate exponential decay
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Results



generated real generated real generated real generated

generated generated generated

generated

generated generated generated generated

generated generated generated generated

generated generated generated generated

Real Generated Real Generated Real Generated Real Generated
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real generated real generated real generated real generated

generated generated

generated generated

generated generated generated generated

generated generated generated generated

generated generated

generated

generated

Real Ge

oanerated Real Generated Real Generated

Visually similar!
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generated real generated real generated real generated

generated generated

generated

generated generated generated

generated generated generated

generated generated generated generated

Real Ge oanerated Real

Visually similar! With minor artifacts
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Metrics

» Model not yet integrated into the MPD software

» So far, no direct way of measuring the quality from e.g. tracking performance

Artem Maevskiy, et. al. 6th MPD meeting
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Metrics

» Model not yet integrated into the MPD software

» So far, no direct way of measuring the quality from e.g. tracking performance

» Instead (as a preliminary metric): we compare the 1st & 2nd order moments of the
signal images, i.e.:
— the location of the signal in pads and time bins
— the widths of the signal in pads and time bins

— the tilt of the signal in the pad-time matrix

» Also looking at the integrated amplitudes
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Metrics

» Model not yet integrated into the MPD software

» So far, no direct way of measuring the quality from e.g. tracking performance

» Instead (as a preliminary metric): we compare the 1st & 2nd order moments of the
signal images, i.e.:
— the location of the signal in pads and time bins
— the widths of the signal in pads and time bins

— the tilt of the signal in the pad-time matrix

» Also looking at the integrated amplitudes

» All this as a function of track segment parameters (2 angles + 3 coordinates)
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Explaining the profiles

Sigma0~2 vs crossing_angle

Widths of the shaded lines 0,400 1
correspond to the
statistical uncertainties

0.375 1
0.350 1

0.325 4

Statistic
(e.g. signal width in pads)

0.300 A1

0.275 4

0.250 \

0.225 41 ==

 real

B generated

Mean of the statistic / U
Mean + 1 standard deviation Input variable

(e.g. crossing angle)
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Results (profiles

Mean0 vs crossing_angle
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» 6 metrics vs the 2 angles
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Mean0 vs drift_length

Mean vs drift length

Sigma0~2 vs drift_length

Sigmal~2 vs drift_length
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Sum vs drift_length
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» 6 metrics vs the 3 coordinates
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Summary

» Promising results

— Reasonable quality according to the proposed metric

» About 30x improvement in speed

— preliminary number, not yet estimated on the target platform

» Major TODO:s:

— Integrate our model into the MPD software stack

— Validate the tracking and dE/dx performance from full reconstruction
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Thank you!
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