

VIth MPD Collaboration meeting 28-30 October 2020, JINR, Dubna

Femtoscopy correlations with MPD at NICA

on behalf of PWG3 (Correlations and Fluctuations) Supported by the RFBR grant 18-02-40044

P. Batyuk¹, *M.* Cheremnova², *O.* Kodolova², *E.* Khyzhniak⁴, *L.* Malinina^{1,2}, <u>K.Mikhaylov</u>^{1,3}, G.Nigmatkulov⁴, G. Romanenko²

¹ Joint Institute for Nuclear Research, Dubna, Russia

- ² Skobeltsyn Research Institute of Nuclear Physics, Moscow State University, Moscow, Russia
- ³ NRC Kurchatov Institute ITEP, Moscow, Russia
- ⁴ National Research Nuclear University MEPhI, Moscow, Russia

Outline

- Activities
- Femtoscopy & Motivation
- Hybrid vHLLE model
- New kaon results
- Tests with reconstructed data
- Factorial Moments
- Femto software
- Conclusions

Activities within RFBR grant 18-02-40044

- Three Master and 1 PhD student in Femto group
- <u>PWG3 Meetings</u>: about 20 events(2020) → https://indico.jinr.ru/category/346/
- <u>MPD Physics Seminars(+3 in 2019)</u>:

G.Nigmatkulov. «The MpdMiniDst data format (Part 1)». 16 July 2020 G.Nigmatkulov. «The MpdMiniDst data format (Part 2)». 6 Aug 2020

• <u>Conferences(+3 in 2019)</u>:

ICPPA-2020: 3 talks NUCLEUS-2020: 1 talk RFBR Grants for NICA: 3 talks VI MPD Collabration meeting: 2 talks

• <u>Publications(+1 in 2019)</u>:

P. N. Batyuk, L. V. Malinina, K. R. Mikhaylov, and G. A. Nigmatkulov, «Femtoscopy with Identified Charged Particles for the NICA Energy Range», Physics of Particles and Nuclei, 2020, Vol. 51, No. 3, pp. 252–257

+ 5 proceedings(ICPPA, NUCLEUS and RFBR) will be published

Femtoscopy

 $C(q_{inv})=1+\lambda e^{-R^2 q_{inv}^2}$ 1D CF: **R** – Gaussian radius in PRF, λ – correlation strength parameter

3D CF: $C(q_{out}, q_{side}, q_{long}) = 1 + \lambda e^{-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2}$ *R* and *q* are in Longitudinally Co-Moving Frame (LCMS) long || beam; out || transverse pair velocity v_{T} ; side normal to out, long VI MPD Collaboration meeting

Correlation femtoscopy :

Measurement of space-time characteristics **R**, $c\tau$ of particle production using particle correlations due to the effects of quantum statistics (QS) and final state interactions (FSI)

Two-particle correlation function:

theory:

experiment:

$$C(q) = \frac{N_{2}(p_{1}, p_{2})}{N_{1}(p_{1}) \cdot N_{2}(p_{1})}, C(\infty) = 1$$
$$C(q) = \frac{S(q)}{B(q)}, q = p_{1} - p_{2}$$

S(q) – distribution of pair momentum difference from same event B(q) – reference distribution built by mixing different events

Motivation

Femtoscopy allows one:

- To obtain spatial and temporal information on particle-emitting source at kinetic freeze-out
 To study collision dynamics depending on EoS
- RHIC Beam Energy Scan program (BES-I): $\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27, 39 \text{ GeV}$
 - The search for the onset of a first-order phase transition in Au + Au collisions
 - Measured pion and kaon femtoscopic parameters:
 m_T -dependence of radii,

flow-induced x - p correlations

- NICA energy range: $\sqrt{s_{_{NN}}} = 4 11 \text{ GeV}$
 - first collider measurements below 7.7 GeV
 including K and heavier

Femtoscopy with vHLLE

Iu. Karpenko, P. Huovinen, H.Petersen, M. Bleicher, Phys.Rev. C.91, 2015, 064901

Pre-thermal phase

UrQMD

Parameters τ_0 , R_{\perp} , R_{η} and η/s adjusted using basic observables in the RHIC BES-I region.

$\sqrt{s_{\rm NN}}$ [GeV]	$ au_0 ~[{ m fm}/{ m c}]$	R_{\perp} [fm]	R_{η} [fm]	η/s
7.7	3.2	1.4	0.5	0.2
8.8 (SPS)	2.83	1.4	0.5	0.2
11.5	2.1	1.4	0.5	0.2
17.3 (SPS)	1.42	1.4	0.5	0.15
19.6	1.22	1.4	0.5	0.15
27	1.0	1.2	0.5	0.12
39	0.9	1.0	0.7	0.08
62.4	0.7	1.0	0.7	0.08
200	0.4	1.0	1.0	0.08

Model tuned by matching with existing experimental data from SPS and BES-I RHIC Hydrodynamic phase

vHLLE (3+1)-D viscous hydrodynamics

EoS to be used in the model

- Chiral EoS crossover transition
 J. Steinheimer et al., J.
 Phys. G 38, 035001 (2011)
- Hadron Gas + Bag Model 1st-order phase transition
 P. F. Kolb et al., Phys.Rev. C 62, 054909 (2000)

Hydrodynamic phase lasts longer with 1PT, especially at lower energies but cascade smears this difference.

Hadronic cascade

Pion emission time after hydrodynamic phase 20×10^3 5^{15} 10^{5}

3D Pion radii versus m_{T} with vHLLE

Correlation Functions from UrQMD

- Examples of the correlation functions of pions and kaons obtained for Au+Au collisions at $\sqrt{s_{_{NN}}}$ =11.5 GeV (UrQMD)
- Correlation functions were fitted with:

$$C(q_{out}, q_{side}, q_{long}) = 1 + \lambda e^{-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2}$$

where:

 $R_{side}^{}$ - size of the emission region $R_{out}^{}$ - sensitive to the emission duration $R_{long}^{}$ - proportional to the system lifetime

Correlation Functions from vHLLE

- Examples of the correlation functions of pions and kaons obtained for Au+Au collisions at $\sqrt{s_{_{NN}}}$ =11.5 GeV (vHLLE)
- Correlation functions were fitted with:

$$C(q_{out}, q_{side}, q_{long}) = 1 + \lambda e^{-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2}$$

where:

 $R_{side}^{}$ - size of the emission region $R_{out}^{}$ - sensitive to the emission duration $R_{long}^{}$ - proportional to the system lifetime

• Both K and π CF XPT wide than 1XP \rightarrow XPT size smaller than 1XP

30 Oct 2020

Femtoscopic $R_{\!_{\pi}}$ from UrQMD and vHLLE

- Femtoscopic radii of pions decrease with increasing transverse mass
 → Influence of radial flow
- R_{side} increases going from peripheral to central collisions
 - \rightarrow Geometrical picture of ion-ion collision
- UrQMD shows similar results to vHLLE with 1PT
- vHLLE with XPT reasonably describe STAR data

VI MPD Collaboration meeting

Femtoscopic Radii of Pions and Kaons from UrOMD

- Femtoscopic radii of pions decrease with increasing transverse mass
 → Influence of radial flow
- R_{side} values for pions and kaons are similar
 → Similar size of the particle-emitting region
- R_{long} for kaons is generally larger than that for pions at the same m_T
 - → Influence of resonances?
- R_{out} pions and kaons behave differently
 - → Different emission duration?
 - \rightarrow Change of the production mechanism?

30 Oct 2020

Femtoscopic Radii of Pions and Kaons from vHLLE

- Pion and kaon results for the cross over (XPT) and 1st-order (1PT) phase transitions
- Femtoscopic radii of pions decrease with increasing transverse mass → Influence of radial flow
- R_{side} values for pions and kaons are similar
 → Similar size of the particle-emitting region
- R_{out} for both pions and kaons show similar behavior
 → Similar particle emission duration?
- R_{long} for kaons is generally larger than that for pions at the same m_T
 - \rightarrow Influence of resonances?

Energy dependence of pion femtoscopic radii

- Estimated pion radii for NICA energy range ($\sqrt{s_{_{NN}}} = 4-11 \text{ GeV}$)
- Pion radii slightly increase with increasing collision energy
- Excitation function of R_{long} suggests a slight increase of the system lifetime with increasing $\sqrt{s_{_{NN}}}$

Monte-Carlo data

- Monte-Carlo simulation request
- UrQMD Minimal Bias 10 million evens
- BiBi at $\sqrt{s_{_{NN}}}=9 \text{ GeV}$
- MiniDST format
- 5 k_T bins (0.15-0.65) GeV/c, with step 100 MeV/c
- Kinematic conditions for pions 0.15<pT<1.45 GeV/c |eta|<1.0
- Nhits TPC > 15 DCA < 3 cm |VertexZ| < 75 PID : Nsigma for pion selections in TPC & TOF = 2

Detector effects affecting the correlation function

- Single track effects:
 - \rightarrow the momentum resolution effects smear CF, making it wider and extracted radii smaller
 - \rightarrow CFs should be corrected by resolution
 - \rightarrow the particle misidentification influences only λ -parameter of CF, radii do not change.
 - \rightarrow CF should be corrected by pair purity.
- Two track effects:
 - \rightarrow track splitting (one track is reconstructed as two)
 - → track merging (two tracks are reconstructed as one) These effects are studied and the special pair cuts are used in the analysis.

Two track effects

• Δη-Δφ* cut:

$$\Delta \phi^* = \phi_1 - \phi_2 + \arcsin\left(\frac{z \cdot e \cdot B_z \cdot R}{2p_{T1}}\right) - \arcsin\left(\frac{z \cdot e \cdot B_z \cdot R}{2p_{T2}}\right)$$

R is a given cylindrical radius, $\phi_{1,2}$ are azimuthal angles of track at reconstructed vertex

- Average track separation cut:

 → ratio real/mixed vs average distance
 - → dip at low distance due to merging(or bump due to splitting)
 - Cut on distance > 7 cm \rightarrow remove the dip

٠

Factorial moments

- Olga Kodolova and Maria Cheremnova (see talks at ICPPA, RFBR)
- A. Bialas and R. Peschanski(Nucl. Phys. B273 (1986) 703) to study the dependence of the normalized factorial moments of the rapidity distribution on the bin size δy:

$$F_{i} = M^{i-1} \times \left\langle \frac{\sum_{j=1}^{M} k_{j} \times (k_{j}-1) \times ... \times (k_{j}-i+1)}{N \times (N-1) \times ... \times (N-i+1)} \right\rangle$$

- $\delta y = \Delta y/M$; M number of bins; Δy size of mid rapidity window; N number of particles in Δy ;
- k_i the number of particles in bin j
- If fluctuations are purely statistical no variation of moments as a function of δy is expected
- Observation of variations indicates the presence of physics origin fluctuations

14

13

E, GeV

12

M

Packages for data storage and femtoscopic analysis

• Grigory Nigmatkulov and Pavel Batyuk (RFBR, VI MPD)

Summary

- The new data format (MpdMiniDst) that may satisfy most MPD physics needs:
 - Was developed and implemented in MpdRoot
 - Contains most of the detector subsystems
 - Easy to use
 - Already used in several analyses
- Package for femtoscopic analysis (MpdFemtoMaker):
 - Developed and implemented in MpdRoot
 - Applied to study identical pion and kaon correlations using the UrQMD and vHLLE models
 - Allowed us to study the influence of two-particle effects on correlation function in MPD and develop two-track selection criteria to suppress these parasitic effects

10/22/2020

G. Nigmatkulov and P. Batyuk. The Conference "RFBR Grants for NICA"

VI MPD Collaboration meeting

Conclusions

- We performed the first model estimation of kaons femtoscopic radii using the UrQMD and vHLLE models
- Kaon radii dependence as a function of transverse mass shows:
 R_{side} values for pions and kaons are similar for vHLLE and behaviour is different for UrQMD
 R_{long} for kaons is generally larger than that for pions
- Sensitivity of both pion and kaon source size to the nature of the phase transitions
- Factorial moments are sensitive to phase transition within vHLLE model
- Results were presented at ICPPA, NUCLEUS and RFBR conferences
- Proceedings will be published

Thank you for attention!

Backup

Activities within RFBR grant 18-02-40044

Aim of the project: Study of collective effects and dynamics of quarkhadron phase transitions via femtoscopic correlations of hadrons and factorial moments of particle multiplicity at NICA energies

Goals:

- Development of the data analysis methods and software that will be integrated in the Multi-Purpose Detector (MPD) software environment
- Analysis of the simulated with different event generators (in particular, UrQMD and vHLLE) Au+Au collisions at NICA energies
- Study the dependence of femtoscopic radii and scaled factorial moments of particle multiplicity on the initial conditions and properties of nuclear matter equation of state

2020:

- Simulation of Au+Au collisions with UrQMD and vHLLE+UrQMD models for different collision energies (done)
- Software development for: (done)
 - femtoscopic analyses
 - factorial moments of multiplicity distributions
 - other activities
- Femtoscopic analysis and extraction of source functions for pions and kaons for models with different Equation of State (EoS): first-order phase transition (1PT), crossover (XPT), no phase transition (done)
- Investigation of the detector effects (track-merging and track-splitting in TPC) on femtoscopic measurements and factorial moments (done)

First physics (very preliminary, UrQMD MC)

- First look with UrQMD
- Bi+Bi $\sqrt{s_{_{NN}}}$ = 7.7 GeV, 200K "good" events 0-10% centrality
- $\sqrt{s_{_{NN}}} = 7.7 \text{ GeV} \rightarrow \text{STAR}$ data exists
- $\pi\pi$ one dimension correlation function for a few k_{T} ranges 0.15-0.25, 0.25-0.35,...,0.55-0.65 GeV/c
- Possible to study m_T dependence of 1D femtoscopic radius for a few centrality bins
- Need to have full simulation chain (generator → GEANT → reconstruction) for realistic estimations

MPD response for femtoscopy(standard MPD PID)

LCMS reference frame

$$m_{\rm T} = \sqrt{k_{\rm T}^2 + m_{\pi}^2}$$

Longitudinally Co-Moving System (LCMS):

 $p_{1,long} = -p_{2,long}$

- For charged pions measurement in 3 dimensions, giving 3 independent sizes in Longitudinally Co-Moving System
- The Bertsch-Pratt decomposition of q:
 - Long along the beam: sensitive to longitudinal dynamics and evolution time
 - Out along k_{T} : sensitive to geometrical size, emission time and space-time correlation
 - Side perpendicular to Long and Out: sensitive to geometrical size
- For statistically challenged analyses, measurement in one dimension (giving only one size) in Pair Rest Frame

Femtoscopy with expanding source $\rightarrow m_{T}$ -dependence

• **x-p** correlations \rightarrow interference dominated by particles from nearby emitters. • Interference probes only parts of the source at close momenta – **homogeneity regions.** • Longitudinal and transverse expansion of the source -> significant reduction of the radii with increasing pair velocity, consequently with k_{T} (or $m_{T} = (m^2 + k_{T}^2)^{1/2}$)

Femtoscopy with expanding source

Interference probes only parts of the source at close momenta – **homogeneity regions.**

[Yu.M. Sinyukov, Nucl. Phys. A 566, 589 (1994);] Figures and consideration from A. Kisiel Phys.Rev. C81 (2010) 064906

- A particle emitted from a medium will have a collective velocity β_f and a thermal (random) one β_t
- As observed p_T grows, the region from where pairs with small relative momentum can be emitted gets smaller and shifted to the outside of the source

