

Hyperons in BiBi collisions at MPD-NICA Preliminary analysis of production at

generation, simulation and reconstruction level

I. A. Maldonado C.

September 17th, 2020

ΜΕΧ

Analysis/Off-Line

Content

- Motivation
- Production in different sets of collisions and the maximum values that can be reconstructed.
- Pt ratio between the reconstructed and simulated Λ's primary (created by UrQMD) and secondary (interaction with the detector), at |η|<1.3 to estimate the maximum efficiency, we expect this value to decreases due to the cuts.
- Selection of kinematical cuts to reconstruct Λ and $\overline{\Lambda}$.
- Preliminary angular distribution of decay products

Motivation: Core meets Corona

Data analyzed √s_{NN} =11GeV

- ~ 100000 events for MB/ b<4fm / 6fm<b<8fm /b>10fm
- UrQMD for generation
- Simulation/Reconstruction \rightarrow Geant3
 - TPC, TOF, EMC, ZDC
- Reconstruction analysis → only with TPCKalmanTracks

Data type: MC/Sim/Rec

- MC data $\rightarrow \Lambda$ and $\overline{\Lambda}$ generated by UrQMD + particle decays, secondary interactions by GEANT3 transport package
- Sim data \rightarrow Findable \land and $\overline{\land}$, identification of products of its charged decay and p_{\uparrow} >0.001 GeV/c and $|\eta|$ <1.3
- Rec data \rightarrow Reconstructed \wedge and $\overline{\wedge}$, by combination of identified secondary p⁺(p⁻) and $\pi^{-}(\pi^{+})$

Data	ata Generated		Simulated		Reconstructed signal	
	٨	Ā	Λ	Ā	٨	Ā
MB	11.8	0.22	6.36	0.14	0.66	0.02
b < 4 fm	50.6	0.74	28.2	0.47	3.78	0.06
6 <b< 8="" fm<="" th=""><th>24.0</th><th>0.45</th><th>13.1</th><th>0.28</th><th>1.16</th><th>0.04</th></b<>	24.0	0.45	13.1	0.28	1.16	0.04
b > 10 fm	2.12	0.07	1.10	0.04	0.05	0.004

Comparison: MC/Sim/Rec

Number of $\Lambda - \overline{\Lambda}$ per event for different impact parameters

We analyze pt as a reference for **p_T MC/Sin**⁷

the other variables

pt > 0.001

Max. eff for reconstruction in p_{τ}

From candidates for Λ that can be associated with the MC, we get the ratio with simulated distributions as a function of pt. There is no difference for different impact parameters \rightarrow get efficiency/acceptance max value?

Cosine of Pointing Angle

DCA V0

DCA of daughter tracks

Distinguish between Λ and $\overline{\Lambda}$

We use $\alpha > 0$ to select Λ $\alpha < 0$ to select $\overline{\Lambda}$

Strong cuts without MC identification, because of the background we can't see Λ

Only a few percent correspond to generated hyperons, as we can see after MC identification of the reconstructed tracks

Invariant Mass with preliminary cuts

Invariant Mass at different b

Signal decreases with impact parameter

Invariant Mass ratio for Λ

Signal cleaned and compared with MC association of V0 candidates

A and A vs Impact Parameter For these two distributions we

Distributions: Φ_{p} and Ψ_{EP}

 $MC \rightarrow$ randomly in (0,30°) Isotropic distribution

Azimuthal angle of baryons is constant, there is not polarization

Inducing arbitrary inhomegeneos distribution - Φ

Azimuthal angle of baryons is constant, there is not polarization

Preliminary - $sin(\Phi_{p} - \psi_{EP})$

- Comparison of the number of hyperons produced MC, simulated and reconstructed
- We show the preliminary invariant mass distribution for reconstructed hyperons for different sets of impact parameter.
- Angular distribution in terms of azimuthal angle.

To do

- Improve track selection for secondary tracks, include PID.
- Analyze, azimuthal angle for different impact parameters
- Use a reconstructed value for Event plane angle.

Data type: MC/Sim/Rec

- MC data $\rightarrow \Lambda$ and $\overline{\Lambda}$ generated by UrQMD + particle decays, secondary interactions by GEANT3 transport package
- Sim data \rightarrow Findable \land and $\overline{\land}$, identification of products of its charged decay and p_{\uparrow} >0.001 GeV/c and $|\eta|$ <1.3

Rec data \rightarrow Reconstructed \wedge and $\overline{\wedge}$, by combination of identified secondary p⁺(p⁻) and $\pi^{-}(\pi^{+})$

Production MC/Sim/Rec

Data	Generated		Simulated		Reconstructed signal	
	٨	Ā	٨	Λ	٨	Ā
MB	11.8	0.22	6.36	0.14	0.66	0.02
b < 4 fm	50.6	0.74	28.2	0.47	3.78	0.06
6 <b< 8="" fm<="" td=""><td>24.0</td><td>0.45</td><td>13.1</td><td>0.28</td><td>1.16</td><td>0.04</td></b<>	24.0	0.45	13.1	0.28	1.16	0.04
b > 10 fm	2.12	0.07	1.10	0.04	0.05	0.004

But from candidates after Λ and $\overline{\Lambda}$ reconstruction we keep only tracks that have a mass according to pdg value.

With perfect ID – MC we have The ratio $\Lambda/\overline{\Lambda}$ increases as b increases

Cuts for selected Λ , $\overline{\Lambda}$				
Variable	Cut			
Coseno (θ)	>0.98			
DCA V0	<0.5 cm			
DCA p-track	>0.3 cm			
DCA π-track	>0.1 cm			