Development of high-precision neutron detector NeuRad within the project EXPERT

Muzalevsky Ivan

FLNR JINR

Dubna State University

EXPERT

(EXotic Particle Emission and Radioactivity by Tracking)

- Studies of unknown exotic nuclear systems beyond proton and neutron driplines
- Study exotic nuclei? radioactive beams!
- EXPERT part of Super-FRS Experiment Collaboration at FAIR

Main GOALS: search and investigation of

- exotic radioactivity (2p,2n,4p,4n)
- resonance decays
- exotic excitation modes

NeuRad

Neutron Radioactivity detector

More than **10000 fibers** in module structure. **Bundle:**

- 256 fibers 3x3x1000 mm
- MAPMT from each side

- Longitudinal coordinate of the interaction along the fiber
- Determination the very first hit
- Avoid neutron cross-talk

NeuRad time and coordinate resolution

$$\vec{Z} = \Delta \tau \frac{c}{n}$$

- relation of coordinate and time difference of signals

0,5 ns time resolution provides about 10 cm coordinate resolution

How can we achieve it?

NeuRad prototype tests in Dubna:

- 256 scintillation fibers 3 x 3 x 250 mm
- MAPMT HAMAMATSU9500
- Source 60Co, collimated
- DRS4 digitizer board (5GS/s)
- Oscilloscope Tektronix MSO7354 (10GS/s)

Reference measurements at GSI:

- Thin scintillator 50 x 50 x 4 mm
- Source 137Cs
- Oscilloscope Le Croy (20 GS/s)

Time properties

- Constant Fraction Discriminator
- Leading Edge Discriminator
- Front edge analysis

Determining selection values

- Anode charge
- Time-over-Threshold
- Scintillator decay time
- Front edge slope and rising time

If we want to choose digitizing equipment for NeuRad we should find out which method is the most applicable to determine signal time

Constant Fraction **D**iscriminator

Leading Edge Discriminator Front edge fit Time-over-Threshold

NeuRad: time precision

NeuRad: time precision

NeuRad: reference measurements

Modeling experiment in EXPERTroot

EXPERTroot is a framework for Monte-Carlo simulations detector responses signals, reconstruction of events and analysis data of the EXPERT experiment.

- GEANT4
- $dL_i = Q_i \cdot dE_i$,
- Birk's law $Q_i = \frac{A}{1 + B\frac{dE_i}{dx_i} + C\left(\frac{dE_i}{dx_i}\right)^2}$

• Amplitude and anode time of single electron signal

$$A_{pe} = |N(A,\sigma)|$$

$$T_{pe} = T_k + N(D_{\text{PMT}}, J_{\text{PMT}}),$$

• Single electron signal shape $U(t) = a A_{pe} (t - T_{pe})^2 \exp\left(-\frac{t - T_{pe}}{b}\right)$

Modeling experiment in EXPERTroot

EXPERTroot is a framework for Monte-Carlo simulations detector responses signals, reconstruction of events and analysis data of the EXPERT experiment.

0.025

0.02

ubic 0.01

0.005

Fit single electron

event

52 54 Time [ns] b=0.45

- GEANT4
- $dL_i = Q_i \cdot dE_i$,
- Birk's law $Q_i = \frac{A}{1 + B \frac{dE_i}{dx_i} + C \left(\frac{dE_i}{dx_i}\right)^2}$
- Single electron signal shape $U(t) = a A_{pe} (t T_{pe})^2 \exp\left(-\frac{t T_{pe}}{h}\right)$

Compare

- Experimental time resolution = 2,83 ns
- Simulation time resolution = 2,24 ns

Thanks for attention

Virtual signal form

