Thermal photon and neutral meson measurements using photon conversion method in the MPD experiment at the NICA collider

<u>E. Kryshen</u>, D. Ivanischev, D. Kotov, M. Malaev, V. Riabov, Yu. Riabov (NRC KI, Petersburg Nuclear Physics Institute, Russia) for the MPD collaboration

> ICPPA 6 October 2020

Project supported by RFBR № 18-02-40045

Phase diagram of nuclear matter

Thermal radiation in heavy ion collisions

- Photons leave the medium without interaction
- Black body radiation: inverse slope proportional to T_{eff}

 e^+

Photon spectra at RHIC and LHC

PHENIX (AuAu @ 200 GeV)

ALICE (PbPb @ 2760 GeV)

PHENIX: Phys. Rev. Lett. 104 (2010) 132301

T_{eff} = 297 ± 12 (stat) ± 41 (syst) MeV

Effective temperature vs energy

T_{eff} vs. collision energy

J. Phys.: Conf. Ser. 1070 (2018) 012012

Flow of direct photons

 $\frac{dN}{d\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)]$

Spatial asymmetry of the initial state translates into the momentum asymmetry

Elliptic flow of direct photons

Direct photon puzzle:

- flow of thermal photons is similar to charged pion flow
- thermal photons are predominantly emitted at early stages – no time to develop significant flow

Challenge: decay photons

Inclusive photon spectra are dominated by decay photons

$$R_{\gamma} = \frac{\gamma_{\rm inc}}{\gamma_{\rm deca}}$$

Relative contributions of different hadrons to the total decay photon spectrum as a function of the decay photon transverse momentum

Neutral meson spectra

ALICE: Phys.Rev. C98 (2018) 044901

 $R_{AA} = \frac{N_{AA}^{J/\psi}}{\langle N_{coll} \rangle N_{pp}^{J/\psi}} = 1 \rightarrow \text{No medium effect}$ $< 1 \rightarrow \text{Suppression}$ $> 1 \rightarrow \text{Enhancement}$

Photon reconstruction: two methods

- Electromagnetic calorimeters
 - Efficient at $p_T > 2 \text{ GeV/c}$
 - Hardware trigger capabilities
- Photon conversion $\gamma \rightarrow e^+e^-$ in the material
 - $P = 1 \exp(-7/9 x/X_0)$
 - Efficient at $0.5 < p_T < 4 \text{ GeV/c}$
 - Much better resolution at low p_T

MPD experiment at NICA

- CMS Energy: 4-11 GeV
- Design luminosity: 10²⁷ cm⁻¹ s⁻¹
- Stage 1: TPC, TOF, ECAL, FHCal, FFD
- Stage 2: + ITS + EndCap

Electron PID

Photon conversion centers

Main conversion structures in Stage 1:

- Beam pipe: 0.3% X₀
- Inner TPC barrel structures: 2.4% X₀ Future:
- Inner tracking system
- Dedicated photon convertor (cylindrical metal pipe) under investigation

Conversion reconstruction efficiency

- Studied with UrQMD generator + MPDROOT Stage 1 setup
- Using MpdParticle to build secondary vertices
- Cuts optimized to maximize signal significance
- Contribution of (non-gamma) background < 10-20%
 - can be further improved with tighter cuts

UrQMD and PHSD predictions at NICA energies

UrQMD and PHSD generators: good agreement in neutral meson cross sections

Neutral meson reconstruction

 p_{τ} (GeV/c)

Centrality (%)

Neutral meson reconstruction efficiency

- Embedding technique used to study reconstruction efficiency vs p_T
- 700 000 min. bias UrQMD events @ 11 GeV
- 500 π⁰ + 500 η embedded with flat p_T distribution
- Neutral meson reconstruction efficiency ~ 10⁻⁴
- π⁰ peak is significantly narrower with conversion method compared to ECAL

First-year projections

- L~5 x 10²⁵ cm⁻¹ s⁻¹
- 10 weeks
- 50% duty factor
- => 10⁹ minimum bias events
- Background and signal distributions scaled to 10⁹ min. bias events
- Statistical uncertainties estimated as sqrt(S+B)

Corrected π^0 spectra

- Efficiency-corrected spectra are extrapolated down to 0 p_T:
 - Tsallis function
 - Two-component model (Bylinkin, Rostovtsev)
 - Hagedorn function
- The obtained fits cab be used to calculate photon spectra from π^0 decays
- Extrapolation uncertainties are significant only at low photon $p_T < 0.3$ GeV/c

Integrated direct photon yield

No reliable predictions for photons in UrQMD/PHSD -> using data driven method

The integrated direct photon yield:

- scales as (dN_{ch}/dη)^{1.25} in a wide range of multiplicities/collision energies
- the scaling is violated in small collision systems / small multiplicities ($dN_{ch}/d\eta < 20$)
- AA yield is a factor of ~10 larger than the N_{coll}-scaled yield in pp

Assuming this scaling still holds at lower energies, we can expect universal multiplicity scaling for

- (0-60)% centralities at 11 GeV
- (0-40)% centralities at 4 GeV

p_T -differential direct photon yields

Khachatryan, Praszałowicz EPJC 80 (2020) 670

- Universal scaling of p_{τ} -differential direct photon yields is observed at RHIC/LHC
- It can be used to predict p_T spectra of direct photons at NICA energies down to pt ~0.4 GeV/c
- Use thermal-like behavior at lower pt?

Reconstructed direct photons

• Reconstructed direct photon spectra can be obtained from predicted direct photon yields multiplied by the photon reconstruction efficiency

Inclusive photon spectra and R_v ratio

Inclusive photon spectrum was simulated as a sum of direct and decay photon spectra

$$R_{\gamma} = rac{\gamma_{
m inc}}{\gamma_{
m decay}} = rac{\gamma_{
m inc}/\pi^0}{\gamma_{
m decay}/\pi^0_{
m param}}$$

Excess over 1 shows the fraction of direct photons

- Systematic uncertainties on R_v can be reduced to ~5%
- Conclusion: direct photon yields can be extracted with good accuracy

Elliptic flow of neutral mesons

- Significant v₂ values predicted for all particle species
- As expected, elliptic flow of π^{\pm} and π^{0} mesons is very similar
- There is a clear mass ordering of v₂ as function of p_T: eta meson v₂ (intermediate mass range) is between proton and pion v₂

Toy model for π^0 elliptic flow

- Azimuthal distributions of reconstructed π⁰s are generated assuming 10⁹ semi-central (20-40%) events and taking into account predicted v₂ and event plane resolution effects.
- v₂ coefficients are then extracted and corrected for resolution in several p_T bins
- 10⁹ semi-central (20-40%) events are required to measure neutral pion v₂ with ~10% precision => not a "first-year goal"

Conclusions and outlook

- Photons and neutral mesons valuable probes of dense hadronic matter produced in heavy ion collisions
- Photon conversion method is a powerful tool to measure photon and neutral meson spectra
- Standard MPD configuration allows one to reconstruct π^0 mesons via conversions already with the first year data taking
- Reconstruction of thermal photon yields looks promising
- Next:
 - Evaluate perspectives of thermal photon flow measurements
 - Feasibility studies on the dedicated convertor and Stage 2 setup

BACKUP

Event plane determination with FHCal

2 <|ŋ| < 5

• Event plane:

$$\Psi_{1,EP}^{L(R)} = \arctan\left(\frac{\sum E_i \sin \varphi_i}{\sum E_i \cos \varphi_i}\right)$$

v_n corrected for event plane resolution effects:

$$v_n\{\Psi_{1,EP}\} = \frac{\langle \cos n(\varphi - \Psi_{1,EP}) \rangle}{R_{1,EP}}$$

Optimization of electron pair selection cuts

Fit functions for pt distributions

Two-component model (Bylinkin, Rostovtsev):

$$E\frac{d^{3}\sigma}{dp^{3}} = A_{e}\exp\frac{(M - \sqrt{p_{T}^{2} + M^{2}})}{T_{e}} + A\left(1 + \frac{p_{T}^{2}}{n_{br}T^{2}}\right)^{-n_{br}}$$

• Hagedorn fit:

$$\frac{dN}{dydp_{\mathrm{T}}} = p_{\mathrm{T}} A \left(\exp\left(-a * p_{\mathrm{T}} - |b|p_{\mathrm{T}}^2\right) + \frac{p_{\mathrm{T}}}{p_0} \right)^{-n}$$