

Nuclotron-based Ion Collider fAcility

Neutral mesons and dielectrons

Neutral mesons in heavy-ion collisions

- Wide variety of neutral mesons:
 - $\begin{array}{l} \checkmark & \pi^0 \left(\pi^0 \rightarrow \gamma \gamma \right) \\ \checkmark & \eta \left(\eta \rightarrow \gamma \gamma, \eta \rightarrow \pi^0 \, \pi^+ \, \pi \right) \\ \checkmark & K_s \left(K_s \rightarrow \pi^0 \, \pi^0 \right) \\ \checkmark & \omega \left(\omega \rightarrow \pi^0 \, \gamma, \, \omega \rightarrow \pi^0 \, \pi^+ \, \pi \right) \\ \checkmark & \eta' \left(\eta' \rightarrow \eta \, \pi^+ \, \pi \right) \\ \checkmark & \text{etc.} \end{array}$
- Neutral mesons are of great interest:
 - ✓ complementary measurements to π^{\pm} , K[±] etc. with different systematics
 - ✓ study of mass and quark content/count dependent effects such as collective flow, recombination, parton energy loss, strangeness production etc.
 - \checkmark source of background for many other observables such as direct photons, e_{HF} and di-electrons
- π^0 , η are the most promising signals for day-one measurements
- Reconstruction methods:
 - ✓ ECAL
 - \checkmark γ -conversion in detector materials

Reconstruction with the ECAL

π^0 reconstruction in AuAu@11

- Measurement uncertainties at low p_T are driven by systematic uncertainties for the raw yield extraction due to non-Gaussian shape of the reconstructed peaks from cluster merging
- Focus is on optimization of the reconstructed peak shape and less on the reconstruction efficiency
- Optimized selection cuts for higher significance of π^0 and η signals in AuAu@11 (UrQMD, v.3.4):
 - ✓ Photons: $E_{core2\%}$ > 0 GeV, $T_{reduced}$ < 2 ns, charged track veto, Chi2/NDF < 4.0
 - ✓ Pairs: |en1-en2|/(en1+en2) < 0.75, |y| < 0.5
- ~ 15M AuAu@11 events centralized Monte Carlo production

- Efficiency for π^0 is > 10%, increasing with p_T
- Maximum raw yield of π^0 is expected at ~ 300 MeV/c
- Reconstruction efficiency shows strong multiplicity dependence (false veto + shower merging)

π^0 peak examples in AuAu@11

• 15M AuAu@11, realistic vertex distribution

- The peak width decreases with increasing momentum (better energy resolution)
- The S/B improves with increasing momentum

π^0 in AuAu@11: MC closure test

• 15M AuAu@11 events

- Reconstructed spectrum matches the generated one within uncertainties
- Reliable raw yield extraction starts at $p_T > 50 \text{ MeV/c}$
- Signal is present at lower $p_T < 50$ MeV/c but the signal shape is not trivial
- Significant reduction of systematic effects at low momentum with optimized cuts
- Further improvements are possible

π^0 in 0-20% and 60-90% AuAu@11: MC closure test

0-20%, most central collisions

- Reconstructed spectra match the generated ones
- Reliable raw yield extraction starts at $p_T > 50 \text{ MeV/c}$ RFBR rehearsal, 01.10.2019

2.5

2.5

η reconstruction in minbias AuAu@11

- Need much larger data sample for observation of the signal:
 - ✓ produced at much lower rate compared to π^0 at low $p_T < 2-3$ GeV/c, $\eta/\pi \sim 0.5$ at $p_T >> 1$
 - ✓ $\eta \rightarrow \gamma \gamma$ results in a much wider reconstructed peak (~40 MeV/c vs. ~10 MeV/c for π^0)
- With 15 M minbias AuAu@11 \rightarrow only observe signals with rough p_T binning and large uncertainties
- Multiplicity dependent studies are not possible

• MC closure test \rightarrow reconstructed spectrum matches the generated one in minbias AuAu@11

• Possible systematic effects are smeared out by huge statistical fluctuations

RFBR rehearsal, 01.10.2019

Neutral mesons via external conversion, $\gamma \rightarrow e^+e^-$ (see talk by E. Kryshen)

Reconstruction of neutral mesons

- Conversion e⁺e⁻ pairs are identified by:
 - \checkmark charged track + eID in the TPC and TOF
 - \checkmark cut on the pointing angle to the primary vertex
 - \checkmark cut on the opening angle plane with respect to the magnetic field
- Only ~ 4% of photons convert and only ~ 1.5% of photons is reconstructed with the PCM
- Efficiencies for neutral mesons are on sub-percent level
- The PCM is going to the main method for the measurement of low-E photons, neutral meson reconstruction is also possible at low p_T

PCM resolution

• S/B ratio is high enough, mixed-event subtraction is not required

PCM resolution for photons and neutral mesons is much better at low momenta

PCM yields for neutral mesons

• π_0 spectrum can be measured with 20 M sampled AuAu@11 events

• About 10⁹ AuAu@11 must be sampled for π_0 multiplicity dependent study and flow measurements; for the measurements of η

RFBR rehearsal, 01.10.2019

Summary

- Reconstruction of π^0 :
 - ✓ measurements are possible with ~ 10^7 sampled AuAu@11 events → achievable in year-1
 - ✓ range of measurements $p_T > 50$ MeV/c, up to ~ 3-4 GeV/c
- Reconstruction of η:
 - ✓ first rough measurements are possible with ~ 10^7 sampled AuAu@11 events → achievable in year-1
 - ✓ finer binning and/or multiplicity-dependent studies will need > 10^8 events
- Measurements with the ECAl and conversion method are complementary:
 - ✓ ECAL provides higher statistics
 - \checkmark conversion method benefit from much better energy resolution at low momentum

Dielectron continuum and LVMs

Dielectron sources and background

- The main sources of background are Dalitz decays of light hadrons
 - ✓ most of general-purpose event generators predict consistent yields within $\pm 20-30\%$ → acceptable for estimations and feasibility studies
- The main sources of dielectron pairs:

i	Dilepton channels	
1	Dalitz decay of π^0 :	$\pi^0 \to \gamma e^+ e^-$
2	Dalitz decay of η :	$\eta \to \gamma l^+ l^-$
3	Dalitz decay of ω :	$\omega ightarrow \pi^0 l^+ l^-$
4	Dalitz decay of Δ :	$\Delta \to N l^+ l^-$
5	Direct decay of ω :	$\omega \to l^+ l^-$
6	Direct decay of ρ :	$\rho \to l^+ l^-$
$\overline{7}$	Direct decay of ϕ :	$\phi \to l^+ l^-$
8	Direct decay of J/Ψ :	$J/\Psi ightarrow l^+ l^-$
9	Direct decay of Ψ' :	$\Psi' \to l^+ l^-$
10	Dalitz decay of η' :	$\eta' \to \gamma l^+ l^-$
11	pn bremsstrahlung:	$pn \rightarrow pnl^+l^-$
12	$\pi^{\pm}N$ bremsstrahlung:	$\pi^{\pm}N \to \pi N l^+ l^-$

- The simulated yields of resonances show significant model dependence
- UrQMD and PHSD are used for estimations of dielectron signals in heavy-ion collisions at NICA, other inputs are considered ...

eID capabilities

TPC: dE/dx, for all tracks

TOF: $\beta = v/c \sim 1$, $p_T > 150$ MeV/c

ECAL: time-of-flight ($\delta \sim 500 \text{ ps}$) and E/p ~ 1 for 2σ -matched tracks ٠

- turns on at $p_T > 200 \text{ MeV/c}$ \checkmark
- \checkmark TOF ([-3σ , 2σ]) & E/P ([-3σ , 2σ]) cuts provide high eID efficiency in a wide p_T range

10³

10²

10

1.2 p (GeV/c)

eID efficiency and purity

- AuAu@11, UrMQD v.3.4
- **noID**, **TPC&TOF** or **TPC&TOF&ECAL** eID (2σ TOF matching, STAR's β cut

- Achieved purity & efficiency with **TPC&TOF** eID are comparable/better to STAR
- Tight matching cut makes eID by **TPC&TOF** quite sufficient for eID
- Additional **ECAL** eID helps to clean-up the electron sample at high p_T/e^+e^- -mass

Examples of dielectron M_{inv} spectra, p_T integrated

• Hadron contamination is reduced at higher masses with an additional ECAL-eID

• The higher the p_T the larger the contribution/importance of the ECAL-eID RFBR rehearsal, 01.10.2019

- eID in the TPC&TOF is sufficient for most of the tasks
- Additional eID in the ECAL is important at high e⁺e⁻ masses and high momenta
- Meaningful measurements for e⁺e⁻ continuum and LVMs would require ~ 10⁸ AuAu/BiBi events, first observations are possible with 10-30 M events

BACKUP

Dielectron continuum studies

- The QCD matter produced in A-A interactions is transparent for leptons, once produced they leave the interaction region largely unaffected
- Dielectron continuum at low and intermediate mass/p_T carries a wealth of information about reaction dynamics and medium properties:
 - ✓ broadening and mass shift of LVMs $\rightarrow e^+e^-$
 - \checkmark resonances in e⁺e⁻ vs. hadronic decay channels
 - \checkmark direct photon production via internal conversion
 - \checkmark charm production and correlations etc.
- Feasibility studies for dielectrons consist of two tasks:
 - ✓ evaluation of background and continuum contributions in AuAu@11
 - \checkmark development of eID and pair selection cuts to enhance signal significance

Particle identification, TOF: MPD

- Observed non-physical tail (β > 1) in the TOF: much more prominent in high multiplicity events (b < 1 fm); the tail is almost absent in peripheral collisions (b > 12 fm)
- Ascribed the effect to track mismatching in the TOF

Problem of TOF-TPC track mismatching

MPD

Both STAR and MPD observe non-physical TOF signals with $\beta > 1$,

- Unphysical signals are most prominent in central collisions, diminished in peripheral
- Effect is explained by track mismatching in the TOF RFBR rehearsal, 01.10.2019

Matching distributions vs. p_T

• Track-to-hit distance in the TOF (or 1/weight) vs. p_T, minbias BiBi@9.46

• Matching distributions are quite wide (too wide ???)

dE/dx selections with 2σ eID TOF cut

- Tighter matching (|dist| < 2cm) cut:
 - ✓ suppresses the grass and the β > 1 tail
 - ✓ significantly improves e/π and probably π/K separation

Sources of electrons: MPD

- Minbias AuAu@11 collisions (centralized production #3, AuAu@11 with Geant-3)
- Only TPC e^{\pm} tracks matched to the TOF are selected, the only difference is in DCAx,y,z cuts
- With tight DCAx,y,z cuts the main source of electrons is π^0 (Dalitz decays)
- With no DCAx,y,z selections, the electron spectrum is totally dominated (by an order of magnitude) by conversion electrons while contributions from π^0 and η remain ~ the same

→ Comparison of the electron purities make sense only when contributions of conversion are comparable in the experiments (materials and cuts)

Recent improvement of the TOF eID capabilities

- By default, TOF uses rather loose cuts for track matching \rightarrow high probability of wrong hit association \rightarrow multiplicity-dependent contamination of the electron sample and distinct unphysical tail at $\beta > 1$
- Hit-to-track matching distributions were parameterized in $d\phi$ and dzed vs p_T , cut on $2\sigma(p_T)$
- Significant improvement of electron purity at reasonably small reduction of electron selection efficiency

RFBR rehearsal, 01.10.2019

eID efficiency: STAR

 $\varepsilon_{\rm eID} = \varepsilon_{\beta} \times \varepsilon_{\rm dEdxPID}$ $\varepsilon_{\rm dEdxPID} = \varepsilon_{\rm ndEdx} \times \varepsilon_{\rm n\sigma_e}$

- Single eID efficiency at $p_T > 200 \text{ MeV/c}$ (STAR): ~ 0.45 · (0.93-0.75) = 30-40%
- The MPD TPC-TOF-ECAL single eID efficiency with tight cuts is comparable

Photon conversion centers

Main conversion structures in Stage 1:

- Beam pipe: 0.3% X₀
- Inner TPC barrel structures: 2.4% X₀
 Future:
- Inner tracking system
- Dedicated photon convertor (cylindrical metal pipe) under investigation

Recent improvement of the TOF-eID

- By default, TOF uses rather loose cuts for track matching \rightarrow high probability of wrong hit association \rightarrow multiplicity-dependent contamination of the electron sample and distinct unphysical tail at $\beta > 1$
- Hit-to-track matching distributions were parameterized in $d\phi$ and dzed vs p_T , cut on $2\sigma(p_T)$
- Significant improvement of electron purity at reasonably small reduction of electron selection efficiency

RFBR rehearsal, 01.10.2019

π^0 in AuAu@11: mass and width

• Same cuts and selections for all centralities

- Reconstructed mass increases with multiplicity and p_T:
 - \checkmark shower merging at high multiplicity
 - ✓ energy leakage and non-linearity
- Reconstructed width increases with multiplicity and decreases with p_T:
 - \checkmark energy resolution is multiplicity dependent
 - \checkmark energy resolution improves with increasing energy