
cfluxim
cosmic ray simulation tool

Kamil Wójcik

University of Silesia

2020

kamil.wojcik@us.edu.pl

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 1 / 49

kamil.wojcik@us.edu.pl


Contents

1 General information

2 Cosmic ray flux – definition

3 Simulation design
CuboidGenerator
TrackAnalyzer.cpp
FluxAnalyzer.cpp and quality check

4 Example simulation results

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 2 / 49



General information

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 3 / 49



About cfluxim

The cfluxim tool was created for NICA PL team to make a simple
geometrical simulation of cosmic muons passing through some of MPD
detector modules. (NICA MPD website).

Cosmic muons are generated inside the given cubic volume.

Φ(θ) and momentum distribution of the simulated flux fits the the
experimental data with good accuracy.

For every generated particle, it is checked if it hits the defined
detector modules, and the hit position is saved.

Any energy cutoff can be applied.

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 4 / 49

https://nica.jinr.ru/projects/mpd.php


General notes

cfluxim uses CERN’s ROOT libraries.

cfluxim consists of 3 tools: CuboidGenerator, FluxAnalyzer and
TrackAnalyzer.

Only muons at ground level are implemented, however,
implementation of other cosmic ray components is possible.

FluxAnalyzer generates momentum distribution and Φ(θ)
normalized histogram, so it can be compared wirh the experimental
data as a simple quality check.

TrackAnalyzer does the simple geometrical analysis of the tracks,
regarding the defined detector geometry. It does not run the full
physical analysis as Geant4 does.

Generated cosmic muons can be, however, put into the Geant4
simulation.

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 5 / 49

https://root.cern/
https://geant4.web.cern.ch/


Project scheme

s
K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 6 / 49



Basic definitions

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 7 / 49



Solid angle

area: S = 2πrh = 2πr2(1− cosα)
solid angle: Ω = S

r2 = 2π(1− cosα) [sr]

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 8 / 49



Cosmic ray flux

Cosmic ray flux = number of particles that come from unit solid angle,
passing through unit area, per unit of time

particles coming from a given solid angle standard normalization
passing through area S

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 9 / 49



Cosmic ray flux

Solid angle limits the direction of incoming particle momentum, but not
the position on the ‘probing area’ S . To count a particle as coming from
the given solid angle, momentum angular limitations must be fulfilled and
the particle must hit the probing area.

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 10 / 49



Cosmic ray flux dependant on zenith angle

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 11 / 49



Cosmic ray flux dependant on zenith angle
– full azimuth angle case

Ω = 2π(cos(θ − δθ)− cos(θ + δθ))

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 12 / 49



Simulation design

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 13 / 49



CuboidGenerator

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 14 / 49



CuboidGenerator – the idea

The idea: generation of particles and its momenta, coming from
half-sphere (Ω = 2π), that would pass through a cubic volume.

Particle’s ‘initial’ position on the cube wall and its momentum vector
define the track inside the cube!
Key problems:

Φ(θ) of generated particles must reproduct the experimental data
with sufficient accuracy.

Same for momentum distribution.
K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 15 / 49



Horizontal area problem

1 2π solid angle is divided into small Ωi solid angles
2 for each Ωi : the number of incoming particles from this Ωi in

simulated time tsim is calculated – Ni

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 16 / 49



Horizontal area problem

Number of incoming particles from Ωi per second can be mapped,
regarding θi and φi :

Nppsi = ΩiΦ(θi )Ssin(θi )

The cube ceiling is horizontal ⇒ flux depends only on θ

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 17 / 49



Vertical area problem

1 Ωi and Ni – same as for horizontal area
2 Only particles that come from one side of the wall are generated ⇒
φi range is limited!

3 Ni depends on both θi and φi

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 18 / 49



Vertical area peoblem

Nppsi formula for vertical walls of the cube:

Nppsi = ΩiΦ(θi )Ssin(θi )cos(φs − φi )

wall 1 wall 2

wall 3 wall 4

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 19 / 49



How momentum is generated

These two histograms made from experimental data are necessary for
momentum generation

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 20 / 49



Φ(θ) – input histogram

On the left: measured vertical muon flux at the sea level (log scale), fitted
with ‘cosine function’: Φ(θ) = cos2(θ). Data source:
https://arxiv.org/pdf/1606.06907.pdf

On the right: the input hostogram of Φ(θ) (linear scale). Since cos2(θ)
fits the data precisely enough, the histogram is just filled with cos2(θ)
distribution.

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 21 / 49

https://arxiv.org/pdf/1606.06907.pdf


Φ(θ) and flux mapping → pθ and pφ

1. Momentum coordinates pθ and pφ are limited by the solid angle Ωi :

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 22 / 49



Φ(θ) and flux mapping → pθ and pφ

2. Flux is mapped into θ–φ space regarding Φ(θ) histogram:

Nppsi ∝ Φ(θi )

3. Ωi corresponds with the intervals: [θi , ∆θ) and [φi , ∆φ). Within the
intervals, pθ and pφ is drawn from uniform distrubution.

4. Generation of Ni ∝ Nppsi particles from each Ωi solid angle
guarantees that the given Φ(θ) is reconstructed by the generated
particles. The accuracy of this reconstruction is sufficient if ∆θ is small
enough.

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 23 / 49



pr distribution

On the left: measured vertical integral spectra of muons. Data source:
http://crd.yerphi.am/Muons

On the right: data fit of measured integral momentum spectra at sea level.

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 24 / 49

http://crd.yerphi.am/Muons


pr generation

The algorithm:

1 a random number r ∈ [0, Imax) is generated (uniform distribution),

2 finding momentum value corresponding to the given r ,

3 this value is the drawn pr [GeV].

This is a kind of quantile function method.
K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 25 / 49



Generation of particles step by step

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 26 / 49



TrackAnalyzer.cpp

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 27 / 49



TrackAnalyzer.cpp

Detector elements are defined in the source code (no input config file) – so
far it is good enough for my needs.

Implemented shapes (C++ classes):

Rectangle

Disk

Cylinder

Every spahe has a methods that detects if the particle hits the detector
module (shape instance) and calculates hit position(s).

More detailed description of the classes is presented in the section
Technical delails and class description.

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 28 / 49



TrackAnalyzer.cpp – input and output tree

Input tree from CuboidGenerator – every entry represents one particle.
Variables are stored in different branches:

Output tree = inout tree + information if the particle hits each module
and hit positions:

This output tree pattern works fine for simple detector lauoyt, but is not
optimal regarding the output file size. For more complicated detector
geometries (hundreds of elements), a different way of creating output tree
may be needed.

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 29 / 49



TrackAnalyzer.cpp – plot of example output

An example cylinder was defined:

radius: r= 1.1 m
length L= 3.4 m

One can print the points, where the particle track intersects the cylinder
surface. Cylinder shape reveals ⇒ geometry implementation works
correctly

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 30 / 49



TrackAnalyzer.cpp – plot of example output

One can also plot a distribution of the path length inside the cylinder:

The distribution is correct:

The longest possible path length is smax =
√

(4r2 + L2 ≈ 4.1 [m]

Regarding most particles come from the ‘ceiling’, the most common
track length should be approximately equal to 2r = 2.2 [m]

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 31 / 49



FluxAnalyzer.cpp and quality check

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 32 / 49



FluxAnalyzer.cpp and quality check

Quality check of generated particles:

Are the initial positions ok?
How well Φ(θ) and momentum distribution resembles the given
experimental data?

Is it like:

or like:

?
K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 33 / 49



FluxAnalyzer.cpp – two methods of investigating Φ(θ)

1 floor method:
1 Filling θ distribution histogram with particles that hits the cube floor

(bin width: ∆θ).
2 Normalizing the distribution to obtain Φ(θ). Normalization function:

fn(θ) =
1

S × tsim × cos(θ)× Ω(θ)

2 rotating rectangle method:
1 Initializing a horizontal rectangle inside the dube the cube. The center

of the cube is also the center of this rectangle.
2 Rotating it through angle ∆θ. Rotation axis: contains the center of the

cube, parallel to the x axis.
3 filling θ distribution histogram with particles that hit the rectangle and

come from the limited solid angle Ω(θ) in front of the rectangle.
4 Normalizing the distribution to obtain Φ(θ). Normalizaing function:

fn(θ) =
1

S × tsim × Ω′(θ)

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 34 / 49



Quality check: θ distribution – floor method

Before normalization Normalized

Input Φ(θ) Very well!

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 35 / 49



Quality check: θ distribution – rotating rectangle method

Before normalization Normalized

Input Φ(θ) Even better!

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 36 / 49



Quality check: pr

After normalization, integral momentum spectrum of generated muons
(red lines) fits the CRD data (black stars) well.

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 37 / 49

http://crd.yerphi.am/Muons


Quality check: initial positions

Initial posions are uniformly distributed on each wall of the cube. Also, the
highest particle ‘surface density’ of particles is onserved on the cube ceiling.

Initial positions are correctly generated!
K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 38 / 49



Example simulation

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 39 / 49



Example simulation - general parameters

General parameters (CuboidGenerator.cpp):

cube edge: 8 [m]

central point: x=0, y=0, z=4

simulated time: 1 [h]

simulated pmin = 0.1 [GeV/c]

For detection, pmin = 1.6 [GeV/c] was assumed. Tracks with lower
momenta are ignored (TrackAnalyzer.cpp)

TPC parameters

a single cylinder – length = 3.4 [m]; radius = 1.1 [m]

axis of symmetry: parallel to the X axis, in the center of the cube
(y=0, x=4)

efficiency η = 1

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 40 / 49



Simulated detector geometry

Scintillating modules

rectangular modules – length = 4.784 [m]; width = 0.675 [m]
efficiency η = 0.9
placed around TPC axis

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 41 / 49



Obtained detector geometry visualisation

Drawing positions where tracks hits the detectors reveals geometry of the
detectors

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 42 / 49



One-to-one coincidences

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 43 / 49



One-to-one coincidences (with TPC)

Similar to cos2(θ) function – correct!

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 44 / 49



Layout 1: modules close to each other

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 45 / 49



Layout 1: modules close to each other

(6 or 7 or 8) and (20 or 21 or 22) and TPC – 23341 coincidences per
hour

(9 or 10 or 11) and (23 or 24 or 25) and TPC – 15415 coincidences
per hour

(12 or 13 or 14) and (26 or 27 or 0) and TPC – 1956 coincidences
per hour

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 46 / 49



Layout 2: space between modules

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 47 / 49



Layout 2: space between modules

(5 or 7 or 9) and (19 or 21 or 23) and TPC – 31402 coincidences per
hour

(10 or 12 or 14) and (24 or 26 or 0) and TPC – 4892 coincidences
per hour

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 48 / 49



Thank you for your attention

K. Wójcik (University of Silesia) cfluxim cosmic ray simulation tool 2020 49 / 49


	General information
	Cosmic ray flux – definition
	Simulation design
	CuboidGenerator
	TrackAnalyzer.cpp
	FluxAnalyzer.cpp and quality check

	Example simulation results

