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Abstract—The theory of neutrino oscillations in the framework of the quantum field perturbative theory with
relativistic wave packets as asymptotically free in- and out-states is expounded. A covariant wave packet for-
malism is developed. This formalism is used to calculate the probability of the interaction of wave packets
scattered off each other with a nonzero impact parameter. A geometric suppression of the probability of inter-
action of wave packets for noncollinear collisions is calculated. Feynman rules for the scattering of wave pack-
ets are formulated, and a diagram of a sufficiently general form with macroscopically spaced vertices
(a “source” and a “detector”) is calculated. Charged leptons (  in the source and  in the detector) are pro-
duced in the space-time regions around these vertices. A neutrino is regarded as a virtual particle (propagator)
connecting the macrodiagram vertices. An appropriate method of macroscopic averaging is developed and
used to derive a formula for the number of events corresponding to the macroscopic Feynman diagram. The
standard quantum-mechanical probability of f lavor transitions is generalized by considering the longitudinal
dispersion of an effective neutrino wave packet and finite time intervals of activity of the “source” and the
“detector”. A number of novel and potentially observable effects in neutrino oscillations is predicted.
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1. INTRODUCTION
A neutrino is a light fermion with zero electric

charge that participates in weak interactions. This par-
ticle was proposed by Pauli in 1930 as a means to pre-
serve the energy conservation law and explain the
“incorrect” statistics in nuclear -decays and was used
shortly after by Fermi in the development of the first
quantitative theory of -decay [1]. Fermi had rightly
assumed that a neutrino is produced in the decay of a
nucleus together with a beta particle1, while Pauli
believed neutrinos to be constituents of nuclei. Three

1 Pauli’s famous letter was published in [2] with comments and
insightful historical remarks. The preliminary report of Fermi
was published in 1933 [3].
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QUANTUM FIELD THEORY OF NEUTRINO OSCILLATIONS 3
neutrino f lavors  have been discovered
since then. They are associated with the correspond-
ing charged leptons : the production of
lepton  in weak interactions is always accompanied
by the production of neutrino  of the same flavor .
This may be formulated as the law of conservation of
lepton number .

By analogy with oscillations of neutral kaons,
, Bruno Pontecorvo hypothesized the exis-

tence of neutrino f lavor oscillations [4, 5] in the late
1950s. The validity of this hypothesis was verified in
experiments with solar [6–8], atmospheric [9, 10],
accelerator [10, 11], and reactor [12–15] neutrinos and
antineutrinos. Neutrino oscillations (or f lavor transi-
tions) are a quantum effect of quasi-periodic varia-
tions of neutrino f lavor  in time. This effect,
which violates the conservation of lepton numbers, is
attributable to the nonequivalence of eigenstates of
neutrinos with a definite f lavor  and states with
definite masses   the nonzero differ-
ence in masses of the latter, and the hypothesis that a
neutrino takes part in weak interactions as a coherent
superposition of the mass eigenstates

(1)

Here,  is an element of a unitary vacuum mixing
matrix, which is also called the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix [5, 16]. The tem-
poral evolution of state (1) leads to an oscillatory
dependence of the probability of detection of a neu-
trino with a certain f lavor  in time  after the produc-
tion of state  The simplest quantum-mechanical
theory of oscillations based on the plane-wave approx-
imation was formulated by Gribov and Pontecorvo
[17]. This theory had a great influence on research in
neutrino physics and was developed further in subse-
quent years by other physicists (see, e.g., [18–20] and
reviews [21–31], where the advances in experimental
studies and phenomenology of neutrino oscillations in
vacuum and matter as well as various mechanisms of
neutrino mass generation and mixing, which are not
addressed in the present paper, were discussed in
detail).

Although the plane-wave approximation is very
efficient in characterizing the results of experiments, it
is not self-consistent and leads to a number of para-
doxes, which were discussed widely in literature. For
those interested, we have compiled a list of studies
[32–65] directly related to the subject of the present
paper. Although this list is extensive, it is not exhaus-
tive by any means. A systematic formulation of the
theory itself, critical comments, generalizations, and
references for further study are given, e.g., in [66].
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The need to describe neutrino oscillations in a
model with neutrino wave packets was noted in [67–72]
(see also [63, 66, 73–79]). A wave packet (WP) is a
coherent superposition of waves with momenta dis-
tributed about the most probable value with a certain
“width” (dispersion). A WP is localized in the
momentum and configuration spaces. The theory of
neutrino oscillations in a model with WPs provides an
opportunity to resolve some paradoxes of the plane-
wave approximation and predicts several novel phe-
nomena. Following the publication of pioneering
studies [67–72], two distinct paths towards the devel-
opment of this theory of oscillations have emerged. In
the first approach, the formalism was developed within
relativistic quantum mechanics, and the neutrino wave
function was postulated (see, e.g., [45, 66, 80]). In the
second approach, the theoretical apparatus of quan-
tum field theory (QFT) with wave packets for all par-
ticles involved in the processes of production and
detection of neutrinos (except for neutrinos them-
selves, which are regarded as virtual particles) was used
[32–48, 51–58, 60–65]. The form of the neutrino
wave packet follows from the formalism in this para-
digm. Both approaches predicted novel potentially
observable effects, which were related to the loss of
coherence. The interest in decoherence in neutrino
oscillations has been on the rise lately, since several
recent (and future) experiments are potentially sensi-
tive to these effects [81–95].

The aim of this work is to examine the theory of
vacuum neutrino oscillations thoroughly and system-
atically within the QFT perturbative approach with
relativistic WPs serving as external in- and out-states.
This theory has been outlined earlier in [57, 58, 96].
We start with a brief discussion of the standard quan-
tum-mechanical theory of neutrino oscillations in the
plane-wave approximation (see Section 2). As was
already noted, the quantum-mechanical theory of
neutrino oscillations in the plane-wave approximation
is incomplete and contradictory. The underlying fac-
tors are discussed in Section 2.3.

The model with a wave packet (see Section 3)
solves some of the problems inherent in the theory
with plane waves. This model introduces WP spread-
ing and the procedure of macroscopic averaging,
which allows one to derive a correct formula for the
oscillation probability.

The focus of the paper is on the construction of the
theory of neutrino oscillations within QFT. Conceptu-
ally, the mechanism of neutrino oscillations within QFT
is the result of interference of diagrams with mass eigen-
fields  ( ) in the intermediate states. Let us
highlight the key stages and features of our approach.

(1) The problem is formulated as follows. Two spa-
tial regions with a macroscopically large interval
between them are considered. Charged leptons (
and ) are produced in these regions (the “source”

νi = , ,1 2 3i
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4 D. V. NAUMOV, V. A. NAUMOV
and  “detector,” respectively). The source and the
detector remain active within certain time intervals.
This corresponds to the most general setup of an oscil-
lation experiment. One needs to calculate the number
of such events ( ) within QFT.

(2) Naturally, number  of events in the detector
is independent of the reference frame (i.e., is a relativ-
istic invariant). Therefore, quantum states corre-
sponding to external particles should transform covar-
iantly under Lorentz transformations. This implies
that a WP corresponding to any external particle is
required to be covariant. The theory of a covariant WP
is constructed in Section 4; its properties are also
examined in detail. Section 4.5 is focused on multi-
packet states for fermions and bosons. In particular, it
is demonstrated that if WPs corresponding to identical
particles are separated by sufficiently large space-time
intervals, the system lacks the Bose–Einstein conden-
sation for bosons and the Pauli Exclusion Principle is
not valid for fermions. This intuitively obvious result is
impossible to infer in the model with plane waves.

(3) The model of a relativistic Gaussian WP (RGP)
is developed as a working model for further calcula-
tions in Section 5. It is demonstrated that a traditional

Gaussian WP of the form  is a nonrelativ-
istic approximation of an RGP. This is the key result
presented in Section 5.

(4) The above formalism is applied in solving the
problem of scattering of two WPs in Section 6. The
general case of WP scattering with a nonzero impact
parameter is considered. It is demonstrated that the
number of interactions of two WPs may be presented
as a product of three factors: the cross section (with
the dimension of area), the luminosity (with the
dimension of reciprocal area), and a dimensionless
factor that suppresses interactions at large impact
parameters. This result is intuitively expected and
illustrates the predictive power of the theory.

(5) A “macroscopic” diagram with vertices (the
neutrino source and the detector) separated by a mac-
roscopic distance is examined in Sections 7 and 8. The
initial and final particles are characterized by the con-
structed covariant WPs; and neutrinos are described
by a propagator. Charged leptons  and  are pro-
duced in the source and the detector, respectively. The
Feynman rules for such diagrams are formulated, and
the amplitude of the process of interest is calculated.
No form of the virtual neutrino WP is assumed; a
causal fermion propagator, which emerges automati-
cally in QFT, is used instead. It is demonstrated below
that the asymptotic behavior of the propagator at large
distances between vertices of the diagram reproduces
the properties of the wave function of a free neutrino;
in other words, a free neutrino at large distances from
the source behaves, in a first approximation, as a free
wave packet of a particle on the mass shell.

the

αβN

αβN
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(6) Microscopic probability  is calculated in
Section 9. Once each external (in or out) WP is char-
acterized by mean coordinate  at time , mean
4-momentum , and momentum dispersion ,

 depends parametrically on the set of all these
parameters .

Macroscopic averaging over  is performed
in Section 10. This provides an opportunity to deter-
mine number  of events with  in the source and

 in the detector. The terms “source” and “detector”
now acquire their meaning as space-time regions
around the so-called impact points  and  defined
by parameters  at the vertices, where leptons

 and  are produced. The conditions under which
 may be presented as an integral over the source

and detector volumes of the product of three factors
 are examined.

Here,  is the f lux of massless neutrinos from
the source to the detector (it is demonstrated that it
behaves as );  is the cross section of scatter-
ing of a massless neutrino in the detector; and ,
which depends on flavor indices  and , the neutrino
energy, the effective distance between the source and
the detector, and on neutrino energy-momentum dis-
persion , is a generalization of the quantum-
mechanical probability of neutrino oscillations. The
obtained “probability” of oscillations is then exam-
ined in different experimental settings. Under certain
conditions, the obtained formula for the oscillation
probability is numerically close to that from the plane-
wave model. However, the new formula predicts a
number of novel effects such as the loss of coherence,
the dependence on the temporal windows of activity of
the source and the detector, and many others.

The decoherence function, which suppresses inter-
ference contributions to the oscillation probability, is
discussed in detail in Section 11.

(7) The main results presented in this article are
discussed in Section 12, and conclusions are drawn in
Section 13.

For convenience, the details of cumbersome calcu-
lations are given in the appendices. A natural system of
units, where , is used. Abbreviations of the
form of  instead of  in Minkowski space
integrals (the Feynman metric is used throughout the
paper) and  instead of  in three-dimen-
sional Euclidean space integrals are used in those
cases where this does not lead to misunderstanding.
Although the number of active f lavors is not essential
to our analysis, we assume that this number is three in
the particular examples considered below.

αβA
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2. QUANTUM-MECHANICAL THEORY 
OF NEUTRINO OSCILLATIONS 

IN THE PLANE-WAVE APPROXIMATION
2.1. Quantum States

Let us first recall the key concepts of quantum
mechanics essential to the quantum-mechanical the-
ory of neutrino oscillations and introduce the defini-
tions that will be used in subsequent analysis. We start
with the one-dimensional case and a free theory.

A quantum system in the Hilbert space is charac-
terized by abstract time-dependent state . Its
evolution in time is given by the Schrödinger equation

(2)

where  is the Hamiltonian. Let  be an eigen-
state of the free Hamiltonian  with eigenvalue :

(3)

Let  be an eigenstate of coordinate operator 
with eigenvalue :

(4)
The norms of these states are as follows:

  where  is
the common Dirac delta function. Quantum state

 may be characterized either by coordinate distri-
bution  in the coordinate representation or by
momentum distribution  in the momentum
representation for a free or a full Hamiltonian:

(5)

States  and  are related in the following way:

(6)

In view of (5) and (6), it is evident that

(7)

The formal solution of (2)

(8)
by using representation (5) yields:

(9)

where

(10)

ψ( )t
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Expressions (6) and (7) were used to derive (9):

(11)

If  where  is the momen-
tum that can be considered as a parameter of function

, solution (9) takes the well-known form

(12)

that is, the temporal evolution of a state with a strictly
defined momentum is characterized by factor 
multiplied by a state with a definite momentum  in
the momentum representation or by a superposition of
states with a definite coordinate  with weight factor

. This solution is known as a plane wave.

2.2. Plane-Wave Theory 
of Neutrino Oscillations in Vacuum

Let us define a f lavor state  as a coherent super-
position of mass states :

(13)

where each mass state is an eigenstate of a free Hamil-
tonian with eigenvalue . The evolution of state (13) is
given by

(14)

where . Let us assume that a coherent
superposition of states with strictly defined
momenta (13) was produced in a certain weak pro-
cess. The projection of this state onto a state with arbi-
trary f lavor  is not reduced to :

(15)

The corresponding probability of f lavor transition
 is

(16)

Using ultrarelativistic approximations
 and putting , where  is

− −

− +
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the distance travelled by a neutrino in the time , we
obtain the well-known formula

(17)

where

The expanded form of (17) is

(18)

In the two-neutrino case, probability  is a peri-
odic function of distance  with a period equal to length

. The distance dependence 
is what justifies the term “neutrino oscillations.” In
the three-neutrino case, this term is not entirely cor-
rect, since oscillation probabilities may have no peri-
odicity (except special cases with peculiar relations
between the oscillation lengths , , ). In the
general case, it would be better to call neutrino oscil-
lations as quasi-periodic.

The unitary property of the vacuum mixing matrix
gives rise to the expected probability conservation law:

(19)

Note that although the energy of the state with
definite f lavor  is not defined, its mean energy

(20)
is a well-defined and conserved quantity. Indeed,

The mean energy of an arbitrary entangled state
characterized by a certain density matrix  is also
conserved. Indeed, let the initial state have the form

(21)
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where  is the probability of finding pure state 
in this (mixed) state ( ). The mean energy of
the mixed state  at arbitrary time instant  is then
written as

Naturally,  in the special case of a
pure initial state  If all pure states in initial mix-
ture (21) were equally probable, the mean energy

is independent of the mixing parameters.

2.3. Incompleteness and Paradoxes 
of the Plane-Wave Approximation: 
Review of the Proposed Solutions

The following crucial assumptions and approxima-
tions were used in derivation of the formula character-
izing the probability of oscillations:

(i) A coherent superposition of states with definite
masses  ( ), which is often called a state with

definite f lavor , where  are ele-
ments of the unitary vacuum mixing matrix, interacts
in the processes of neutrino production and detection.

(ii) States  have definite momenta .
(iii) All momenta  are the same ( ).

(iv) Neutrinos are ultrarelativistic ( ).
(v) The neutrino propagation time can be replaced

by the distance travelled ( ).
Let us scrutinize all these presumptions. At first

glance, assumption (i), which states that a neutrino
interacts as state  in the production and detection
processes, appears to be fairly natural. Moreover, in
literature one can often find a mystic statement that
neutrinos interact with matter as f lavor eigenstates,

 but between the interaction acts
they evolve in space as mass eigenstates. Note, however,
that the SM Lagrangian of interactions of massive neutri-
nos with charged leptons  can be written
either in therms of fields  and ,α(x) or να(x) and

,i(x) =  since the charged lepton current

 can be represented in two fully

equivalent forms:  and

 It is then instructive to ponder
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QUANTUM FIELD THEORY OF NEUTRINO OSCILLATIONS 7
the question whether it is possible for a coherent
superposition of states  to be pro-
duced and interact and whether oscillations of charged
leptons (similar to neutrino oscillations) are observ-
able. Since there is no experimental evidence of such
oscillations, one has to admit that charged leptons are
produced (and interact) incoherently. Therefore,
assumption (i) is not valid for charged leptons and, in
the general case, requires a quantitative justification.

Let us now turn to assumption (ii) and discuss the
 decay as an example. Since the state 

does not have definite energy, the energy of at least
one of the two final-state particles is also undefined.
Since the pion and muon have definite masses, the
momentum of one of them (or both particles) is also
undefined. Therefore, the momentum of the final-
state neutrino should be undefined, but this contra-
dicts assumption (ii). Another argument against this
assumption consists in the fact that the spatial coordi-
nates of the regions of neutrino production and
absorption (the source and the detector) and, conse-
quently, the distance between these regions, involved
in the formula for the f lavor transition probability, are
completely undefined if the momentum is completely
defined.

It is worth noting here that an unstable particle
cannot have definite 4-momentum only due to the
fact that the spatial delocalization of such a particle is
limited by its decay path length. In other words, the
indeterminacy of the 4-momentum of a particle can-
not be smaller than its decay width. Therefore, the
momenta of neutrinos produced in particle decays
should also be undefined; i.e., assumption (ii) is a
mere approximation, and a more general theory is
needed to verify its validity.

Assumption (iii), as well as the similar assumption
of equality of energies found in certain studies, is at
odds with relativistic invariance. Let us assume that
(iii) holds true in laboratory frame . Both energies

 and momenta  are then not equal in frame 
moving with velocity  relative to , since it follows
from the Lorentz transformations that

(22)

It is easy to see that

 at . If
the velocity of frame  satisfies condition

, neutrinos remain ultrarelativistic
in ; i.e., condition (iv) is satisfied, but condition (iii)
is violated. Naturally, this violation is infinitesimal if
velocity  is low (more precisely, if ). In the

α αα
∗=� �i iV

+ +
μπ → μ ν μν

K

'
iE 'ip 'K

v K

− = Γ − ≠ ,

− = Γ − ≠ , Γ = .
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general case, regarding the Lorentz transformation as
an active one, we conclude that condition (iii) cannot
be simultaneously satisfied for two neutrino beams
emitted by identical sources moving with different
velocities.

Condition (iv) states that (a) the masses of known
neutrinos are infinitesimal (much below 1–2 eV) and
(b) modern current detection techniques are not sen-
sitive to neutrinos with energies below ~100 keV; thus,
only ultrarelativistic neutrinos are probed in experi-
ments. However, this condition is not satisfied for relic
neutrinos.

Finally, let us turn to condition (v). This condition
is not equivalent to and does not follow from (iv),
which allows for expansion ,
since the second expansion term (and, in certain stud-
ies, the third) is preserved in (iv) together with the first
term . By contrast, condition (v) utilizes only
the first expansion term . The elementary
expression reproducing the exact relation between
time  and the distances travelled by states  and

 is

which allows one to rewrite oscillation phase
 in the following form:

where approximation  was used to obtain
the second-to-last expression. The resulting oscilla-
tion phase is two times larger compared to (17). This
disconcerting fact is the result of voluntary treatment

of orders of smallness of , which is inherent in

both the above “alternative derivation” and condition
(v) itself. One may ask oneself, why the difference
between the times of neutrino detection and production
is equated to distance ? The time of production of the
neutrino is unknown in the majority of experiments;
therefore, one should integrate over it. Having performed
this integration, we find that all interference terms van-
ish, since ; i.e.,

(23)

The theory of neutrino oscillations is based on
assumptions (i)–(v). Only condition (iv) is satisfied in
current experiments (although it is violated for relic

+ +�
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8 D. V. NAUMOV, V. A. NAUMOV
neutrinos). Conditions (ii) and (iii) are evidently non-
physical. Condition (i) requires a quantitative justifi-
cation. Condition (v) is unjustified. Small corrections
to it induce significant changes in the resultant for-
mula for the probability of neutrino oscillations.

3. QUANTUM-MECHANICAL THEORY 
OF NEUTRINO OSCILLATIONS 

IN THE MODEL WITH A WAVE PACKET
3.1. General Properties of a Wave Packet

Let us consider a WP at :

(24)

where  The evolution of state
in (24) with time is given by

(25)

which corresponds to the following wave function in
the coordinate space:

(26)

Let us normalize the state in (25) to unity:

(27)

The mean energy, momentum, and velocity of a
packet are defined as follows:

(28)

where the one-particle velocity operator is defined
using

(29)

A quantum WP is similar in some respects to a clas-
sical object; in particular, its energy and momentum
are conserved, and it moves (on average) along a clas-
sical trajectory. Let us establish the latter assertion by
performing explicit calculations.

3.2. Mean Trajectory of a Wave Packet

By definition, the mean WP coordinate is

(30)

= 0t
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Expressing  in accordance with (25) and
making use of relations  and

, we determine the right-hand part of (30)
by explicit calculations:

(31)

where  was used. The  integral may be
removed:

(32)

Then,

(33)

where  is given by the third expression from (28).
Integration by parts was performed in the transition
from the first line in (33) to the second. Thus, it was
proven that, on average, the WP coordinate follows a
classical trajectory:

(34)

It was explicitly assumed in this proof that the
mean WP coordinate is zero at .

3.3. Spreading of a Wave Packet 
in the Configuration Space

Let us demonstrate by direct calculations that a WP
spreads with time. By definition, the spatial coordi-
nate dispersion is

(35)

The mean value of the coordinate squared is

(36)
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QUANTUM FIELD THEORY OF NEUTRINO OSCILLATIONS 9
Using the approach similar to (32)

and, following (33), integrating by parts in (36), we
arrive at

Thus,

Setting , we find that

is the coordinate dispersion at the initial time. Thus,

(37)

where  is the WP velocity dispersion.
This is the general dispersion law of a nonrelativistic
WP, which has already been obtained earlier in [97].

Let us examine how the WP spreading rate depends
on relativistic effects. We write  in the following
form:

(38)

where  and  are the mean squares of longitu-
dinal and transverse projections of the WP velocity
with respect to mean velocity vector , respectively.
Let us rewrite  and  in terms of vari-
ables in the intrinsic frame of reference of the WP
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in the following way:

(42)

and

(43)

Comparing (42) and (43), one may note that the
following is true in the first order for WPs that are suf-
ficiently narrow in the momentum space:

Thus, using (37) and considering that

 in the intrinsic frame of the
WP, we obtain the following in the full spreading
regime:

(44)

The rate of longitudinal WP spreading is  times
lower than the rate of transverse spreading. It is evi-
dent that

in the intrinsic frame of reference of the WP.

3.4. Transverse Spreading of a Wave Packet Leads 
to an Inverse Square Law

Any WP spreads with time. In other words, the spa-
tial dispersion of a WP increases with time, while its
amplitude decreases. This well-known and inherent
property of WPs is often considered to be their “draw-
back.” This stimulated the search for temporally stable
solutions needed to associate a WP with a particle. In
particular, although a consistent scattering theory is
known to be impossible to construct without WPs
[98, 99], it is not uncommon to come across such
assertions that the decay of the amplitude with time
makes WPs not fully adequate objects to describe the
initial and final states, which are defined formally at

 and , respectively. However, as will be
shown below , and this is a new result, WP spreading is
not critical for the -matrix formalism, since it has a
clear interpretation. This is a novel result. Just as in an
ensemble of classical particles, WP spreading results in
suppression (proportional to ) of the time-inte-
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10 D. V. NAUMOV, V. A. NAUMOV
grated probability of finding a particle at distance 
from the point of its production. Thus, the result leads
to simple normalization factors for the initial and final
states taken at sufficiently long (but finite) times.

The assertion regarding the nature of the inverse
square law was proven in [96] in three different ways:

(i) For two explicit examples of : a Gaussian
function that is invariant or not invariant with respect
to relativistic transformations.

(ii) For a WP of an arbitrary form.
(iii) Based on the continuity equation.
In the present study, we utilize the simplest and

fairly general approach based on the continuity equa-
tion, which agrees with both relativistic and nonrela-
tivistic equations of motion.

Let us write the continuity equation for an arbitrary
quantum state with scalar function , which is
the probability density of finding a particle at point 
at time , and vector function , which is the f lux
density:

(45)

This equation may be rewritten in equivalent form

(46)

where integration is bounded by sphere  with radius
 If this radius is sufficiently large and the time is too

short for a WP to spread (both conditions are satisfied
if ), the integral is expected to be equal to
unity based on the normalization condition

therefore, the time derivative of the integral at the left-
hand side of this equality is negligible, and the right-
hand side of (46) is also negligible. This implies that
the f lux density should decrease faster than  The
example of a Gaussian WP considered below is in
agreement with this assertion.

Let us now integrate over time the right- and left-
hand sides of (46) from zero to infinity:

(47)

where  is the time integral of the
flux density. By definition,

(48)

is the probability of finding a particle inside a sphere
with radius  at the time instant . Naturally, owing to
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the WP dispersion, the probability of finding a particle
within an arbitrary finite volume tends to zero as

, since the WP leaves this volume. On the other
hand, if  is much larger than the WP size,  is
very close to unity, since the WP initially was localized
almost completely within a sufficiently large volume.
Under these conditions, (47) turns into

(49)

The modulus of vector  in the intrinsic frame
of reference of the WP is independent of the direction
of vector . Therefore,

in this frame.

Thus, inverse square law  is true for any solu-
tions of the Klein–Gordon and/or Dirac equations
with finite normalizations but is not valid for plane
waves with a singular normalization. At any given
time, f lux density  decreases faster than 

3.5. Noncovariant Gaussian Wave Packet
Let us examine the useful example of a well-known

noncovariant Gaussian WP with a wave function of
the following form in the momentum space:

(50)

where  is the constant dispersion of the Gaussian
distribution, or the “width” of the momentum distri-
bution in a WP. The wave function in the coordinate
representation may be obtained by assuming that dis-
persion  is sufficiently small to calculate accurately
the integral with expansion
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QUANTUM FIELD THEORY OF NEUTRINO OSCILLATIONS 11
Here, xL and xT are the components of vector 
that are parallel and perpendicular to mean velocity
vector , respectively. Expression (52) shows clearly
that the WP spreads with time. For greater clarity, we
write down the modulus of function (52):

Thus, a Gaussian WP characterized at  by a
wave function in the configuration space

spreads with time in the longitudinal and transverse
directions. The squares of longitudinal  and
transverse  dispersions are

(54)

where  and  given by (53) are related as 
Parameters  and  have the physical meaning of
longitudinal and transverse spreading times, respec-
tively. Parameter  is the WP dispersion time in the
intrinsic frame, where 

Note that the spreading rate of a noncovariant
Gaussian packet in the longitudinal direction is 
times lower than in the transverse one. A Gaussian WP
has two spreading regimes: transverse ( ) and
longitudinal ( ). In the case of full spreading in
all directions,

Comparing the obtained rates of longitudinal and
transverse spreading with the results of calculations
that make use of relativistic relations (44), we find
that the spreading rate of a noncovariant Gaussian
packet is  times lower. The covariant Gaussian
packet considered in the next section agrees with
general formula (44).
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The flux density is calculated in accordance with the
standard formula

Let us perform calculations in the intrinsic frame of
reference of the WP. The f lux density is then

(55)

The time integral may be calculated exactly:

(56)

The following formula is then obtained at distances
much larger than the packet size, :

(57)

3.6. Theory of Vacuum Neutrino Oscillations 
in the Wave Packet Model

Let us apply the above WP theory to neutrino oscil-
lations. It was demonstrated in the previous section
that the transverse WP spreading introduces suppres-
sion factor  to the probability of finding a parti-

cle at distance  from the point of its production in
infinite observation time. Let us assume that the trans-
verse degrees of freedom do not exert any significant
influence on the oscillation pattern (with the excep-
tion of the above suppression factor). In what follows,
we will dispense with this hypothesis and perform a
complete three-dimensional calculation, which will
verify the validity of the assumption.

3.6.1. Neutrino state in the wave packet model and
amplitude of the transition from the source to the detec-
tor. Let us consider a one-dimensional neutrino WP
with mean coordinate  at time :

(58)

where  the state  with the normal-
ization in accordance with ,
and

(59)

The state norm in (59) is  The detected
state should also be characterized by a WP with mean
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12 D. V. NAUMOV, V. A. NAUMOV
coordinate xd at the time instant td. In principle, the
state in the detector may differ in f lavor:

(60)

where  is defined as in (59) with obvious substi-

tutions . The projection of state  onto 
yields the transition amplitude:

(61)

where  is the distance between the mean
positions of neutrino WPs in the source and the detec-
tor and  The product of Gaussian form
factors in (61) may be presented as a Gaussian func-
tion in (59) with momentum

(62)

and dispersion  defined by

(63)

The amplitude in (61) takes the following form:

(64)

The momentum integral may be calculated in the
approximation of a small width of the effective WP2

( ) by considering of the one-dimensional
equivalent of the expansion in (51)

(65)

where  is the group velocity of
the WP state with mass . This allows one to calculate
the amplitude:

(66)

2 A WP is called “effective,” since it incorporates the processes of
neutrino production and detection.
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where

(67)

is the “spread” equivalent of the  func-
tion, which exercises the momentum conservation
law,  is the characteristic time of lon-
gitudinal spreading of a neutrino WP with  in strict
accordance with (53), and 

3.7. Macroscopic Averaging 
of the Transition Probability

How does one determine the probability of neu-
trino oscillations in the model with a WP? The proba-
bility density corresponding to the amplitude 
from (64) depends both on distance  and
time difference  and on the mean neutrino
WP momenta in the source and the detector. Impor-
tantly, all these parameters are completely arbitrary;
i.e., we do not impose constraints such as  and

. The macroscopic number of “events” aver-
aged over nonobservables (production time  and
mean momentum  at production) is the observable
quantity:

(68)

where  is the number density of neu-
trinos at the source in unit time  and unit momen-
tum . Brackets  denote averaging over time and
momentum within the intervals where

 decreases rapidly. The probability
of f lavor transition  averaged over time and
momentum at the source is

(69)

Using (67), one may easily integrate over momen-
tum . In order to perform integration over time, one
should consider that terms of the  form are vary-
ing slowly compared to the exponential suppression
occurring at times , since relation

(70)

holds true in a wide range of neutrino masses mj  1 eV
and spatial dispersions . Thus, the integral over time

 reduces to a Gaussian one. This provides an oppor-
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QUANTUM FIELD THEORY OF NEUTRINO OSCILLATIONS 13
tunity  determine the oscillation probability in the
WP model:

(71)

where

(72)

The probability of oscillations in (71) depends on
the following parameters with a dimension of length:

(73a)

(73b)

(73c)

(73d)

where dimensionless parameter  Phase
 depends linearly on distance :

and is inversely proportional to oscillation length ,
which turned out to be the same as in the plane-wave
case. However, the following addition emerged in the
WP model in the standard phase:

(74)

Let us discuss the obtained results qualitatively.

3.8. Qualitative Discussion of the Formula 
for the Oscillation Probability 

in the Wave Packet Model
It follows from (71) that neutrino oscillations in the

WP model depend on several parameters with a
dimension of length:

(i) Oscillation length .

(ii) Coherence length .
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(iii) Dispersion length .

(iv) Effective spatial size  of a neutrino WP,
which may differ by many orders of magnitude. Let us
discuss the physical meaning of these scales. Coher-
ence length  corresponds to the distance at which
two WPs with masses  and  travelling with differ-

ent group velocities  and

 cease to overlap spatially. This occurs
at time , when , where  is the spatial
size of the neutrino WP. The estimate of time

 agrees to within a numerical factor

with the definition of coherence length  from
(73b). Note that the coherence length is proportional
to oscillation length  and is inversely proportional
to relative dispersion  of the WP momentum.
Therefore, the lower the relative dispersion of the WP
momentum, the longer is the time interval of preserva-

tion of the WP coherence. Factor  in the expo-

nential function in (71) represents the suppression
related to the coherence length.

Dispersion length  emerges as a result of expan-
sion of energy up to the second order (see (65)). This
corresponds to WP spreading in the configuration
space as demonstrated in Section 3.5. Note that  is
inversely proportional to  squared. The spatial size
of WPs increases after spreading, which compensates
partially the loss of overlap of WPs  and  due to the
difference in their group velocities. The characteristic
time of longitudinal spreading of a WP of a neutrino
with mass  (parameter ) turned out
to be the same as in (53). The time derivative of spatial
WP dispersion parameter  defined in accordance
with (54) may be interpreted as the spreading rate:

(75)

It can be seen that  grows linearly with
time until it reaches the asymptotic value of spreading
rate . The spreading rate is much lower than the
velocity of neutrinos but is not necessarily lower than the
difference between their group velocities . Indeed,
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14 D. V. NAUMOV, V. A. NAUMOV
where mmax is the maximum neutrino mass. With the
cosmological constraint (mmax  0.2 eV) factored in

and taking  eV  as an estimate, we
find that  is comparable to WP spreading rate

 if  The spreading rate for
packets with much smaller spatial dispersions is much
lower than . At much higher values of  (still
satisfying the  condition), the spreading of
packets will compensate (partially) the loss of their
overlap more efficiently. For example, at distances

 from the source, where it is reasonable to
install detectors to maximize the sensitivity to neu-
trino oscillations, the maximum suppression of inter-
ference terms in (71) is  at .

In the  limit,

(77)

and spreading does not compensate completely the
loss of coherence in (71). Thus, oscillations are
strongly suppressed at distances that are much greater
than the coherence and dispersion lengths. Appar-
ently, one may state that neutrinos from astrophysical
and cosmological sources are noncoherent and do not
oscillate.

It may seem surprising that the partial restoration
of coherence due to WP spreading is sensitive to the
difference between spreading rates rather than to their
sum, which is to be expected for WPs with their spa-
tial widths increasing with time. In fact, it is indeed
easy to demonstrate that the coherence loss compen-
sation for real Gaussian widths depends on the sum
of spreading rates. The explanation is that the spread-
ing effect manifests itself as complex-valued function

, which is characterized both by its abso-
lute value and its phase. Therefore, just as the oscilla-
tion length depends on energy difference ,
the WP spreading effect, which depends on ,
should depend on phase difference 
in the interference terms of the amplitude modulus
squared in (66).

Since the WP spatial width is complex-valued
function , the spreading of WPs both
affects their overlap and produces a correction to the
interference phase. Therefore, the oscillation phase
acquires addition  defined in (74).

Additional suppression factor  defined in (72) is
independent of distance. This suppression is substan-
tial if the spatial width of a neutrino WP is comparable
in order of magnitude to oscillation length 
(or exceeds it). In the mathematical sense, this corre-
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sponds to the plane-wave limit, wherein the spatial
width of a neutrino packet tends to infinity. This has a
trivial interpretation: the interference terms are aver-
aged over distances of the order of the packet size. For-
mula (71) may be rewritten in the following form:

(78)

which allows one to interpret the suppression of inter-
ference of states  and  if , where

 may be interpreted formally as the
uncertainty of the neutrino mass squared [68]. This is
the factor that explains why charged leptons do not
oscillate. Actually, the theory developed above may
formally be applied to the oscillations of charged lep-
tons by substituting  with  under the
assumption that all charged leptons are ultrarelativis-
tic. However, all interference terms are suppressed
very strongly in this case, since quantities

 are much larger than any realistic

value of  due to the factor . Note that
the interference terms in (71) are also suppressed by
numerator

(79)

Interference vanishes at  and 
in (71), and the oscillation probability becomes a non-
coherent sum

(80)

which is independent of energy, distance, and neu-
trino masses.

Note finally that the  limit, which corre-
sponds formally to the plane-wave limit, predicts, in
contrast to the plane-wave model itself, the lack of
neutrino oscillations. Although this result is obvious
post factum, it may seem paradoxical at first glance,
since WPs turn into states with definite momentum at

, which is a throwback to the model with plane
waves. However, one more important step is made in
the WP model: integration over the neutrino emission
time is performed instead of the unjustified use of
equality  in the plane-wave model. If one is to act
consistently in the plane-wave model, one should also
perform integration over time (as a nonobservable).
The plane-wave model then also yields a probability in
the form of a noncoherent sum in (80). Luckily, this
step was omitted in the pioneering works on oscilla-
tions. Thus, it is evident that the “obvious” substitu-
tion  is far from being innocuous.

Let us now examine whether the assumptions (dis-
cussed in Section 2.3) made in the derivation of for-
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QUANTUM FIELD THEORY OF NEUTRINO OSCILLATIONS 15
mula (17) for the probability of f lavor transitions are
valid.

Assumption (i), which states that a coherent super-
position of states with masses  ( )

 interacts in the processes of neu-
trino production and detection, may be erroneous if

. In particular, this hypothesis is defi-
nitely not valid for charged leptons, which is why their
oscillations are infeasible.

Condition (ii) that states  have definite
momenta  is violated, since it corresponds to an
infinite spatial width  which yields

. This leads to (80).

Hypothesis (III) states that all momenta  are the
same ( ). This contradicts relativistic invariance.
The noncovariant theory of neutrino oscillations in
the WP model, which was discussed above, did not
address this deficiency.

Approximation (iv) of ultrarelativistic neutrinos
( ) was also used in the theory of neu-
trino oscillations in the WP model.

Hypothesis (v), which states that neutrino propa-
gation time , is not valid. In fact, a consistent cal-
culation requires integrating over time, which was
done in (68). The largest contribution to the time inte-
gral is produced by times of the order of  where

which corresponds to the time instant of the maxi-
mum overlap of two WPs representing states  and .

4. RELATIVISTIC WAVE PACKET

4.1. Definitions

Let  be the eigenstate of the operator of
4-momentum  of a particle with mass :

(81)

 transforms state  to . States  are
normalized in a relativistically invariant way: 
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An arbitrary “single-particle” spin-free state |al
may be presented as an expansion in the full set of
states  (i.e., as a wave packet):

(82)

State  may be expanded in eigenstates of any
other self-adjoint operator (e.g., 3-dimensional coor-
dinate operator  ( ,

)). Choosing the  norm for
, which gives , we write

(83)

Since operator  acting on state  is written
as ,

Taking into consideration the chosen norms, we
find that . Therefore,

(84)

Thus, functions  and  are the Fourier
transforms of each other:
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The following relations will also be of use in subse-
quent analysis:
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where wave function  depends both on a variable
(vector ) and on a parameter (mean momentum vector

). Function  is also characterized by disper-
sion parameter  in the momentum space. For conve-
nience, we require that the WP evolve into a state with
definite momentum at : .
This implies that factor  is present in wave func-
tion  to compensate factor . In what follows,
the presence of this factor is assumed for a unique
transition to the plane-wave limit to exist. However,
since this factor is constant, it exerts no influence on
the predicted number of interactions. Therefore, to
avoid overcomplicating the formulas, we omit such
factors.

It is convenient to rewrite wave function 
in the  form to determine its
transformation properties. Using the transformation
properties of the state  in responce of
the Lorentz transformation

(89)

where  is a unitary operator, one readily sees that
function  is a relativistic invariant:
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The state in (88) may be expressed in terms of
Lorentz-invariant function  (form factor):
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, where  is a finite quantity with a
dimension of volume, which is defined uniquely by the
WP form factor. Its explicit form is derived in Section 4.2.

Note on “hidden variables.” If WP  is treated as
a physical quantum state produced in collisions or
decays of other particles, function  is expected to
depend parametrically on 4-momenta  of the pri-
mary and, possibly, secondary particles involved in the
process of WP production3. In the most general case,
the set of parent and accompanying daughter particles
includes particles from the entire chain of reactions
and decays leading to the production of state  (see
Fig. 1). “Hidden variables”  may enter scalar func-
tion  only in the form of scalar products ,

, and . If one considers the expected prop-
erties of function , it should be positively
defined around  and satisfy the following condi-
tions:

The last equations are satisfied identically only in the
nonphysical case when the most probable velocities of all
packets  are the same ( ). In view of this
fact and the arbitrariness of configurations of 4-momenta

, we conclude that  In much

the same fashion, we find that 
Thus, the dependence of  on scalar products

 and  should vanish at least near the maxi-
mum of function . Postulating analyticity of
function  in the vicinity of its maximum ( ),
we find that  in the neighborhood of this point
may depend on 4-momenta  only via invariants

(94)

where  is the metric tensor and , , G4, etc. are
tensors constructed from the components of 4-vectors

. Since we consider only very narrow packets
(“smoothed” -functions), the behavior of  in
the vicinity of the maximum is of interest. Thus, this
function should include only “building blocks” (94).

3 The packet evolution under the influence of external fields is
incorporated into this representation, since any interaction in
the -matrix QFT formalism should be regarded as a local
interaction of real or virtual fields.
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Fig. 1. Schematic illustration of chains of WP production processes.
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The remaining scalar products  may be incor-
porated into the definition of scalar parameters ,
which determine the explicit form of ; in other
words, these parameters, in the general case, may be
not just constants, but scalar functions of 4-momenta
of particles  involved in the processes forming the
WP. Therefore, WPs produced in different reactions
and decays (or chains of reactions and decays) and
constructed from identical single-particle states 
are, strictly speaking, not identical. As a result, the
quantum statistics of such “packets with memory”
may differ greatly from the statistics of their elemen-
tary components (states with definite momenta).

To avoid unnecessary (though by no means fatal)
overcomplication of the formalism, we sacrifice gen-
erality and assume that parameters  are effective
constants. In addition, we limit ourselves to the sim-
plest “memoryless”4 WPs, which are independent of
tensors  and, consequently, of hidden variables.
Undoubtedly, the issue outlined here is not specific to
our approach, but is often disregarded or intentionally
ignored in postulating the WP properties.

Correspondence principle and normalization of a
wave packet. We require that the state in (91) turn into

 in the plane-wave limit. This condition is called
here the correspondence principle:

Note that the dimensionless Lorentz-invariant
integral

is independent of  and, consequently, may depend
only on parameter  and mass . However, in accor-
dance with the condition in (4.3), the considered inte-

4 A more complex WP model was examined in [100].
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gral tends to unity in the  limit. Therefore, it is
also natural to set it equal to unity at a finite small :

(95)

Although this technical condition is not required, it
provides a practically convenient norm of form factors

Certain general properties of a wave packet. The
following are the key properties of a WP:

(1) Since the invariance of  with respect to

rotations ,  is a special
case of (90), functions  and  are
also rotationally invariant.

(2) The modulus of function  is also
invariant with respect to spatial translations but is not
invariant with respect to temporal ones.

(3) It follows from (92) that  at

; i.e., a WP spreads with time in the configu-
ration space.

(4) Since  is independent of , one
can conclude that  is the center of spherical symme-
try of a packet. In what follows, we call this point the
packet center.

(5) It follows from (90) that function  may
depend only on Lorentz-invariant quantity . There-
fore, function  is symmetric with respect to per-
mutation of its arguments; i.e., .

(6) It is also evident that ,
where  is the rotationally invariant function of a
single variable .

(7) Another simple and important corollary of (90)
is the independence of norm (93) of both space-time
coordinate  and momentum .
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4.2. Mean Four-Momentum
Let us now find the mean values of components of

4-momentum  of a packet, which are
defined by the standard quantum-mechanical rule

Inserting (88) into this equation, we find

(96)

where denominator  is equal to the norm of state
:

(97)

Here and elsewhere, index  of variables  and 
is omitted for brevity (if this does not lead to misun-
derstanding). Formulas (96) and (97) demonstrate
that mean 4-momentum  is an integral of motion,
and quantity , which has the dimension of spatial
volume, is completely independent of the momentum
and the space-time coordinate.

In view of the  function’s parity, it follows
from (96) that ; in other words, the mean
momentum turns to zero in the intrinsic frame of ref-
erence of the packet5, which is defined by condition

. Therefore, the mean (effective) mass of a
packet, , is equal to its mean energy (the zeroth
component of 4-vector  in this frame):

(98)

Using (97) and writing (88) as

(99)

we find that  with equality  attained
only in the plane-wave limit; i.e., WP  is
“heavier” than its component states with definite
momenta. This effect is of a general nature and is a

5 This also follows from simple dimensional considerations: since
3-vector  depends on just a single vector quantity , .
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manifestation of mass nonadditivity. In the case under
consideration, it is attributable to the fact that the
components of momenta of Fock states  transverse
to vector , which are constituent parts of the WP, do
not contribute to the mean momentum value
( ), but produce a nonnegative contribution
to the mean packet energy6. Note that the mean value
of the mass squared is ; thus, .

Let us demonstrate that the packet is, on the aver-
age, on the mass shell. It follows from the dimensional
considerations mentioned above that  and

, where  and  are certain dimensionless
quantities independent of . We then obtain from (96)
the following relation:

(100)

Since the left-hand and the right-hand expressions
in (100) are Lorentz-invariant, . Setting  in
(100) and using the definition in (98) we find

. This proves that

It follows from these relations that group velocity
 of the packet is the same as its most

probable velocity 

4.3. Wave Packet for a Fermion
Wave packets of fermions with single-particle Fock

states of the form  with Lorentz-
invariant norm  =  are
needed for further calculations within the -matrix
QFT formalism. Operators  and  are standard
creation and annihilation operators for a particle with
mass , 3-momentum , and spin projection .
They satisfy the following anticommutation relations:

Let us construct a relativistic fermion WP, which is
a state localized in the configuration and momentum
spaces that features transformation properties similar
to those of Fock states and evolves into a Fock state in
the plane-wave limit. Similar to a scalar particle, a WP

6 This is similar in certain respects to the following well-known
relativistic effect: the mass of gas in a vessel increases in the pro-
cess of its (uniform) heating. The vessel acquires no additional
momentum, but the internal energy and, consequently, the mass
of gas increase.
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is characterized here by the most probable 3-momen-
tum  and spin projection . The most general con-
struction of this type at a fixed point in time takes
the form

(101)

where functions  depend both on momen-
tum and discrete spin variables and on a set (finite or
infinite) parameters , which are inde-
pendent of these variables and specify the properties of
the packet. By definition, momenta  and  lie on the
mass shell; i.e.,  = . We require
that state (101) evolve into  in the plane-wave
limit. Since one can always define parameters  in
such a way that they satisfy this limit at  ( ),
we may formulate a simple correspondence principle:

Since the right-hand side of this equation is a rela-
tivistic scalar, it is natural to assume that functions 
are also scalars and  at . Assuming
that parameters  are sufficiently small, one may
summarize these requirements using the following
simple ansatz:

where  is a spin-independent function such
that

and

(102)

Thus, if at least some parameters  in set  are
nonzero (and all of them are sufficiently small), func-
tion  is (to within a factor) a “smeared”

-function in the momentum space. More precisely,
as in the quantum-mechanical case, we assume that

 has a peak at  and decreases rapidly
outside the small neighborhood of this point. In
order to simplify notation, we do not specify the
explicit dependence of  on parameter set  in
subsequent analysis and write expression (101) in the
form

(103)

The WP in (103) characterizes a state with spin pro-
jection , the most probable momentum , and a
mean three-dimensional coordinate of the packet cen-
ter that is equal to zero at time . To set the initial
state of a WP, one just needs to define its mean coor-
dinate at an arbitrary fixed time point. It makes no dif-
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ference whether this point is located in the future or
past relative to , since the temporal evolution of a
WP allows one to reconstruct its trajectory at any time
point. For visual convenience (more specifically, for
objects emerging in the formalism to have an explicitly
translation-invariant form [  rather than

]), we set the initial condition for a WP with
mean three-dimensional coordinate ( ) at a certain
time point ( ) located in a sufficiently distant past;
i.e., we use transformation , which
yields the following expression for a WP at an arbitrary
space-time point :

(104)

Coordinate representation. Let us consider a free

fermion field with spin  and a field operator of the
following form:

State  is often called the state of a fermion
with definite coordinate. This is suggested by the fol-
lowing elementary calculation:

(105)

yielding a plane wave  multiplied by spinor .
In much the same fashion, we define coordinate wave
function

(106)

where the approximate equality corresponds to narrow
packets. The condition of applicability of this approx-
imation may be written as

(107)

Lorentz-invariant function  is defined as follows:

(108)

It is evident that the function in (108) satisfies
(at any ) the Klein–Gordon equation

i.e., it is a relativistic WP in terms of the standard QFT
scattering theory. It is also clear that, under the
assumptions made above, function  depends
only on two independent scalar variables  and .
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Scalar function  remains unchanged after the
transition to the intrinsic frame of reference of a
packet ( ); i.e.,

(109)

where 4-vector  is related to 
by the Lorentz transformation along the  direction
(from the laboratory frame to the intrinsic frame),

(110a)

and  is the Lorentz factor of
the packet. Since  is an even function of vari-
able , it can depend only on variables  and ,
which are expressed in terms of invariants  and 
in the following way:

(110b)

Using (110a) and (110b), one can easily verify that

(111)

Effective volume of a wave packet. According to the
adopted WP normalization in (95), dimensionless
function  is not a normalized wave function.
This allows one to interpret

(112)

as a three-dimensional volume in space occupied by
the WP. The narrower the WP in the momentum
space, the more accurate the above interpretation. The
state norm in this approximation may be written as

(113)

Note that  in the general case.
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4.4. Commutator Function
It is convenient to introduce an auxiliary WP cre-

ation operator:

(114)

which provides an opportunity to rewrite the state
in (103) in the form similar to the plane-wave limit,

(115)

Naturally,  turns into  in the  limit.
The following (anti)commutation relations are easy

to derive from the definition of operators  and

:

(116a)

(116b)

(116c)

Lorentz- and translation-invariant commutator
function

(117)

was introduced here. It follows from (104) and (116c)
that

(118)
Certain properties of the commutator function

in (117) become especially clear in the center-of-iner-
tia frame of two packets. We denote quantities in this
frame by an asterisk subscript or (when it cannot be
mistaken for the complex conjugation sign) super-
script. Since  in the center-of-inertia
frame, we have

(119)

The characteristic behavior of form factor  in
the vicinity of  suggests that the modulus of func-
tion  has a sharp maximum at

 and vanishes rapidly at larger  values, since
the maxima of factors  and  in the
expression under the integral sign in (119) are widely
separated in this case; therefore, their product is small
for any values of integration variable . This is illus-
trated schematically in Fig. 2. It is easy to see that the
integral in (119) becomes vanishingly small if points 
and  are widely separated in space (i.e., when the
value of  is large). This is attributable to rapidly
oscillating factor  in the integrand in (119).
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Fig. 2. Schematic illustration of the smallness of the integrand in (119) at large values of momentum  in the center-of-inertia
of wave packets.
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In order to return to the laboratory (or any other)
frame, one needs to express variables in the center-of-
inertia frame in terms of variables in the frame of inter-
est. The corresponding Lorentz transformation takes
the form

(the same goes for  and ), where

denote the velocity and the Lorentz factor of the cen-
ter-of-inertia frame in the laboratory frame; the
energy and the momentum in the center-of-inertia
frame are given by

The latter equality demonstrates that  decreases
at  and increases as  grows larger. There-
fore, it follows from the above considerations that
function  reaches its maximum at 
and decreases at large values of .

To conclude this section, we write kinematic
identities
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which will be used often in subsequent analysis. It fol-
lows from the last identity that

4.5. Multipacket States
Multipacket states are crucial for the theory of neu-

trino oscillations in matter when one considers the
effects of coherent neutrino scattering off matter parti-
cles. We assume that identical WPs, which correspond
to states of one and the same quantum field but have
different momenta and spin projection, are character-
ized by identical sets of parameters .
Therefore, the dependence on  is not stated explicitly.
Ket state  of identical WPs is defined as

(121)

The corresponding bra state is derived from (121)
using Hermitian conjugation. It is evident that
state (121) is completely symmetric (antisymmetric)
for bosons (fermions) with respect to permutations

 for any pair of indices 
( , . The general symmetry relation
takes the form

Here and elsewhere, the upper and the lower signs
correspond to bosons and fermions, respectively, and
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In order to find the norm of states (121), we intro-
duce an  matrix

Let us prove that

(122)

This relation is trivial if . It is easy to verify by
direct calculations that

Therefore, equality (122) also holds true at .
Let us now consider matrix element  at .
According to (121) and (116b),

Following successive permutations of operator
 with operators , ,  with

the use of (122) for -packet matrix elements and with
(anti) commutation relations (116c) factored in, we
than find

The right-hand side of this relation may be rear-
ranged in compact form

where  is the nth-order minor of determinant
 arising from elimination of the th row and

the jth column from . The sum over  of the latter
expression is nothing but the minor expansion of
determinant  over the -th row. Therefore,

, which completes the inductive proof.
Thus, according to (122), -boson ( -fermion)

matrix element  is proportional to the
 matrix permanent (determi-
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nant). Let us now turn to the normalization problem.
Since

matrix  is Hermitian. Therefore,
-packet matrix element

(123)

is a real polynomial combination of order  of com-
mutator functions  with different arguments. For
example, the following is obtained for n = 1, 2, and 3:

(124)

The properties of the commutator function, dis-
cussed in Section 4.4, provide an opportunity to ana-
lyze these results in two simple limiting cases. If all
space-time points  ( ) are sufficiently
separated and/or 3-momenta  differ
strongly in amplitude or direction (nonintersection
mode), it follows from (122) that

In the opposite case, when packets with identical
spin projections intersect strongly both in the momen-
tum space and in the configuration space,

A matrix element is independent of momenta,
coordinates, and spin projections in both limiting
cases. The behavior of an -packet matrix element in
the intersection regime is just the manifestation of
Bose attraction and Pauli blocking for identical bosons
and fermions, respectively. Much less trivial is the fact
that the WP formalism validates the intuitive expecta-
tions that free identical bosons (fermions) with the
same momenta and spin projections do not condense
(may coexist freely) if they are separated by sufficiently
large space-time intervals. This physically under-
standable result is incomprehensible within the plane-
wave QFT formalism. In fact, the Pauli principle is
sometimes formulated in the following categorical
form: “the probability of finding two identical fermi-
ons with the same momenta and spin projections is
zero.” We see that, strictly speaking, this is not true,
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unless particles with definite momenta (idealized
mathematical objects existing in the entire infinite
space-time) are considered instead of WPs, which are
localized in finite space-time regions and character-
ized by the most probable momentum values. We will
revisit this conceptually important issue in Section 5.5
and clarify the meaning of words “sufficiently large
space-time interval” using a simple model of a relativ-
istic WP.

5. RELATIVISTIC GAUSSIAN PACKETS

5.1. Function 

This section is focused on the simple (but import-
ant for the considered formalism) model of a relativis-
tic Gaussian packet that is applicable in characterizing
sufficiently narrow (in the momentum space) wave
packets that are spherically symmetric in the intrinsic
frame of reference and have a single maximum7. Since
function  for such packets is essentially (to
within a known positively defined factor) a smeared

-function, we may assume that  without
loss of generality. It is also assumed that form factor

 depends on a single scalar variable . It is
easy to see that . Since , we obtain
the following in the intrinsic frame of reference of the
packet ( ):

Note also that  at
. Since function  has its maximum at point
, one can apply a natural additional constraint

Function  may then be approximated in a
sufficiently small neighborhood of the maximum by
the following expression:

(125)

7 The RGP model was proposed in [57]. It was thoroughly ana-
lyzed mathematically and generalized in [101]. Intriguing appli-
cations of the RGP (apart from neutrino physics) were discussed
in [102]. Another class of models (covariant asymmetric WP,
AWP) was proposed in [100]. It was demonstrated that an AWP
is never the same as an RGP, although it features all the proper-
ties needed for a covariant description of localized “particle-
like” quantum states. It was also demonstrated that the WP con-
sidered below is the only relativistic “memoryless” packet (i.e., a
packet independent of 4-momenta of “parent” states (particles)
involved in the reactions or decays producing the WP; see Sec-
tion 4.1). We follow the logic of [57], which is sufficient for our
purpose.
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We call the states with such form factors RGPs by
analogy with noncovariant (nonrelativistic) Gaussian
packets in (50) (NGPs) with form factor

which is normalized by condition

It will be demonstrated below that the properties of
RGPs differ considerably from those of NGPs. Nor-
malization constant  in (125) may be derived from
condition (95), which states that

Thus, we obtain

(126)

where

denotes the modified Bessel function of the third kind
of order 1. We can now rewrite (125) in the following
form:

(127)

Imposing the natural (assumed by default in what
follows) requirement that

(128)

and making use of the known asymptotic expansion of
function , which is true at large  [103],
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we can rewrite expression (127) as follows:
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The following is obtained from (130) in the nonrel-
ativistic case ( ):

(131)

This agrees, to within a normalization, with NGP
form factor . However, the difference
between  and  may be arbitrarily large
(irrespective of the difference in normalizations) at
relativistic momenta. For example, function (130)
behaves in the following way in the ultrarelativistic
limit ( , ):

where  is the angle between vectors  and . In par-
ticular, we obtain the following at  and :

In the first example, the relativistic effect is limited
to packet broadening (compared to the nonrelativistic
case) in the momentum space ( ). This
effect is significant for all processes of neutrino pro-
duction and absorption (scattering) involving relativis-
tic particles.

If one needs to illustrate the significance of cor-
rect normalization, it is instructive to verify explicitly
that the  limit at  is indeed given by
equality (4.3).To this end, it is sufficient to prove that
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for any smooth function .
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where . The obtained integral over  may be
estimated using the well-known asymptotic formula
(see, e.g., [104])

(133)

which holds true for an arbitrary continuous function
 . Since

in the case under consideration, the equality in (132)
becomes evident.

Thus, we see that function  is the simplest
model of a form factor that satisfies all the require-
ments imposed on function  of the general form.
Let us derive explicit formulas for the mean and root-
mean-square velocities of an RGP to understand its
properties better.

5.2. Mean and Root-Mean-Square Velocities

Let us start with definitions

(134)

Evidently, ; therefore, it is sufficient to
determine the projection of the mean velocity onto the
momentum direction ( ). Integrating in
angular variables, we find

( ); it is assumed here that  because
the  case is trivial. The saddle-point method is
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used in subsequent calculations; we utilize the well-
known theorem of asymptotic integral expansion

(135)

(see, e.g., [104], p. 41), which states that

(136)

where

 is the only stationary point of function 
( ), , and  in the
neighborhood of . All these conditions are evidently
satisfied in our special case8. The result is

(137)

As expected, the mean velocity is always lower than
the most probable. In the nonrelativistic case,

; in the ultrarelativistic one,

. Similar calculations for the root-
mean-square velocity and its longitudinal and trans-
verse components yield the following:

(138a)

(138b)

(138c)

In the nonrelativistic case, ; i.e., jit-
ters are observed in the WP, although the jitters are
negligible. In the ultrarelativistic case, they vanish

8 The linear dependence of function  on parameter  does not
preclude one from applying the theorem.
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completely, and a WP behaves as a classical particle.
The following is obtained from (137) and (138a):

(139)

Thus, difference (139) assumes the value of  in

the nonrelativistic limit and tends to zero as  in
the ultrarelativistic limit. The RGP model allows one
to study the properties of the wave and commutator
functions in detail.

5.3. Wave Function 
Inserting (127) into (109), integrating over the

direction of vector , and performing simple transfor-
mations, we obtain the following:

This integral is calculated using the known repre-
sentation for function 
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which holds true for  and  (see, e.g.,
[105, (2.5.42.3), p. 460]). Thus, we arrive at a compact
expression
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which features a dimensionless Lorentz-invariant
variable
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Here and elsewhere, the square root sign is under-
stood in the sense of its principal value, and

.
It is instructive to verify that function (141) satisfies

the Klein–Gordon equation. Considering that
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Fig. 3. Three-dimensional plots of functions  and ϕ in variables  and .
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where . Therefore,

(143)

Since

it follows that

Inserting these identities into (143) and using (141)
we make sure that

The modulus and the phase of variable (142) are
given by
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It follows from the last equality in (144) that, for
any ,

(146)
with equality holding true only at the packet center
( , ). Relying on (145) and analyticity
considerations, one may easily demonstrate that

(147)
Indeed, it follows from (145) that  at

. Since this is the only zero of phase  at
, the continuity of  implies that  at

Figure 3 illustrates the behavior of  and  as a
function of two independent dimensionless variables

 and  It can be demonstrated that
function  has no zeros at  and tends
to unity (zero) at  ( ) in sector (147). It fol-
lows from the properties of parameter  that

 if  (at fixed ) or 
(at fixed ).

The behavior of wave function  depends
strongly on the value of ratio . Figure 4 presents
the profile of the modulus of function  (left
panel) and an enlarged fragment of this function in the
neighborhood of its maximum (right panel) as exam-
ples. Calculations were performed with  in

terms of dimensionless variables  and

, and the reference frame was chosen so that
vector  is directed along the third axis. Note that the
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Fig. 4. Three-dimensional plot of function  in variables  and  (left) and its zoomed fragment in the

neighborhood of the maximum (right). It is assumed that ). Calculations were performed for .
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value of σ/m is entirely unrealistic and was chosen only
for illustrative purposes, since the fine features of
behavior of  would be indiscernible at

. Naturally,  is an even function of
both variables; this explains the symmetry of the

 profile in Fig. 4. In a sufficiently small
neighborhood of the  maximum and as the

 value decreases, the profile of function
 changes relatively slightly along the time

axis, but f lattens rapidly along the space axis. Figure 4
provides an insight as to why the effective packet vol-
ume defined in accordance with (97) is independent of
time, although wave function  itself tends
asymptotically to zero at . The reason is that
the packet spreads with time in such a manner that this
spreading compensates accurately the 
reduction. This compensation preserves the norm of
the packet. Thus, contrary to the claims made in cer-
tain textbooks on quantum mechanics, the spreading
of a relativistic WP does not imply that it vanishes.

5.4. Commutator Function 

Inserting (127) into the definition of commutator
function (117) written in the intrinsic frame of refer-
ence of the packet and integrating in angular variables,
we obtain
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Expression (140) allows one to calculate the
remaining integral over  easily; we find [cf. (141)]

(148)

Invariant dimensionless variable  is defined as

(149)

The relations between kinematic variables in the
intrinsic frame of reference and the laboratory frame
(see the end of Section 4.4) were used in deriving the
last equality. The modulus and the phase of variable 
are given by

Using these relations, one can prove that

(150)
The obtained formulas for the wave and commuta-

tor functions provide an opportunity to examine the
properties of WPs and multipacket states in detail.
However, the calculation of macroscopic Feynman
diagrams of interest to us is a rather technically com-
plicated task even in such a simple model as the RGP
because one needs to calculate multidimensional inte-
grals of products of Bessel functions of complex vari-
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ables. In addition, for most practically important sce-
narios, the regime is interestig in which the WP
spreading can be neglected. This regime is typical,
e.g., of particles of a not too rarefied gas if the mean
time between two successive collisions of a particle is
much shorter than the effective spreading time of the
packet that characterizes its state between the colli-
sions. The case is similar for unstable particles with
their lifetimes being short relative to the packet spread-
ing time. The corresponding approximation in the
RGP model is considered below.

5.5. Approximation of Nonspreading Packets

Let us determine the physical conditions under
which the RGP spreading may be neglected9.

Owing to inequalities (128), (146), and (147), one
can use asymptotic equation (129), which yields

(151)

This formula holds true for any  and , but it is
still too complicated for our purpose. Imposing addi-
tional constraints, one may simplify expression (151)
considerably by expanding variable  in powers of
small parameter . In the intrinsic frame of refer-
ence of a packet,

(152)

Elementary analysis suggests that one may limit
this asymptotic series to the leading  corrections
if the following (necessary and sufficient) conditions
are satisfied:

(153)

It is evident that the space-time region defined by
these conditions becomes arbitrarily wide at . If
(153) is satisfied, formula (152) evolves into a simple
and physically transparent expression:

(154)

9 It is clear that nonspreading WPs are easier to associate with
(quasi) stable particles (i.e., localized objects) and to use as
asymptotically free states of in- and out-fields in the -matrix
QFT formalism instead of common plane waves, which occupy
the entire spacetime and are thus unable to serve as an adequate
mathematical model of particles.
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It is evident that, in the intrinsic frame of reference
of a packet,

(i)  behaves as a plane wave at 
(i.e., in the vicinity of the packet center).

(ii)  is independent of time variable 
(as required, RGP (154) does not spread).

(iii)  decreases in accordance with the
Gaussian law at large distances from the packet center,

; note that the last inequality does not con-
tradict the second one from (153).

Using kinematic relations (110a) and (111), we
write function  in the laboratory frame:

(155a)

(155b)

where  and  are the components of vector 
( ) that are parallel and perpendicular to
velocity vector , respectively. It follows from (155b)
that an RGP undergoes relativistic compression in the
direction of velocity in the configuration space. This
agrees with the abovementioned relativistic packet
broadening in the momentum space for Fock compo-
nents with momenta codirectional with vector  (see
Section 5.1).

It follows from (155a) that function  is
invariant with respect to a one-parameter group of trans-
formations  with  (or, in the com-
ponent-wise notation,  ). It
follows that  = . It is also
evident that  and 
along classical world line , but 
for any deviation from it. The probability of quantum
deviation  from classical motion is sup-
pressed by factor

It can be seen that transverse (with respect to veloc-
ity vector ) deviations are less suppressed than longi-
tudinal ones. Moreover, the ultrarelativistic packets
can deviate from classical trajectories exclusively in
the transverse direction; i.e., the quantum motion of
packets is confined to classical light cones.

The nonrelativistic limit corresponding to approxi-
mation (131) for function  is given by
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The phase of the nonrelativistic wave function 
is independent of velocity (  at

 and ).

Using relation (110b), one may rewrite inequalities
(153) and expression (154) in an explicitly relativisti-
cally invariant form:

(156)

(157)

Condition  follows from (156). In
what follows, we call the considered approximation a
stable relativistic Gaussian packet (SRGP). Applying
the Klein–Gordon operator to (157), we obtain

Thus, function  approximately satisfies the Klein–
Gordon equation (i.e.,  if conditions (128) and
(158), which define the domain of applicability of the
SRGP approximation, are fulfilled. It will be demon-
strated below that this region is sufficiently wide for
our purpose.

Note that the inclusion of contributions 
into (152) results in an even more rapid reduction in

 with distance at  and reduction in

 with time at . One of the techni-
cal corollaries of this  behavior, which is useful in
amplitude calculations, consists in the fact that the
SRGP approximation may be extended to the entire
space-time integration region in integrals of the fol-
lowing type:

where functions  correspond to relativistic WPs
characterizing the states of particles , and  is an
arbitrary smooth function of  without sharp extrema.
Integrals of this type are found in formulas for the
macroscopic amplitudes of scattering and decay of rel-
ativistic WPs.

Direct (and rather cumbersome) calculations of
mean packet position  with the use of (157) demon-
strate that, as expected, a WP follows a classical trajec-
tory. Thus, an SRGP reproduces completely the gen-
eral properties of a relativistic WP.

The SRGP model allows one to verify the fulfill-
ment of condition (107) needed for approximate for-
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mula (106), which  a significant element of the for-
malism, to be applicable. It follows from (157) that

Therefore, condition (107) may be rewritten as

(158)

where . Elementary
algebra gives

Thus, we have proven that

Therefore, inequality (158) is not an independent
condition and follows from the second constraint
from (156), which defines the domain of applicability
of the SRGP approximation.

Let us now examine the properties of commutator
function (148) in the SRGP approximation. Using
inequalities (150) and condition (128), we may write
an asymptotic expansion for it [cf. (151)]:
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For self-consistency, one should rewrite this for-
mula in an approximation satisfying the SRGP
approximation conditions for function . We
use the truncated series for  for this purpose:
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frame) in powers of small parameter  we arrive
at the following relation:

where . It can be seen that, if conditions

(160)

are satisfied, it is sufficient to use just four principal
terms of the expansion in . The resultant for-
mula in this approximation is

(161)

where one should set  (see the next
section).

As expected,  decreases rapidly if 
or  (or both quantities) are sufficiently large. The
formal conditions for this, examined qualitatively in
Section 4.4 for a WP of the general form, now become
evident. In addition, commutator function (161) has
certain properties that were not obvious in advance. It
can be seen, e.g., that the dependence of  on vari-
ables  and  vanishes on classical trajectories, while
ratio  is exponentially small even at sub-
relativistic energies ( ) and tends to zero at
ultrarelativistic energies ( ) almost inde-
pendently of . It is easy to demonstrate that

at any .
Transforming (161) to the laboratory frame and

switching to nonrelativistic energies, we obtain
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Here,  and  are the group veloc-
ities of packets in the laboratory frame,

, and it is assumed that  and

. Note that the contribution  in (162)
may be large if  and parameter  is sufficiently
small.

The transition to the plane-wave limit in (161) is
not entirely trivial. In order to find this limit, we use
asymptotic formula (133) (see Section 5.1), which pro-
vides an opportunity to prove that the following rela-
tion holds true for an arbitrary smooth function :

Therefore,

Using kinematic relations (120a), one may rewrite
inequalities (160) in an explicitly relativistically invari-
ant (although somewhat less clear) form:

(163)

It is easy to demonstrate that conditions (163) agree
completely with conditions (156), which define the
domain of SRGP applicability. In much the same way,
one may also rewrite expression (161) in an explicitly
Lorentz-invariant form. We do not cite the corre-
sponding formula, since it is rather cumbersome and
not very useful in practice. It is often easier to operate
in the center-of-inertia frame of two packets and boost
to the laboratory frame only in the resultant expres-
sions.

Let us examine -packet matrix elements (123)
with equal momenta ( , ) as an important
application of formula (161). The general case, which
was discussed brief ly in Section 4.5, is illustrated well
by the simplest examples with  and 3. Rewriting
relations (124) in the center-of-inertia frame, which is
the same as the intrinsic frame of reference (the same
for all one-packet “substates”) in this case, and insert-
ing (161), we find:
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Fig. 5. SRGP in the configuration space (left) and the
momentum space (right). Arrows denote the direction of
the packet momentum.
where plus and minus signs correspond to bosons and
fermions, respectively. It can be seen that the Bose–
Einstein attraction and the Fermi repulsion, which are
found at  for any pair of particles , are sig-
nificant only at short distances between the centers of
packets  and  satisfying condition

(164)

In other words, both effects become significant
when the spatial distance between identical packets
(measured in their common rest frame) is comparable
to the size of packets (i.e., precisely when it becomes
necessary to consider the dynamic interaction of pack-
ets). At sufficiently large distances between packets,
the difference in quantum statistics is irrelevant. This
conclusion remains valid for states with an arbitrary
number of noninteracting identical packets and is cru-
cial to constructing the quantum WP statistics.

5.6. Effective Size and Mass of a Packet

It is easy to find an explicit form of volume ,
which is defined by (97), in the RGP approximation:

(165)

The explicit formula for mean mass  may also be
derived as an asymptotic expansion in parameter .
It is convenient to use Watson’s lemma, which states
that the term-wise Laplace transform for the power
expansion of function  is the expansion of the
Laplace transform of this function, for this purpose. In
the case under consideration,

Applying this asymptotic formula to the numerator
and the denominator in (99) and inserting the expan-
sion for the normalization constant from (126)

we find the ratio of the mean packet mass to the field
mass:

Thus, the mean (effective) mass of a WP exceeds
the mass of its constituent Fock states by
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Let us now turn to the SRGP model:

(166)

One may define (with the same accuracy) the
effective WP size in the intrinsic frame of reference as
diameter  of a sphere with volume ; i.e.,

(167)

Evidently, the effective size of a packet in the labo-
ratory frame in the direction of its momentum  is

. An oblate spheroid with a cross diameter
of ~  and an angular eccentricity of 
may serve as an illustration of a packet in the configu-
ration space (see Fig. 5, left panel). Volumetric density

 of a packet at its center exceeds the density at
the (nominal) boundary by a factor of more than
three. To be more precise, this density ratio in the intrin-
sic frame is

5.7. Energy and Momentum Uncertainties 
of a Packet

Let us examine the relation between parameter 
and quantum uncertainties of the WP energy and
momentum in the SRGP approximation. Using the
mean-value theorem and conditions (95), we obtain
the following identity:

where  is the vector to be determined with a small
absolute value. This vector has a clear physical mean-
ing: the WP momentum uncertainty. It is natural to
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assume that 10. This condition allows one to
perform the expansion

which yields

where  and  are the longitudinal and transverse
(with respect to momentum vector ) components of
sought-for vector . In accordance with (130),
we have

(168)

where  denotes vector  written in the intrinsic
frame of reference of the packet. Comparing rela-
tions (168) and (166) (derived in the same approxima-
tion), we find

(169)
Formulas (167) and (166) yield “uncertainty relation”

(170)

To illustrate this, we consider a hadron WP. Its
effective size obviously cannot be smaller than the nat-
ural size of the hadron itself (i.e.,  fm). It then
follows from (169) and (170) that  MeV;
therefore, σ ≈  MeV. Thus, 300 MeV is
the maximum possible value of  for a hadron WP. We
will discuss the extreme allowed values  in the SRGP
model in Section 5.8.

Owing to the spherical packet symmetry in the
intrinsic frame of reference,

(171a)

from which it follows that

(171b)

Relations (171) allow one to estimate the momen-
tum uncertainty and the effective WP (half) width in
the momentum space. We can see that the relative

10 This assumption is verified a posteriori by relation (171).

δ Epp !

( )
+δ

 δ ⋅δ ⋅ δ≈ + + − , 
 

22

2 2 41
2 2

E E
E E E

p p p
p p p

p pp p p

( )

( )

+δ

⊥

δ− + δ ≈ +

δδ ⋅ δ− = + + ,�

2
2

22 2
2

2 2

2

22 2

E E m

m
E

p p p

p p

pp p p

pp p p

δ �p ⊥δp
p

δp

/
⊥

/

 δ + Γ δπ ≈ −     σ σ Γ 

 δπ = − ,   
 σ σ 

�
w

w

2 223 2

2 2 2

3 2 2

2 2

V exp
4

exp
4

p

p

p p

p

δ wp δp

δ ≈ σ ≈ . σ .w

2 2 26 ln 2 4 159p

/δ ≈ π ≈ . .w w

1 33 (4 3) ln 2 3 171d p

1*d *

δ 600*p &

δ 300*0.5 p &

σ
σ

⊥δ = δ ≈ σ

δ = δ Γ ≈ σ Γ ,�

w

w

2 2 2

2 2 2 2 2

2 4 ln 2
3
1and 2 ln 2
3 p p

p p

p p

( ) ⊥δ ≈ Γ + σ, δ δ ≈ Γ .�

22 ln 2 2 2p pp p p
PHYSICS O
momentum uncertainty, , is small for ultrarela-
tivistic momenta, but becomes arbitrarily large as

:

The corresponding energy uncertainty is

Therefore, the relative energy uncertainty is always
small, and the ultrarelativistic asymptotics,

, defines the upper
limit of this ratio.

5.8. SRGP Applicability Domain

Depending on the WP production mode (i.e., the
chain of reactions producing it), the effective WP sizes
may vary from microscopically small to macroscopi-
cally large. The latter possibility should come as no
surprise if one recalls that the “size” of a plane is
infinite. Let us stress once again that the effective WP
size is a characteristic of the quantum state of a field
rather than an internal property of this field. This size
naturally depends on the field properties, but not
exclusively on them. The “natural” and, probably,
practically unreachable upper limit, , for the
effective size of a WP characterizing an unstable parti-
cle should be of the order of its own lifetime  (macro-
scopic for long-lived particles such as a neutron or a
muon), while the “lower limit”, , is set by the
inherent particle size, which is on the order of 1 fm for
hadrons (compound particles) and on the order of the
Compton wavelength (~1/m) for leptons and gauge
bosons (structureless particles). Whatever the case,
owing to the general  restriction, the packet
size allowed by the formalism should be much larger
than .

In the case of unstable particles, conditions (153) of
applicability of the SRGP approximation impose an
additional tight constraint on the value of parameter

. For these conditions to be satisfied at 
(i.e., to avoid substantial WP spreading within the state
lifetime), the  inequality should hold true.
Therefore,  sets the absolute upper limit11

for values of  allowed in the SRGP model. Thus,

11In the physical (rather than in the formally mathematical)
sense.
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Table 1. The maximum allowed value of parameter σ ( ) and ratio , and the minimum allowed

effective size of wave packets ( ) for some unstable particles in the SRGP approximation

Particle , eV , cm

σ = Γmax m Γ σ = Γmax m

≈ Γmin 1.55*d m

σmax Γ σmax w

mind

±μ −. × 11 78 10 −. × 91 68 10 −. × 41 72 10
±τ . × 32 01 10 −. × 61 13 10 −. × 81 53 10
±π .1 88 −. × 81 35 10 −. × 51 63 10

π0 . × 43 25 10 −. × 42 41 10 −. × 90 94 10
±K .5 12 −. × 81 04 10 −. × 65 99 10
0
SK . × 16 05 10 −. × 71 22 10 −. × 75 07 10
0
LK .2 53 −. × 95 08 10 −. × 51 21 10
±D . × 31 09 10 −. × 75 82 10 −. × 82 82 10
0D . × 31 73 10 −. × 79 28 10 −. × 81 77 10
±
sD . × 31 61 10 −. × 78 18 10 −. × 81 91 10
±B . × 31 46 10 −. × 72 76 10 −. × 82 11 10
0B . × 31 51 10 −. × 72 86 10 −. × 82 03 10
0
sB . × 31 55 10 −. × 72 89 10 −. × 81 98 10

n −. × 52 64 10 −. × 142 81 10 .1 16

Λ . × 15 28 10 −. × 74 74 10 −. × 75 81 10
±Λc . × 32 74 10 −. × 61 87 10 −. × 81 12 10
sets the lower limit for the effective spatial size  a
WP characterizing an unstable particle in the SRGP
approximation.

Since WPs are not related in any way to natural
decay width  in the considered formalism, it is
applicable only to states with  (more precisely,

), that is, to packets with spatial sizes
. The lifetime of a particle needs to be

sufficiently large to reconcile this constraint with
conditions (153). Since  for all known long-
lived elementary particles and atomic nuclei,

 and, naturally, .
Therefore, the SRGP approximation is expected to be
applicable both to stable and unstable long-lived par-
ticles (neutrons, muons, -leptons, charged pions,
etc.) and nuclei, but inapplicable to broad hadronic
resonances, gauge bosons, and other particles that do
not satisfy the  condition. Note also that the
maximum value of  allowed in the SRGP
model is . Therefore, the
“weighting effeсt” is substantial for the nucleon and
baryon resonances, while its impact to physical
observables needs dedicated investigation.

of
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The values of , , and  for a number
of unstable elementary particles are presented for illus-
trative purposes in Table 1. The masses and lifetimes of
particles used in the calculation were taken from [106].
The particles to be listed in Table 1 were chosen for the
following reasons: the decays of , , , and  are
the dominant sources of atmospheric and accelerator
neutrinos and antineutrinos with energies  TeV;
the decays of short-lived , , , , and mesons
and ,  hyperons become the dominant sources of
(anti) neutrinos at  TeV (see, e.g., [107]);  lep-
tons, which emerge as rare events in interactions of
(anti) neutrino beams with matter, serve an important
purpose in oscillation experiments as “indicators” of
flavor transitions . A neutral pion and a neu-
tron are listed to illustrate two extreme cases (very
small and very large values of , respectively). In
addition, the decays of free neutrons are sources of
low-energy astrophysical electron antineutrinos [108].

Numerous -active radionuclides, which act as
decay sources of  and  in reactor experiments and
future experiments with  beams [109–111]; heavy
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ions, which emit  in the process of capture of orbital
electrons from low-lying electron shells and regarded
as candidate sources of monochromatic neutrino
beams [112]; as well as excited ions moving along circu-
lar orbits and coherently emitting  pairs of all flavors
[113, 114] are not listed in Table 1. The value of  for
all such ions and nuclei is of the order of either the
nucleus size or the -orbit diameter, and their half-life
period  is long. Therefore, ;
i.e., the SRGP approximation conditions are defi-
nitely fulfilled.

It follows from Table 1 that the typical  values
are “mesoscopic” (i.e., span the range from an ang-
strom to a micrometer) and are much smaller than the
widths of tracks of charged particles in detectors.
Ratios  are no greater than  for all the
mentioned particles (except for a neutral pion), thus
allowing for a fairly wide “spectrum” of  values satis-
fying the SRGP applicability conditions:

It should be noted that hadronic resonances and
other short-lived particles are also of interest in the
context of neutrino oscillations, since neutrinos and
antineutrinos may be produced in their decays and,
what is probably even more important, may produce
short-lived particles in interactions with matter. The
inapplicability of the SRGP approximation to short-
lived particles does not imply that the processes
involving them cannot be considered within the -
matrix formalism, since resonances may be regarded
as virtual particles (i.e., internal lines of Feynman dia-
grams). It is then not necessary to construct WPs for
resonances. The same approach is actually applicable
to processes involving neutral pions with a relatively
large  ratio, since the events of -meson pro-
duction are identified in neutrino experiments based
on gamma quanta produced in their decays12. That
said, the generalization of this formalism to particles
with arbitrary decay widths is of a methodological
interest, if for no other reason than because a more
general approach would allow one to define more
accurately the domain of applicability of the theory
outlined here and provide a way to simplify the calcu-
lations for specific processes with the use of known
phenomenological models for the resonance neutrino
production of mesons.

12It is worth noting here that the states of gamma quanta emerg-
ing in processes involving (anti) neutrinos (real or virtual) may
be considered in the plane-wave limit, although a rigorous sub-
stantiation of this statement is outside the bounds of the present
study. See [115, 116] for a thorough discussion of the theory of
photon WPs.
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6. SCATTERING OF WAVE PACKETS
Let us apply the above formalism in calculating the

probability of interaction of covariant WPs. Although
the results are similar in part to those discussed by
Peskin and Schroeder [117], some of them are novel
and intriguing. For example, the explicit form of sup-
pression of the interaction probability of WPs (in the
SRGP model) scattering with a nonzero impact
parameter was calculated. This result is conceptually
and practically important.

The cross section for certain processes (e.g.,
) calculated in the plane-wave approxi-

mation does indeed contradict experimental data.
This has been observed for the first time at the VEPP-
4 collider in Novosibirsk in the MD-1 detector data
[118]. The measured cross section turned out to be
~30% lower than the calculated one at low photon
energies. It was demonstrated in [119] that impact
parameters  up to 5 cm produce a considerable con-
tribution to the cross section of the  pro-
cess calculated in the plane-wave approximation,
while transverse size a of the colliding beams did not
exceed ≈10–3 cm. If the impact parameters are limited
as , the observed number of photons decreases.
The theory in which the finite size of colliding beams
are considered is developed in [120].

The results of our calculation are similar to the
ones obtained in pioneering study [120], although the
formalism developed here differs considerably from
the formalism used in [120]. Let us discuss these dif-
ferences. The definition (Eq. (4.1)) and the normal-
ization condition (Eq. (4.2)) of WPs used in [120]
demonstrate that they are noncovariant. Statistical
averaging over the states of particles (Eq. (4.7)) was
performed to pass to the density matrix in the momen-
tum representation, which is a Fourier transform of
Wigner function  (a fine introduction to the
theory of Wigner functions and Weyl transformations
may be found in [121]). Integrals  = 

and  =  of the Wigner function
yield the particle number densities in the momentum
and coordinate representations, respectively. The rela-
tive velocity of two particles was introduced ad hoc
into the resulting formula for the number of interac-
tions (e.g., Eq. (4.23)). The following approximation
was also used: final-state particles were regarded as
plane waves.

We deal with covariant WPs in the initial and final
states and do not use the Wigner function formalism,
performing calculations for a collision of WPs defined
by arbitrary mean 4-coordinates ,  and 4-momenta

, . The application of this simpler approach is
made possible by the assumption of a weak depen-
dence of the matrix element upon a momentum
change within the interval of the order of the WP

+ − + −→ γe e e e

ρ
+ − + −→ γe e e e

ρ ≤ a

, ,( )n tr p

, , ( )d n tr r p ,( )n tp
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momentum dispersion. This assumption, however, is
not universally valid. For example, both the modulus
and the phase of the matrix element are of interest in
certain problems (e.g.,  scattering). The matrix ele-
ment variation on a scale of the momentum variation
in a WP should not then be neglected. Factoring this
variation in as a correction at the  level, one may
calculate the correction to the plane-wave cross sec-
tion as a function of phase of the matrix element. This
is a novel and potentially interesting method for mea-
suring this phase by varying the impact parameter of
the particle collision [122]. The case of a strong
momentum dependence of the matrix element is
another important exception. A strong dependence is
expected if an intermediate state relating the sets of
initial and final particles with a 4-momentum on the
mass shell exists. By virtue of the singular propagator
of the intermediate state, the strong dependence of the
matrix element on the combination of momenta cor-
responding to the 4-momentum of the intermediate
state is then evident. This is the case corresponding to
a virtual neutrino in the quantum-field theory of neu-
trino oscillations discussed in the next section.

Thus, limiting ourselves to weak variations of the
matrix element on a scale of the momentum variation
in a WP, we calculate the probability of interaction of
two WPs. The formula reveals the suppression of the
interaction probability at a nonzero impact parameter
of colliding packets. We also demonstrate explicitly
how the dimensionless interaction probability is
expressed in terms of the product of the plane-wave
cross section (with a dimension of area) and the
microscopic luminosity (with a dimension of recipro-
cal area). Macroscopic averaging over the impact
parameter leads to the well-known expression for the
event number expressed in terms of the product of the
plane-wave cross section and the f lux.

6.1. Scattering Amplitude

Let us consider the interaction of two colliding par-
ticles  and . Final state  and the process dynamics
are arbitrary. For definiteness, each initial and final
state is assumed a fermion WP. The quantum particle
statistics is irrelevant in this case. We are interested in
process amplitude , where
the curly bracket denotes a set of WPs with mean
momenta  and mean coordinates  at time points 
for the initial (index ) and final (index f) states. This
process amplitude takes the form

(172)
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where

(173)

is the standard plane-wave -matrix element involv-
ing singular factor , which
considers the conservation law of energy and momen-
tum and the regular matrix element 

Factor N, which corresponds to the normalization
of the initial and final states, is given by

(174)

Let us rewrite the -function in the form of an inte-
gral over four-dimensional space:

This provides an opportunity to rewrite (172) as

which yields

(175)

The approximate equality is valid for WPs that are suf-
ficiently narrow in the momentum space and under the
assumption that the variation of matrix element

 is negligible on a scale of variation of
form factor . The momenta integrals in this
approximation turn into functions  defined in accor-
dance with (108). Overlap integral

was introduced in (175). A more general integral

which depends on external momentum , emerges in
the theory of neutrino oscillations with WPs; there-
fore, we use the same notation at . Such an inte-

� { }

( ) { }

, , ,
= , , , − , , ,

= π δ − , , , 
1 1 1 1

4 4

( )
1

(2 ) ( )
f f f f

i f i f

n n n n

i f i f i f
i f

i r s
s … s r … r

q k i r s

q k
k k q q

q k

S

}

}

S
π δ − 4 4(2 ) ( )i fi f

q k

{ }, , ,( ).i f i fi r sq k}

{ } { } { } { }
, ,

= , , , ,
=

.

∏ ∏
∏ ∏�

w w

2

2 V 2 V

2 V( ) 2 V( )
i f

f f f f i i i i

i i f f
i i

i f
i i

x x x x

m m

E Ep p

p p p p

p p

1

δ

 − −
 
 π δ − =
 

  
4 4 4(2 ) ( ) .

i f
i f

i q k

i f
i f

q k d xe

{ }

{ }

+ −

,
− −

,

 φ ,=  π

φ ,
× , , ,

π 

 
ψ , − ψ , − 

 
× , , , ,

∏ 

∏�

( )
4

3

( )

3

4

( )1
(2 ) 2

*( )
( )

(2 ) 2

1 ( ) *( )

(

i i

i

f f

f

iq x x
i i

i f

ik x x
f f f

i f i f

i i f f
i f

i f i f

d ed x
N E

d e
i r s

E

d x x x x x

i r s

q

k

q q p

k k p
q k

p p

p p

A

}

1

}

{ }, , , .� V
1 (0) ( )i f i fi r sp pA }
1

{ }, , ,( )i f i fr sq k}

φ ,( )i iq p
ψ

,
= ψ , − ψ , −∏

4(0) ( ) *( )i i f fi f
d x x x x xp pV

,
= ψ , − ψ , −∏

4( ) ( ) *( ),iqx
i i f fi f

q d x e x x x xp pV

q

= 0q
1  2020



36 D. V. NAUMOV, V. A. NAUMOV
gral is calculated for the SRGP model in this section.
In the next section, the following important relation
valid for the SRGP model is proven:

(176)

where   and  is the
Gaussian function with the plane-wave limit corre-
sponding to the four-dimensional Dirac  function.
The explicit form of this function is given in the next
section. Here, we use its plane-wave limit. Four-
dimensional overlap volume  may be written as

6.2. Number of Interactions 
for Noncollinear Collisions of Wave Packets

Using (176), we write the amplitude modulus
squared in (175):

(177)

The microscopic probability of interaction
 which is given by  in (177), is propor-

tional to the integral over four-dimensional space-time of
the product of densities of probabilities of initial

 and final 
WPs to intersect at point . Let us multiply (177) by
the Lorentz-invariant number density of final states

 and integrate in spatial coordinates of

packets. This corresponds to the setup of many current
experiments, where the momenta of particles are mea-
sured more accurately than their coordinates. Using the
fact that, in accordance with (112),  =

 we find the number of interactions:

(178)
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The calculation of the last factor in (178), which is
a four-dimensional overlap integral of two scattered
WPs  and , gives

(179)

where  are the velocities of particles  and , =

,   is a
unit vector codirectional with the relative velocity
(explicit formulas for relative velocities are presented
in Section 6.3), and  = , where

  As a result, (178) may be rewrit-
ten in the following form:

(180)
Here,  is the differential effective scattering

cross section in the plane-wave approximation:

where identity  was used.
Factor  in (180) has the physical meaning of
luminosity of scattering of two WPs in the definition
used in the scattering theory and accelerator physics.

 is defined in accordance with (179) with

The number of interactions of two WPs  and  is
given by (180). In the case of noncollinear scattering,
the number of such collisions is suppressed by factor

 where  should be interpreted as the
impact parameter of scattered WPs.

The distribution of impact parameter  in
experiments with scattering of particle beams a and b
is set by the mode of production of beams. In the case
of a Gaussian distribution, the number of pairs of par-
ticles  and  with impact parameter  is

(181)

where  is the dispersion of impact parameter
 of particle beams  and  under the

assumption of a fixed direction of their relative veloc-
ity ; ,  are the numbers of particles  and .

Averaging over the impact parameter, we arrive at
the following expression for the number of interac-
tions of particles  and :

(182)
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where luminosity  is defined by the effective spatial
dispersions of WPs of particle beams  and ,

(183)

In realistic experimental configurations,
 Luminosity  given by (183) is defined

in this approximation by the spatial dispersion of par-

ticle beams  and , , in accordance with

the plane-wave approximation.

6.3. Relativistic Invariance 
of the Impact Parameter Squared

The four-dimensional overlap volume

is Lorentz-invariant due to the relativistic invariance
of function . The Lorentz-invariant number of
events in (180) requires Lorentz invariance of the
modulus of vector . Let us demonstrate by
explicit calculations that, although , , and  are
not invariant, modulus  is Lorentz-invariant.

Let us denote vector  in the rest frames
of particles  and  as  and . Their explicit form is

where  
The relative velocities in the same notation are

written as
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Useful formula

demonstrates that  although  It
also shows that the angle between the relative veloci-
ties in the rest frame of particles is nonzero. This is a
purely relativistic effect. Relative velocities  and 
are collinear in the nonrelativistic approximation.

It can be proved that  with 
is a relativistic invariant. It is instructive to note that

Let us first calculate  where
 and  in the laboratory frame with

. In the rest frame of particle , one considers
the 4-vector of impact parameter  with
components

where . We then calculate

Thus,

(184)

Since (184) is written in an invariant form, we may

calculate vector product  in the rest frame of
any particle (  or ). For example, the following is
obtained in the rest frame of particle :

where the right-hand part is the square of the vector
transverse to vector :
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Fig. 6. Macroscopic Feynman diagram of the general form
with the exchange of massive neutrinos.
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Thus, the relativistic invariance of expression
 was proven.

7. MACROSCOPIC DIAGRAMS

The modification of Feynman rules, which are
needed to calculate the scattering amplitudes corre-
sponding to macroscopic Feynman diagrams with
their external legs characterized by relativistic WPs
rather than by Fock single-particle states, is discussed
in this section.

7.1. Macroscopic Diagram of the General Form

We consider single-particle reducible connected
diagrams. Their overall structure is presented in Fig. 6.
The external legs of such diagrams correspond to
asymptotically free initial (“in”) and final (“out”)
WPs  and  in the coordinate repre-
sentation (i.e., wave functions  and

 characterized by the most probable
momenta , ; space-time coordinates , ;
masses , ; and parameters13 ,  (“disper-
sions”) characterizing the uncertainty in momenta).
The following designations are used in what follows: 
( ) is the set of in (out) packets in block 
(“source”), and  ( ) is the set of in (out) packets in
block  (“detector”). Blocks  and  denote the
regions of interaction of fields and may contain arbi-
trary internal lines and loops. The internal line con-
necting blocks  and  denotes the causal Green’s
function of massive neutrino  with mass 
( ). It is assumed that vertices  and  are

13And, in a more general case, by sets of parameters , .

× = ×( ) ( )a b
ab bab n b n

, ,a a as xp , ,b b bs xp
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characterized by the SM Lagrangian complemented
phenomenologically with the Dirac or Majorana mass
term and the corresponding kinetic contribution.
Therefore, the initial or the final states (or both of
them) should feature a charged lepton or an (anti)
neutrino14. Blocks  and  are assumed to be mac-
roscopically separated in space-time (hence the term
“macroscopic diagram.”)

7.2. Examples of Macrodiagrams
The simplest example of a macrodiagram of the

type presented in Fig. 6 is shown in Fig. 7. The sum of
such diagrams (over index ) gives the process amplitude:

(185)
where symbol  denotes that the diagram vertices
are macroscopically separated in space-time. Pro-
cesses (185) violate two lepton numbers, but their sum
is conserved. Such simple reactions often produce the
greatest contribution to the number of events in exper-
iments on neutrino oscillations with atmospheric and
accelerator (anti) neutrinos. In the standard quantum-
mechanical approach, process (185) is regarded as a
sequence of three independent subprocesses:

(i) pion decay  in the source (at point );
(ii) neutrino propagation with the “transforma-

tion” of  into ;

(iii) quasi-elastic interaction  in the
detector (at point ).

In the diagrammatic QFT approach, process (185)
is regarded as a unified whole, and the intriguing
quantum-mechanical phenomenon of f lavor transi-
tions (“oscillations”)  is reduced to trivial
interference of diagrams with virtual neutrino  fields
of a certain mass. It is not even necessary to use states
or neutrino fields with definite f lavors  and .

Let us examine several other examples of poten-
tially interesting macrodiagrams. Figure 8 shows four
diagrams of the lowest order in electroweak interac-
tion, which characterize the  decay in the source
accompanied by quasi-elastic scattering of a virtual
neutrino (antineutrino) off a neutron (proton) with
the production of a  lepton at the detector vertex.
Naturally, all these processes are strictly forbidden by
the lepton-number conservation law in the SM with
massless neutrinos, but they become possible if a
Dirac or Majorana mass term is present in the
Lagrangian. The diagrams in Figs. 8a and 8b are valid
both for Dirac and Majorana (anti) neutrinos, while
the diagrams in Figs. 8c and 8d are for Majorana neu-
trinos, which are the same as antineutrinos, only. In

14To avoid unnecessary complications, we discount the possibility
that the external one-packet states contain gauge or Higgs
bosons.
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Fig. 7. Example of a macroscopic Feynman diagram describing the  decay at space-time point  and the subsequent quasi-
elastic neutrino production of a  lepton at point . Points  and  may be separated by a macroscopically large space-time
interval.
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Fig. 8. Diagrams of the lowest order for electroweak interaction that describe the  decay in the source and the quasi-elastic
production of a  lepton in the detector.
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Fig. 9. Diagrams of the lowest order for electroweak interaction that describe the deuteron synthesis in the -reaction in the
source and the neutrinoproduction of an electron off (a) a gallium nucleus and (b, c) a free electron in the detector.
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Fig. 10. Diagrams of the lowest order for electroweak interaction that describe the deuteron synthesis in the -reaction in the
source and the neutrinoproduction of an electron off (a) a gallium nucleus and (b, c) a free electron in the detector.
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the latter case, the diagrams in Figs. 8a, 8d and 8b, 8c
interfere by pairs. Within our formalism, massive neu-
trinos at the external legs of these diagrams should be
characterized by WPs of the same type that is used for
all the other massive fields.

The diagrams in Fig. 9 describe the primary reac-
tion of the -cycle in the Sun

and the detection of neutrinos in a Ga–Ge detector
and a free-electron detector. The diagrams in Figs. 9b
and 9c interfere. The diagrams in Fig. 10 describe
(in the lowest order in electroweak interaction) the
deuterium nuclear synthesis in the so-called -
reaction

in the source (the Sun) and the subsequent interaction
of virtual neutrino  with a gallium target (Fig. 10а)
and an electron target (Figs. 10b and 10c). The excep-
tionally “slow” -reaction produces approximately

pp
+

ν+ → + + ν <1 1 2H H D ( 420 keV)ee E

pep

−
ν

∗+ + → + ν = .1 1 2H H D ( 1 44 MeV)ie E

∗νi

pep
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0.25% of deuterium in the Sun and manifests itself in
one of the branches of the proton–proton chain of
transformation of hydrogen into helium. Although its
contribution to the energy balance of the Sun is negli-
gible, it produces a tiny, but measurable contribution
to the number of events detected in gallium–germa-
nium experiments (SAGE, GALLEX, GNO). Unfor-
tunately, the detection thresholds for solar neutrinos
in modern Cherenkov underground detectors (Super-
Kamiokande and SNO) is considerably higher than
the expected mean energy of neutrinos (  MeV)
from the -reaction in the Sun. Therefore, the pro-
cesses corresponding to the diagrams in Figs. 10b and
10c are still beyond the reach of experimenters. As in
the previous example, the diagrams in Figs. 10b and
10c interfere.

The exotic processes demonstrated in Fig. 10 illus-
trate expediency of examining macrodiagrams with
more than two in-packets in each of the macroscopi-
cally separated blocks. Such diagrams are also of inter-
est for the study of reactions involving neutrinos in
dense hot plasma of the early Universe and in ultra-

≈ .1 44
pep
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dense astrophysical objects such  neutron or quark
stars. In the context of neutrino oscillations, the key
reason for examining diagrams with an arbitrary num-
ber of in- and out-packets at the external legs is some-
what more pragmatic: it will be shown below that the
additional symmetry of formulas for amplitudes of the
general form allows one to simplify their analysis by
unifying the notation.

7.3. Feynman Rules
The formal definition of the initial and final states

for the diagram in Fig. 6 may be written as

(186)

Here, just as in (185), symbol  denotes that the
WPs from  and  (and from  and ) are macro-
scopically separated. In addition, it is assumed that all
in-packets ( ) are in the distant past, while all out-
packets ( ) are in the distant future relative to the
moment (or the time interval) of interaction in blocks

 and . In order to use the standard diagrammatic
technique based on Wick’s theorems, we should con-
sider only the configurations of coordinates  and 
with noninteracting packets in each substate  ,
and . In other words, the spatial coordinates of the
packet centers should be so distant that states (186)
could be approximated well by direct products of
asymptotically free one-packet states  and

; i.e.,

(187)

The sequence order of creation operators in (187) is
not significant even if they correspond to identical
fields, because, as it was demonstrated in Section 4.5,
quantum correlations between identical WPs with a
sufficient separation in space-time may be neglected,
and the sign of the scattering amplitude is not import-
ant. The above requirements (including the macro-
scopic separation of interaction regions  and ) are
phenomenologically justified and intuitively clear but
are rather vague in the mathematical sense. Mathe-
matically strict conditions will be formulated in Sec-
tion 7.9 after the derivation of all the needed interme-
diate formulas.

The norm of in- and out-states may be written as

(188)

as

{ }
{ }

= , , , ∈ ⊕ ,
= , , , ∈ ⊕ .

in
out

a a a s d

b b b s d

x s a I I
x s b F F

p
p

⊕
sI dI sF dF

a
b

sX dX

ax bx
,sI ,dI sF

dF

, ,a a as xp
, ,b b bs xp

∈ ⊕

 
 
 
 ∈ ⊕ 

 φ ,= , π 

φ ,= .
π

∏ 

∏ 

( )†
3

( )†
3

( )in 2 0
(2 ) 2

( )out 2 0
(2 ) 2

a a

a a a

s d a

b b

b b b

s d b

ik x
aa a a a

s
a I I

ik x
bb b b b

s
b F F

d e E a
E

d e E a
E

k k
k

k k
k

k k p

k k p

sX dX

∈ ⊕

∈ ⊕

= ,

= ,

∏
∏

in in 2 V

out out 2 V
s d

s d

a a
a I I

b b
b F F

E

E

PHYSICS OF PARTICLES AND NUCLEI  Vol. 51  No. 
where  and  are the mean
energy and the effective volume of packet ; here and else-
where, index  is used to denote both initial ( ) and final
( ) packets. The external in- and out-legs of diagrams
associated with free fields  ( ) and

 ( ) produce factors

in the scattering amplitude. Therefore, in accordance
with the adopted approximation of narrow packets in
the momentum space, the standard (plane-wave)
Feynman factor corresponding to an external leg
should be multiplied by

(189)

where each wave function is given by (108) and is
defined by form factor , which depends on
mass  and dispersion , and 4-vector  (integra-
tion variable) is the coordinate of the internal point
(elementary interaction vertex) of intersection of
external leg  with a certain internal line. Therefore,
the amplitude corresponding to any macrodiagram
should contain factors

(190)

where  is the structural factor correspond-
ing to the interaction of an internal line with external
(in) field  at point  (for brevity, possible ten-
sor or spinor indices and all arguments of function 
except  are omitted). With the definition of
function  taken into account, integral (190) may be
rewritten as

where  is the Fourier transform of function
. Owing to the expected -like behavior of form

factor , argument  of function  may be
replaced by . Integral (190) then assumes
the form

(191)

This result holds true for narrow WPs of the general
form, but the SRGP approximation will be used in
actual calculations. A relation similar to (191) may also
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be obtained for out-legs of the diagram. Since the
right-hand side of (191) in the plane-wave limit is the
standard Feynman factor, it follows from (189) that
the Feynman rules for internal lines remain
unchanged.

7.4. Overlap Integrals
In what follows, we restrict ourselves to the simple

case with interactions in blocks  and  being char-
acterizable by local lepton or hadronic currents
(explicit formulas will be derived in the next section for
a special class of diagrams). Since the Fourier repre-
sentation of the neutrino propagator contains phase
factor  (where  is the 4-momentum of

virtual neutrino ), all functions  and  can be
factorized off the “dynamic” diagram part in the form
of the following two common factors in the integrand
for the scattering amplitude:

(192)

Lorentz-invariant functions (192) characterize the
space-time overlap of in- and out-packets in the
source and the detector averaged over the entire space-
time15 and are hereinafter called the overlap integrals.
Naturally,  and  are functions of both
4-momentum  and 4-momenta and 4-coordinates of
all external packets involved in the reaction; these
parameters are omitted for brevity. Let us examine the
key properties of overlap integrals needed for subse-
quent analysis.

7.5. Plane-Wave Limit
It is easy to see that overlap integrals (192) in the

plane-wave limit ( , ) evolve into common
singular factors

(193)

where  and  are the transferred 4-momenta in the
source and the detector. They are defined in the fol-
lowing way:

(194)

15Phase factors  and  in (192) may be interpreted as WPs
of outgoing and incoming neutrinos.
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The  functions in (193) ensure exact energy-
momentum conservation at vertices  and  (i.e., in
subprocesses  and ) and, as a
result, energy-momentum conservation in the

 process as a whole:

Note that the information on space-time coordi-
nates of external packets is lost completely in the
plane-wave limit.

7.6. Overlap Tensors

The overlap integrals are nonsingular at ,
and they generalize the Dirac delta functions account-
ing for the energy-momentum conservation. In order
to obtain a quantitative description, we pass to the
SRGP model and introduce tensors

(195)

where  is the 4-velocity of packet
. Overlap integrals (192) then take the form

(196)

where

Let us also define tensors

(197)

Since the Lorentz-invariant quadratic form

(where  denotes variable  in the intrinsic frame of
packet ) is nonnegative, quadratic forms 

and  are also nonnegative. In addition, they
are positively defined almost everywhere, because they
can vanish only if 3-velocities  of all in- and out-
packets are the same (in other words, if there exists a
reference frame in which 3-momenta  of all packets
in the source or the detector turn to zero). The later
condition implies that the 3-momentum of a virtual
neutrino is effectively small in magnitude16; specifi-
cally, the amplitude contribution for the process with
zero momenta of all external particles in the exact
energy-momentum conservation limit may be non-

16Generally speaking, four-momentum  in (196) is arbitrary and
simultaneous vanishing of momenta  implies only that the
most probable value of  is small. The order of smallness of  is
governed by the smallness of ratios . We will discuss this
in more detail later.
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zero only if . With the exception of this physi-
cally irrelevant case, tensors  and  are positively
defined, which is equivalent to the positivity of eigen-
values of matrices  and  Therefore, there
exist positively defined tensors  and  such that

(198a)

or, in the matrix form,

(198b)

where . Naturally,

 and . We call  and  the
overlap and inverse overlap tensors, respectively. The
explicit form of these tensors (both in the general case
and for specific processes in the source and the detec-
tor) is rather cumbersome, and the corresponding cal-
culations are tedious. Therefore, these are given in
Appendix A. The properties of certain other quantities
constructed from the overlap tensors and 4-momenta
involved in the calculation of macroscopic diagrams
are also examined there.

One may calculate integral (196) in the explicit
form using the well-known formula for the 4-dimen-
sional Gaussian quadrature in the Minkowski space
(see (B.6), Appendix B):

(199)

Here,

(200)

(201)

(202)

Tensors  take the form

(203)

where indices  are not written explicitly but are
implied. Let us clarify the physical meaning of quanti-
ties (200)–(202).

7.7. Factors Governing 
the Energy-Momentum Balance

As one can see from the integral representation of
functions (200)
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factors  and  in (199) turn into
common  functions  and  in the
plane-wave limit. The probability of the

 process at small (but nonzero)
values will be suppressed strongly at small deviations

from the exact 4-momentum conservation (i.e., at a
small imbalance between the transfers of 4-momenta

 and  at the macrodiagram vertices and the
4-momentum of a virtual neutrino). The process
probabilities averaged in a certain way over the exter-
nal momenta configurations (including, in general,
the momenta of detected secondary particles averaged
over finite intervals set by the experimental condi-
tions) are measured in real experiments. Therefore,
factors  and  account for the sta-
tistically approximate energy and momentum conser-
vation in subprocesses of neutrino production and
absorption. The allowed “imbalance” is defined by
the inverse overlap tensors (i.e., the spread of
4-momenta of in- and out-packets). In what follows,
only the configurations of external momenta produc-
ing a significant contribution to the total process
probability averaged over all possible configurations
are assumed when we talk about the approximate
energy-momentum conservation at the vertices. A
specific implementation of such averaging was exam-
ined in [58].

7.8. Impact Points, Geometric Suppression Factors, 
Symmetries, and All That

Let us transform quadratic forms  and  using
definitions (197), (202), and (203):

Inserting a unit matrix into the last terms and tak-
ing (201) and (202) into account, we find

whence it follows that

(204)

The obtained expression is the weighted mean
(over all external packets at the corresponding vertex)
of quadratic deviations of the components of 4-vectors

 ( ) from the corresponding components of
the space-time point . Tensor components  act
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as “weights.” Thus, points Xs and Xd are the centers of
space-time regions of packet interactions in the source
and the detector. One needs to study the properties of
symmetry of  and  to clarify the physical and
geometrical meaning of this result.

7.8.1. Translation group. It is easy to prove that
quadratic forms  and  are invariant with respect
to translations of all coordinates  by one and the
same arbitrary 4-vector ,

(205)

Indeed,  under this trans-
formation; therefore

Since, according to (201),

it follows that, as stated,

It should be noted that quadratic forms  and 
are also invariant with respect to inversion of space-
time coordinates, 

Performing transformation (205) with 
in (204), we obtain the following representation for
functions :

(206a)

It follows immediately from (206a) that quadratic
forms  and  are nonnegative and, consequently,
factors  and  in (199) suppress the
amplitude for certain configurations of momenta and
coordinates of in- and out-packets. Using definition
(195), we rewrite (206a) as

(206b)

(206c)

Here and elsewhere, index “ ” means that the
corresponding vector is written in the intrinsic refer-
ence frame of packet . It follows from (206c) the sup-
pression is weak (i.e., ) for configurations of

coordinates and momenta such that  are
small at any 
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7.8.2. Group of uniform rectilinear motions. It is
evident that  when all 4-coordinates  are
the same (it follows from equality , 
that ). Still, is this condition necessary for 
to turn to zero? Fortunately, the answer is negative17. To
see this, note that 4-vector  and its
square  are invariant with respect to
transformation

(207)

where  is an arbitrary real parameter with a dimen-
sion of time. Therefore, 4-vectors  and, as is easily
seen from (204), quadratic forms  are invariant with
respect to -parametric set of transformations (207),
where  ( ) is the number of one-packet states
contained in the initial and final states in the source
(detector). All transformations of the form (207) com-
bine into a group describing uniform rectilinear
motions of packets (i.e., shifts along the classical world
lines of the packet centers). Therefore, both  and

 are defined uniquely by specifying velocities 
and arbitrary space-time points  on these world
lines. Specifically, if the classical trajectories of all in-
and out-packets intersect at the impact point,

 at any point of each trajectory. Thus, packets
may be separated macroscopically in space-time
before and after the interaction and be considered
asymptotically free, but if velocity vectors  of in-
packets and vectors  contradirectional to the veloc-
ities of asymptotically free out-packets are all
“pointed” at point  (in the source) or  (in the
detector),  or  turn to zero. In view of this, it
seems natural to call 4-vectors  and  impact
points of in- and out-packets in the source and the
detector, respectively.

If one needs to clarify the pattern of interaction of
packets, it is instructive to introduce the notion of a
WP world tube, which is defined as the cylindrical
space-time volume swept by an oblate ellipsoid (the
model of a WP18) moving along a classical trajectory.
Evidently, the suppression of the overlap integral (and
amplitude) produced by factor  ( )
is weak if all world tubes of in- and out-packets in the
source (detector) intersect with each other (see

17“Fortunately”, since otherwise there would be no asymptoti-
cally free WPs, and it would be impossible to use the perturba-
tion theory.

18It bears remembering that the diameter of this ellipsoid perpen-
dicular to the vector of the most probable WP momentum 
(and, consequently, the diameter of the classical world line) is

, while the diameter parallel to  is suppressed by fac-
tor  emerging as a result of Lorentz contraction.
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Fig. 11. Schematic representation of classical world tubes of colliding WPs. These tubes are space-time cylindrical volumes swept
by classically moving spheroids modeling the WPs. Impact point  is defined unambiguously by packet velocities  and space-
time points , which were chosen arbitrarily at the symmetry axes of tubes (the centers of packets move, on the aver-
age, along them). These axes are by no means required to go through point , but if the configuration of coordinates and veloc-
ities of in- and out-packets is such that the impact point is located within the region of overlap of all world tubes of packets, the
suppression of this configuration is weak (and does not take place if the axes intersect exactly at point ). In the opposite case,
the suppression is strong.
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Fig. 12. Schematic illustration of two configurations of a pair of
overlapping WPs in their center-of-inertia frame. The left config-
uration corresponds to factor  =

 in the integrand in the

numerator of (208); the right one, to factor

 =  in the inte-

grand in the denominator. Arrows denote momenta 
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Fig. 11). WPs behave somewhat like interpenetrating
clouds. In order to illustrate this, we present functions

 and  as ratios of overlap integrals of the special
form:
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In view of the invariance of functions
 with respect to transformations (207),

one may replace coordinates  in (208a) by , where

and rewrite (208a) as
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It then follows from geometric considerations that
 if any pair of coordinates  and  do

not coincide at one and the same (“impact”) point in
time, since the integrand in the numerator of (208b) is
no greater than the integrand in the denominator. This
is illustrated schematically in Fig. 12, where a pair of
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overlapping packets 1 and 2 is shown. These packets
are presented in Fig. 12 in their center-of-inertia frame
( ), where they take the form of ellipsoids∗∗ + =1 2 0p p
1  2020
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with effective volumes  f lattened

along vector . It can be seen that the following
equality holds true for any  (and, consequently, for
any values of the integration variable in (208b)):

Naturally, the value of (208b) is small if 4-coordi-
nates  and  of any pair of packets  and  differ
substantially from each other.

Identity (208b) may be rewritten in the following
equivalent form:

(209)

Factor  is included in the scat-
tering amplitude squared.

7.8.3. Impact vectors. Let us find the spatial dis-
tance between the impact point and classical WP
world line . In other words, we aim
to determine the classical impact parameter
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defined by the following condition:

Relying on this condition and assuming temporar-
ily that  we construct 4-vector  with compo-
nents

(210)

The last equality implies that

(211)

whence it follows that

Thus,  if velocity vector  is collinear to
vector  at any value of  (i.e., if
the classical world line of the center of packet  goes
through the impact point). In addition,  if

 = . Since 4-vector 
(determined to within its sign) is a straightforward rel-
ativistic generalization of a common nonrelativistic

( ) / ,π Γ σ3 2 3
1 22 ( )*

∗
1p

*x

∗∗ ∗ ∗ψ , − ψ , −

∗ ∗∗ ∗< ψ , ψ , ≠ .

1 1 1 2 2 2

1 1 2 2 1 2

( *) ( *)

( *) ( *) at

y x y x

x x y y

p p

p p

*y
û '

*y
û

û 'û

( ) ∈ ,
,

∈ ,

ψ , −
− = .

ψ ,

∏

∏

2

2

( )
exp 2

( )
S D

s d

S D

dx y x

dx x

p

p

û û û

û

û û

û

S

( )[ ]− +exp 2 s dS S

θ = + θ� ( )x x v
û û û û û

,−∞<θ <∞
= θ − .�min ( ) s db x X

û

û û û

,= − s db x X
û û

û

( ),θ = − , = .s dv n X x n v v
û û û û û û û

≠ 0,v
û

b
û

( ) ( )
( ) ( )[ ]

−
, ,

, ,

= − − − ,
= − − − .

10 0 0
s d s d

s d s d

b x X v n x X
b x X n x X n
û û û û û

û û û û û

( ),= × = × − ,0 and s dn b n b n x X
û û û û û û

( ),= × − .s db n x X
û û û

= 0b
û

v
û

,− s dx X
û ,− < ∞s dx X

û

û

= =0 0b b
û û

,− s dx X
û

( ),−0 0
s dx Xv

û û
= ,0( )b b b

û û û
PHYSICS O
impact parameter, it  natural to call it the impact
vector. Taking (211) into account, we find

(212)

Inserting  instead of  into (206b) (the
value of  remains unchanged) and using (212),
we find

(213)

The contribution of each packet is written here in
its intrinsic frame, where ; there-
fore, as expected, (213) coincides with (206c). Both
equalities in (213) remain true if certain packets are at
rest in the laboratory frame, since it follows from (210)
that

(214)

Therefore, provisional constraint , which
was used in the derivation of (213), may be removed.

The physical meaning of this result is clear: the
interaction of in- and out-packets is not suppressed
(i.e., the value of  is small) if all impact parame-
ters are small compared to the effective sizes of packets
( ) in their intrinsic reference frames. If all

impact parameters  are of the same order of mag-
nitude, the greatest contributions to  are pro-
duced by packets with the largest momentum spread
and, consequently, the smallest effective size19. If we
factor out the effects of the phase space of reaction or
decay and the possible influence of the interaction
dynamics on the momentum spread of secondary
packets, the geometric amplitude suppression
becomes stronger as the number of particles (in actual
practice, secondary particles) involved in the process
increases. The factor of suppression of “incorrect”
configurations of world lines of packets is defined in
the laboratory frame by both space and time compo-
nents of impact 4-vectors . The contributions of
nonrelativisitc and ultrarelativistic packets to  take
the form

(215a)

19The physical inadequacy of the notions of point-like particles
(maximally localized states) and plane waves (states with defi-
nite momenta) in the QFT perturbation theory then becomes
clear: the former are unable to interact (the amplitude turns to
zero if a point-like particle is present in any substate  or

), and the latter interact at arbitrarily large distances.
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and

(215b)

respectively. It follows from (215a) that the suppres-
sion for nonrelativistic WPs depends only weakly on
the velocity vector and time interval  and is
determined by the spatial distance between the packet
center and the impact point. In contrast, the suppres-
sion for ultrarelativistic packets depends strongly on
the velocity direction and magnitude and on the dif-
ference between times  and . The emergence of

large factor  in the leading term in (215b) is related
to the Lorentz contraction of the effective volume of a
packet, which results in significant contraction of the
region of its overlap with other packets. The reason for
the strong dependence on the direction of the velocity
vector is the same: one needs to “aim well” to hit a
small target.

It follows from the above analysis that impact
points  and  characterize the space-time posi-
tioning of the effective regions of packet interaction in
the source and the detector. The interaction of packets
grows stronger as the world lines of their geometric
centers move closer to these points. The configuration
of world lines and the coordinates of impact points are
in no way related to the dynamics (i.e., to the interac-
tion Lagrangian), since they are defined uniquely by
the coordinates and group velocities of asymptotically
free in- and out-packets and their effective sizes.
However, if the interaction dynamics is neglected, it
will not be possible to calculate the amplitude of pro-
cess  characterized by the macro-
scopic diagram in Fig. 6.

7.9. Asymptotic Conditions

We can finally return to the physical requirements
formulated at the beginning of Section 7.3 and specify
the conditions under which in- and out-packets may
be considered free. If the geometric suppression fac-
tors are not too small (only these configurations of
coordinates and momenta contribute to the measured
quantities), the requirement that the effective regions
of WP interaction in the source and the detector be
macroscopically separated in space-time is equivalent
to the required macroscopic separation of impact
points  and . Let us assume that space and time
intervals  and  are large compared to
space and time intervals  and  for

 and ; i.e., packets from  and  do
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not overlap. The sought-for conditions for packets
from  and  should then be independent. We assume
that the effective sizes of packets are large compared to
the characteristic radius of interaction at the diagram
vertices. Therefore, only the properties of geometric
suppression factors  and  inde-
pendent of the interaction dynamics are examined
below.

First of all, the requirement that time intervals
 ( ) and  ( ) be suffi-

ciently long should be set. However, they cannot be arbi-
trarily large, since packets  remain stable (i.e., do not
spread) within  only under the condition that

(216)
Since the geometric suppression factors do not

depend on  and , one may formulate the
requirement that the left-hand side of (216) be large
compared to the effective packet size squared:

(217)
This requirement does not contradict stability con-

dition (216), since . If, in addition,  is an
unstable particle, it is expected that

(218)
where  is the lifetime of . Conditions (217) and
(218) do not contradict each other if , which
is one of the SRGP applicability conditions. The
“complete set” of these conditions was obtained in
Section 5.8 and has the form

(219)
Since  for all known long-lived elemen-

tary particles and atomic nuclei, the allowed values of
 may vary within a fairly wide interval (see Table 1).

Thus, the asymptotic conditions for time parame-
ters , which agree completely with SRGP applica-
bility conditions (219), are given by (217), and the cor-
rect time sequence in the laboratory frame is defined
by the following inequalities:

(220)
These inequalities are Lorentz-invariant if points
 and  are separated by time-like intervals. If

intervals  are space-like for certain ,
inequalities (220) are valid only in the laboratory
frame, because a time sequence of two events sepa-
rated by a space-like interval is not a Lorentz-invariant
notion.

This should be taken into account, since a packet
(for definiteness, packet  in the source) may be
involved in the interaction (i.e., may not produce a
significant suppressing contribution to ) even if
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Fig. 13. Schematic illustration of an event in which the ini-
tial 4-coordinate of the center of in-packet  is separated
by a space-like interval from impact point , but a part of
the effective packet volume is located within the light cone
centered at . The other in- and out-packets, the coordi-
nates and velocities of which define (together with  and

) the position of the impact point, are not shown.

a

      Light cone  

X

a
X

X
ax

av
 under the condition that points within
a part of its effective volume are separated by time-like
intervals from the corresponding impact point: the
impact point may then be located within the classical
world tube of packet  (see Fig. 13)20. The microcau-
sality condition is not violated here, since all signals
propagate within the light cone. However, such inter-
actions may potentially produce observable effects
imitating causality violations.

The requirement of spatial separation of packets
from impact points is, in general, not a necessary one.
Certain packets (e.g., a decaying meson or a charged
lepton produced in its decay in the source, a target
nucleus in the detector, etc.) may indeed be at rest in
the laboratory frame before or after the interaction. In
this case, they should be spatially close to the corre-
sponding impact points, otherwise, the scattering
amplitude is, according to (214), small due to the
smallness of factors  or . It is
clear, however, that all packets in in- and out-states
should be spatially separated; i.e., the differences in
spatial coordinates of each pair of packets  should
be large compared to the size of these packets. Repre-
sentation (208b) and Fig. 12, which illustrates it, sug-
gest that this requirement is formulated in the simplest

20It follows from geometric considerations that 

(  is the effective transverse size of a packet) for such events.

Therefore,  and .
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way in the center-of-inertia frame of the pair. Since
the momenta of packets in the center-of-inertia frame

are collinear  and the only case of
interest is when classical impact parameter

 does not exceed significantly the
transverse size of each packet, the distance between
packets should be large compared to their longitudinal
size. Omitting a constant common factor of the order
of unity, we write this condition as

(221)

where . If packets  and  are the
states of identical particles with equal momenta
( ) and spin projections, condition (217) is
the same as the condition of vanishing of quantum
correlations at large distances between the packets of
identical bosons or fermions. The impact parameters
of such packets may be arbitrarily small if one of them
is in the in-state, while the other is in the out-state
(i.e., the packet pair essentially describes the state of
one spectator particle). If both identical packets
belong to the in- or out-state of one of the diagram
vertices, the corresponding amplitude is suppressed,
because the distance between them does not change
with time21. It follows from (221) that ultrarelativistic
(in the center-of-inertia frame) packets forming a pair
do not interact with each other even at relatively short
distances.

In the general case, conditions (217) and (221) are
not necessarily independent (a simple example consid-
ered below illustrates this); the only important factor is
that they are not mutually exclusive. Inequalities (221)
should be matched with the nonspreading conditions,
that is, with (216) and similar inequalities for spatial
coordinates

(222)

If (as assumed)  for

each pair  from  or , impact point  in the
center-of-inertia frame of any such pair is located
between packets  and  close to their world tubes22.
Therefore, with (217) factored in, we find

21This suppression is in no way related to the Pauli Exclusion
Principle: if any two packets (not necessarily those characteriz-
ing the states of identical fermions) have equal velocities and
are sufficiently separated at a certain point in time, their classi-
cal world tubes do not intersect. It should also be added that
parameters  and  for packets of identical particles should
not be regarded as fundamental characteristics of the corre-
sponding quantum field and are not necessarily equal.

22More specifically, the distance from  to the classical trajec-
tories of centers of packets  and  in the center-of-inertia
frame is much shorter than the distance between these centers.
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where  and  are the veloci-
ties of packets  and  in the center-of-inertia frame.
Since it follows from Lorentz transformations that

 =  (the relation for 
is similar), the following approximate inequality holds
true:

where the mutual orientations of spatial vectors and
velocities in different reference frames were consid-
ered. Thus, taking conditions (216) and (222) into
account, one may state that

(223)

at any .
Comparing (223) with (221), we find that SRGP

applicability conditions (216) and (222) do not contra-
dict the requirement of spatial separation of packets;
i.e., no additional constraints are imposed on param-
eters .

Let us illustrate condition (221) by a simple, but
important (for experiments on neutrino oscillations)
example in which states  and  contain just a single
packet. For definiteness, we consider two-particle
decay  in the source (see Fig. 7). The two-
packet integral corresponding to this process in the
center-of-inertia frame of a pion and a muon

( ) is23

Changing the integration variable
( ), we obtain the following
integral:

Its calculation  the SRGP model comes down to
the consecutive computation of four standard Gauss-
ian quadratures, which yields

(224)

where  and  are the
energies of a pion and a muon,  is a unit
vector, and

is the classical impact parameter in the center-of-iner-
tia frame of a pion and a muon. Inserting (224) into
(208b), we find24

(225)

If vectors  and  are collinear, it follows from
(225) that  at any distance between the centers of
wave packets of a pion and a muon. If this distance is suf-

ficiently large (e.g., , so that
condition (221) is fulfilled), function  is small in
magnitude only at small angles  between vectors 
and , viz., , where

as  increases, function  grows rapidly, while fac-
tor  decreases, ruling out the possibility of

 decay for . The dependence of 
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Fig. 14. Geometric suppression factor  for the two-particle decay as a function of  and .
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on  and  is shown in Fig. 14 for intervals
 and  In experiments, a muon

produced in the  decay is always seen emitted from
the same point (more specifically, from the spatial
region limited by the instrumental resolution) in
which a pion vanished. In the center-of-inertia frame
of a pion and a muon, this implies that impact param-

eter  is zero or very small, thus providing
an explanation for the obvious experimental fact that
remains unexplained in the theory with plane waves25.

It is evident that conditions similar to (217) and
(221) are impossible to formulate for single-particle
Fock states of the standard QFT perturbation theory,
which utilizes a rather meaningless condition of
asymptotic freedom at infinity. This condition is inap-
plicable to unstable particles, which serve as the pri-
mary source of (anti) neutrinos in many experiments
on neutrino oscillations.

The size of the interaction region ( ) at vertices
was neglected in the above analysis. This is justifiable
if the effective size of wave packets is much larger than

. This requirement is satisfied when weak and strong
interactions are considered. If electromagnetic inter-
actions are considered, this analysis (just as the stan-
dard QFT approach) is, apparently, nonexhaustive,
and the formulated conditions may not be sufficient.

25We leave open the question of the possibility of experimental

measurement of impact parameter , which could help ver-
ify the above theoretical constructs.
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7.10. Phase Factors
Overlap integrals (199) are not translationally invari-

ant due to the presence of phase factors
 Note, however, that the -depen-

dent factor in product  is proportional to
translationally invariant phase factor

(226)
As a result (see the next section), the square of the

amplitude modulus is translationally invariant. It was
demonstrated in [58] that factor (226) governs the
oscillation behavior of the amplitude squared (as a
function of ) under the condition that impact
points  and  are macroscopically separated.

7.11. Overlap Volumes

A representation of quantities  and 
differing from the one obtained by applying formula
(199) directly is better suited for the analysis of such
measurable characteristics as the count rate of neu-
trino events. It is more convenient to go back to defi-
nition (196) and write  as

Performing a change of integration variables
 and  (with a unit Jaco-

bian), one may rewrite the last integral as

(227)
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Fig. 15. Macroscopic diagram describing process (231).
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Introducing notations

(228)

(229)

we present (227) in the following compact form:

(230)

Functions  and  obviously do not match
functions  and  used earlier, but have the
same plane-wave limit (i.e.,  in
this limit) and similar properties. The physical meaning
and the symmetry properties of functions (229) follow
clearly from the above analysis, and their integral rep-
resentation suggests that quantities  and  may be
interpreted as 4-dimensional overlap volumes of in-
and out-packets in the source and the detector. It fol-
lows from the explicit form of these functions that they
assume their maximum values, 
when the classical world lines of packets intersect at
impact points.

8. AMPLITUDE OF THE PROCESS 
WITH THE PRODUCTION 
OF CHARGED LEPTONS 

IN THE SOURCE AND THE DETECTOR 
AND A VIRTUAL NEUTRINO

Let us examine the class of processes26

(231)
which are sustained by the weak charged current, as a
practically important application of the formalism.
Here,    and  denote the sets of asymptoti-
cally free WPs characterizing hadronic states, and 
and  are packets of charged leptons ( ). If

, lepton numbers  and  are violated in pro-
cess (231). This is made possible by the exchange of
massive (Dirac or Majorana) neutrinos. In the leading
nonvanishing order in electroweak interaction, pro-
cess (231) is characterized by the sum of diagrams
shown in Fig. 15. Let  and  be impact points

26Note that the examples presented in Figs. 8 and 10 (Section 7.2)
do not belong to this class, although the technique of calcula-
tion of the corresponding amplitudes does not differ much from
the one developed below.
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defined by formula (201) (where  and
). It is assumed that they (and, conse-

quently, the effective interaction regions in the source
and the detector, which are denoted by dashed curves
in Fig. 15) are macroscopically separated in space-
time and that all asymptotic conditions discussed in
Section 7.9 are fulfilled. The initial and final states
may then be regarded as direct products of free one-
packet states, and normalization (188) may be used.

In the standard model minimally extended by the
inclusion of a neutrino mass matrix, quark-lepton
blocks of the diagram in the lowest nonvanishing order
are described by Lagrangian

where  is the  coupling constant;  and  are
the lepton and quark charged currents,

 ( , ) and  ( ,
) are the elements of the neutrino and quark

mixing matrices (  and , respec-

tively); ;  are the charged lepton
fields; and standard notations are used for the other
fields and Dirac -matrices. Hadronic blocks (colored
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regions in the diagram in Fig. 15), which are impossi-
ble to calculate within the perturbation theory, are
characterized by phenomenological hadronic cur-
rents. The normalized dimensionless amplitude of
process (231)

is given by the fourth order of the perturbation theory
in constant :

Here,

 is the Lagrangian of strong and electromagnetic
SM interactions governing the nonperturbative pro-
cesses of fragmentation and hadronization, and  and

 are the standard symbols of chronological and
normal ordering of local operators. Normalization
factor  in the SRGP approximation is given by

(232)

Let us consider hadronic matrix element

(233)

Here, the WP definition

(234)

was used, and a contracted notation for many-particle
Fock states was introduced:

We may write the following for stable relatively
strong and electromagnetic interactions of the initial
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and final hadrons separated macroscopically in space
by the source–detector distance:

(235)

where

and  and  are the corresponding -number
hadronic currents in the source and the detector. The
proof of “factorization formula” (235) is given in
Appendix C. The explicit form of hadronic currents is
not needed in this study.

Let us introduce the causal Green’s functions for a
neutrino and a  boson:

(236)

Here,

(237)

and

(238)

are the bare propagators of neutrino  (with mass )
and a  boson (with mass ), respectively. The lat-
ter propagator is written in the unitary calibration.
Performing standard transformations, we arrive at the
following expression for amplitude:

(239)
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where

spin indices and arguments of functions  and  are
omitted for brevity. The integration of function

 over  yields

Using the definitions in (236) and our standard
approximation, we can rewrite this integral as follows:

The integration over  is performed in much the
same way and yields factor

in the integrand in (239). Collecting all factors, using
the definition of overlap integrals (192), and introduc-
ing tensor function

(240)

we arrive at the following expression for amplitude:

(241)

8.1. Amplitude Asymptotics at Large 

The asymptotic behavior of function (240) at a
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 is relevant to our purpose. One may use the Gri-
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mus–Stockinger (GS) theorem [33] to study this
behavior. The theorem states the following27:

Let  be a function that decreases
together with its first and second derivatives no slower
than  at  , , , and

(243)

Then, in the asymptotic  limit for 

(244)

whereas integral (243) decreases as  at . Con-
sidering the definition in (240) and the explicit form of
integrals in (199) and the neutrino propagator in (237),
we find that, in the present case,

The function corresponding to  in the GS the-
orem to within an insignificant (independent of )
factor is written as follows:28

(245)

The first requirement of the theorem may be vio-
lated formally by the poles of bare boson propagators
(238). In order to eliminate this possibility, we use the
renormalized (full) propagator, which has no singular-
ity in the resonance region, instead of (238). This
propagator is obtained by performing the standard

 substitution, where  is the total
width of a  boson, in the denominator of (238)29.

Since functions  and  decrease
faster than any power of  as , we conclude
that function (245) satisfies the GS theorem condi-

27It was proven in [123] that the asymptotics of integral (243)
under somewhat more stringent conditions imposed on func-
tion  takes the form 

 (242)

If  (which is true in almost all practically relevant
cases), integral (243) is an asymptotic series in inverse powers

of , and  is an asymptotic series in inverse powers of

. The properties of these series were studied in detail in [123–
125], and several physical applications of these results were dis-
cussed in [126–129].

28Note that the term  in (245) does not contribute to ampli-

tude (241) due to matrix factors  and .
29A more accurate modification was discussed, e.g., in [130, 131]

(see also the references therein).
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tions. Therefore, function (240) behaves in the leading
order in  as

(246)

where

Since factors  and  under the
integral sign at the right-hand side of (246) have, as
functions of , sharp and close maxima, the integral is
saturated by a small neighborhood of these maxima
and can be evaluated by the regular saddle-point
method. All calculations below are performed within
the SRGP model.

The corrections to the GS theorem were discussed
in [123].

8.2. Integration over 
According to (200),

Introducing notations

(247)

we rewrite the expression for  in the following
form:
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The extremum of this function is defined by
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Here and elsewhere, summation over repeated
Latin indices ( ) is assumed. The root
of (249), , is the saddle point if the second
derivative

(251a)

(251b)

(where  and ) is positive at this
point. Two intriguing special cases with relatively sim-
ple approximate solutions of (249) corresponding to
them are considered below. The general solution is
examined in Appendix D.

8.2.1. Ultrarelativistic case. Let us examine the
configurations of momenta of external packets satisfy-
ing conditions

(252)
These relations hold true in all current neutrino

experiments. Therefore, this special case is of princi-
pal interest.

In the plane-wave limit ( , ) and under the
assumption that  (in what follows, this special
case is referred to as the PW  limit), equalities

need to be satisfied to achieve exact energy-momen-
tum conservation at each vertex of the diagram.

According to (247) and (250), the root of (249) is

(253)

which is the energy of a real massless neutrino
(  ).

In the general case with , if conditions (252)
are satisfied and a natural additional assumption that
neutrino masses  are small compared to the mini-

mum absolute values of energy transfers  and  at
the diagram vertices30 is fulfilled, the solution of (249)
can be presented in the form of a series in powers of
small dimensionless parameter

(254)

30It is assumed that the minimum is taken over the entire set
(defined by the specific experimental conditions) of the most
probable momenta  of external packets in the source and the
detector.
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The definition in (254) features “representative”
virtual neutrino energy31

(255)

which becomes the energy transfer  in the PW0 limit
and is close to it in magnitude at sufficiently small 
(this statement is clarified below). According to (255),

 is a rotationally invariant function of momenta,
masses, and dispersions of momenta of all external
packets. Owing to the approximate energy-momen-
tum conservation, this quantity is nonnegative and is
transformed as the zeroth 4-momentum component.

Thus, let us write  and  as power
series

(256)

It is convenient to rewrite (249) in the following
form:

(257)

which features dimensionless rotationally invariant
functions

It can be seen from (257) that coefficients  and
 are expressed in terms of these two functions only

at all . It is easy to determine the coefficients
using the standard recurrent procedure: one needs to
insert series (256) into (257), expand the obtained
expression into a series in , and set the factors at
powers of  to zero. The first three pairs are as follows:
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It is evident that the coefficients satisfy the symme-
try relation
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It follows from (257) that this holds true for all .
Quantities  and  are naturally interpreted as
the effective (or the most probable) energy and
3-momentum of virtual massive neutrino , respec-
tively. They also provide an opportunity to define
effective neutrino velocity  which is
given by

(260)

As expected, ; i.e., neutrinos are
ultrarelativistic. Since, in addition32,

(261)

where

(262)

the second derivative in (251) at  and  is
positive,

(263)

and, consequently, function  has an absolute
minimum at this point. We note once again that quan-
tities , , and  are defined uniquely not only by
the most probable momenta  of external packets in
the source and the detector, but also by their masses
and dispersions of momenta.

A special configuration of external momenta. In
order to illustrate the obtained results, we consider the
following special configuration of external momenta:

(264)

which corresponds to the exact conservation of energy
and momentum “flowing” from  to . Quantity

 is called the virtuality of a neutrino. The
ultrarelativistic case is defined by conditions 
and  but the virtuality is not bound to match 

32It bears reminding that quadratic forms  and 
are positive for arbitrary 4-vector .
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even in the order of magnitude. It is easy to demon-
strate that the following is true for configuration (264):

where

(265)

Expanding  and  with respect to small parame-
ter , we obtain

where, as usual, dots denote higher-order corrections.
Thus,  and  at . Reexpanding
the above expressions for  and  with respect to two

small (independent) parameters  and ,
we find

It can be seen that the effective energy (momen-
tum) of a neutrino may be both smaller and larger than
transferred energy  (transferred momentum ); nat-
urally,  and  at  (and in this case
only). In other words, even if the transferred
4-momenta at the diagram vertices are perfectly bal-
anced, the effective 4-momentum of a virtual neutrino

 is, generally speaking, not the same as .
Since the expansion for the effective neutrino velocity
takes the form

the leading correction to the ultrarelativistic limit
 is independent of the neutrino virtuality.
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8.2.2. Nonrelativistic case. Let us now examine the
contrary case corresponding to the following configu-
ration of external momenta:

(266)

This case is of potential interest for future experi-
ments on (hypothetical) heavy neutrinos and for cos-
mological applications. It is convenient to rewrite (249)
in terms of velocity  of a virtual neutrino:

(267)

Let us introduce dimensionless 4-vector
 with components

(268)

It is evident that these components are small in
magnitude if conditions (266) are satisfied. Inserting
the expression for 4-vector , which is written compo-
nent-wise as

into definition (268), we indeed find

(269)

Since all the terms in (269) contain small factors
(   etc.), one may conclude that

. Taking this into account, we seek the solution
of Eq. (267) in the form of a double power series

(270)

where

The first six dimensionless coefficient functions
 are as follows:
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The following is obtained from (270) and (271):

(272)

Here, function

defines the leading relativistic corrections, and dots
denote higher-order corrections in  and . It can
be seen that the nonrelativisitc relation between the
effective velocity, energy, and momentum remains
valid up to the second order in  and that the rela-
tivistic corrections to  and  are positive.

It can be shown that function  is positive. If this
is taken into account, one needs just to insert (270) and
(271) into (251b) to find that the second derivative in
(251b) is positive at the stationary point:

(273)

The singularity at  is hardly a surprise, since
it only reinforces the intuitive expectation that the
amplitude of a process with a neutrino “at rest” in the
intermediate state should be equal to zero. However,
this case requires a more detailed examination of the
conditions of applicability of the saddle-point method
and the GS theorem. These issues will be discussed in
a separate paper.

Let us turn to the special case of the accurate bal-
ance of the energy and momentum transfer at the
macrodiagram vertices. We use designations (264)
and, in accordance with (266), assume that

Thus,

and, consequently,

Inserting these relations into (270), taking (271)
into account, and reexpanding the obtained expres-
sion in powers of two small independent parameters
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 and , we arrive at the following expres-
sion for the effective velocity of a virtual neutrino:

(274)

The effective energy and momentum of a virtual
neutrino in the leading order in  and 
are determined from (274):

These simple formulas agree completely with intu-
itive expectations only at . It is
only in this special case that the following relations
hold true:

8.3. Resulting Formula for the Amplitude

It was proven above that function  has an
absolute minimum at  both in ultrarelativistic
and nonrelativistic cases; in the neighborhood of this
minimum, it may be approximated by a parabola:

(275)

Positively defined function

(276)

was introduced here. It will be demonstrated below
that this function may be interpreted as the effective
energy uncertainty of a virtual neutrino. In the ultra-
relativistic case, which will be the only one considered
below,

(277)

Within our approximations, function  may be
considered essentially independent of  (i.e., universal
for all neutrinos ), since  and function  is
itself small compared to the neutrino energies available
in current experiments. Let us also take into account the
fact that all factors of the integrand at the right-hand
side of (246), with the exception of exponent
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are weakly varying functions of integration variable 
in the neighborhood of stationary point  and may,
therefore, be taken out of the integral at point .
Using (275) and expansion

we arrive at the following simple integral:

Introducing complex-valued phase function

(278)

which features

(279)

where parameter  is exactly the same as in the
quantum-mechanical case in (53), we obtain

Complex dispersion  depends on the effective
neutrino energy and spatial distance  between the
impact points in the source and the detector; its mod-
ulus and argument are given by

Collecting all factors, we obtain the following
resulting expression for the function in (246):

(280)

Here, 4-vector  was introduced, and
the contribution proportional to  (see footnote (28))
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was omitted. Phase factor  in (280) is insignifi-
cant, since it vanishes in the amplitude modulus
squared.

Owing to the presence of smeared  functions
 and , which are involved in the

expressions for overlap integrals  and 
and establish the approximate energy-momentum
conservation ( ), and to the assumed
smallness of neutrino masses compared to representa-
tive energy , we may set  in the entire preex-
ponential factor at the right-hand side of (280). Let us
now use identity

(where , , and  is the
common Dirac bispinor for free left-handed massless
neutrino ) to define matrix elements

(281)

which characterize the production and absorption of a
real massless neutrino in reactions  and

, respectively33. Taking the above results
into account, we then obtain the final expression for
the amplitude in (241):

(282)

It is instructive to isolate the -independent com-
mon factor establishing the approximate energy-
momentum conservation at vertices. To this end, we
use (200) and definitions (247) to obtain

33Under additional conditions  and

, the -boson propagator may be written

approximately as , which corresponds to the four-
fermion theory of weak interaction. Using well-known SM

identity , one may then rewrite matrix ele-
ments (281) in the following form:

However, this slightly restrictive simplification (inapplicable at
ultrahigh energies) is not required and will not be used in subse-
quent analysis.
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where

Amplitude (282) may then be presented in the fol-
lowing form:

(283)

Using (256), one can present function  as an
expansion in :

We should recall that function  is defined in
accordance with (265) and matches  in the case of
the exact energy-momentum conservation at vertices
(see Section 8.2.1). If

(284)

the following approximate relation is valid:

and sign-indefinite difference  may be
neglected in the neighborhood of the maximum of
product  (i.e., at ).
Then,

(285)

It can be proven that this quantity is positive.
It can be seen from the derivation of formula (283)

and its structure that it holds true both for the consid-
ered class of processes and, if matrix elements (281) are
redefined accordingly, for all other processes sustained
by the exchange of virtual neutrinos between macrodi-
agram vertices. It is easy to generalize formula (282) to
the case of reactions with the exchange of antineutri-
nos: one needs just to perform the  substitu-
tion (i.e.,  ) and modify matrix
elements (281) accordingly.
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8.4. Effective Wave Packet 
of an Ultrarelativistic Neutrino

Let us return to expression (282). Phase function (278)
involved in it may be rewritten in the following
approximately34 Lorentz-invariant form:

(286)

where . Obviously,  at
 However, it is clear that quantities

 cannot simultaneously vanish at all 
values if the neutrino mass spectrum is nondegener-
ate. Therefore, relation , which is set by
the space-time configurations and velocities of exter-
nal wave packets and is in no way associated with the
effective velocities of virtual neutrinos, should not be
interpreted as a certain mean neutrino velocity. Thus,
with the  and  values fixed, vector  is,
in general, nonzero, but is collinear to velocity vector

. It is easy to show that if the direction of vec-
tor  is arbitrary, the following identity holds true:

(287)

where  and  are the components of  that are
parallel and perpendicular to vector . It then follows
from (287) that the value of  at

(288)

(where, naturally, ) decreases by
a factor of no more than  with respect to its maximum
value at . The region defined by condition (288)
is the interior of an oblate spheroid with radius

 that is f lattened by a factor of  along the
 direction.

Let us now examine the transformation under
which the positions of centers of all external packets in
the source, the value of , and unit vector  remain
unchanged, while all packets  are shifted by ;
for simplicity, we set . This transformation
shifts impact point  and vector  by the same
amount:

Since suppression factor  in (282) is
invariant with respect to spatial translations

 and all external momenta remain

unchanged, quantity  may be inter-
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Fig. 16.

l
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Xs Xd

δx

Xd'
preted as the amplitude of the probability of interac-
tion of neutrino  with 4-momentum  at

point  (see Fig. 16). This interpretation may seem
artificial, but we will provide certain arguments in
favor of it below (in the analysis of the expression for
the count rate of neutrino events). If distance  is suf-

ficiently large (i.e., ), its relative varia-
tion induced by shifts  satisfying conditions (288) is
insignificant,

and the  amplitude suppression is determined
exclusively by factor , which is close to unity

at . The absolute values of transverse

shift  and length difference  may
be so large that the  ratio exceeds unity. If this
ratio is interpreted erroneously as the velocity of a
point-like neutrino, one may conclude incorrectly
that special relativity is violated. It is instructive to
clarify this purely quantum effect within a more intui-
tive approach by introducing an effective neutrino WP.
To this end, we isolate the following factor from
amplitude (282):

(289)

(note that spinors  and  are contained in
matrix elements (281)). Neglecting the imaginary part
of function , we rewrite expression (289) in the
form of a product:
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and

Comparing spinor function  with the
wave function of a fermion packet of the general form
in the SRGP approximation

we see that spinor function  may be
interpreted as the wave function in the -represen-
tation characterizing an incoming WP of a real mas-
sive neutrino  with  acting as parame-
ter . The second spinor cofactor in (290),

, is naturally interpreted as
a spherical neutrino wave outgoing from the source at
distance  from production point .

It is instructive to present the result obtained in a
simpler quantum-mechanical formulation by per-
forming calculations similar to the transition ampli-
tude calculation in the QM approach (see (61)). Let us
determine the amplitude of transition from the  WP
state in the source defined by the most probable
momentum , momentum dispersion , and 4-coor-
dinate  to the  WP state in the detector with the
same momentum, dispersion , and 4-coordinate

 (the WP spread in the configuration space is
neglected; i.e., the SRGP approximation is applied):

(291)

Here,
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and

We obtained an expression proportional to function
 in the SRGP approximation, which should be

compared to  The result is . Thus,
 is the effective neutrino energy uncertainty with

interactions in the source and the detector factored in.
It should be compared to  defined in accordance
with (63). Since  and  are the neutrino WP dis-
persions in the source and the detector, respectively, it
is easy to determined their explicit form by rewriting
the first formula in (250) as  where

, . It is clear that quantities
 and  have the physical meaning of spatial dis-

persions of a neutrino WP in the source and the detec-
tor, which are related to the momenta dispersions by
the following standard (for a Gaussian packet) expres-
sions:

(293)

Inserting  and  from (293) into (292) to calcu-
late the amplitude in (291), we indeed obtain, to within a
dimensionless factor of the order of unity,  with
function  defined in accordance with (276).

Since  is a complex-valued function, factoriza-
tion (290) is not possible in the general case, but the
corresponding correction, which is clearly of interest
for neutrino astrophysics, can be interpreted as the
result of a peculiar interference of spreading in- and
out-neutrino packets. This correction becomes signif-
icant at very large distances  and induces overall sup-
pression of amplitude (241) and modification of oscil-
lation factors . To study these
effects in detail, one needs to analyze observables
(such as the count rate for a given type of event) that
are obtained after appropriate averaging of the ampli-
tude modulus squared over all unmeasured variables
on which amplitude (241) is dependent. This averag-
ing depends on the statistical distributions (or, in a
more general case, on the kinetics) of ensembles of in-
packets and on the detection procedure [57, 58]. Here,
we limit ourselves to the case when the imaginary part
of  is negligible. Let us determine the applicability
conditions of this approximation. Using (277) and
(279), we write

(294)
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It can be seen that  for all current experi-

ments with reactor (  MeV,  km), accel-
erator (  MeV,  km), and atmospheric
(  MeV,  km) (anti) neutrinos if
mj  1 eV and . Using typical examples, we

will demonstrate in Appendix А.3.2 that the 
condition is definitely fulfilled in the domain of appli-
cability of the SRGP model.35 In addition,

; therefore,

(295)

With the adopted conditions of narrowness of
external packets in the momentum space, ,
factored in, it follows automatically that 

and  (packet stability condition).
It was demonstrated in Section 5.7 that the uncer-

tainties of the energy and the momentum compo-
nents of an ultrarelativistic WP in the SRGP approx-
imation are

(  ); thus, the corresponding
uncertainties for an ultrarelativistic neutrino packet are

i.e., function , which depends on the masses,
momenta, and momentum spreads of external in and
out packets, characterizes the neutrino energy uncer-
tainty, and  defines (to within a numerical factor
of the order of unity) the effective size of a neutrino
wave packet transverse to momentum . A huge and
very thin disk with ratio  of the transverse size to
the longitudinal one may serve as an illustration of an
ultrarelativistic neutrino WP. The relative neutrino
energy and momentum uncertainty

is always very small and independent of the neutrino
energy and mass. This is how one should interpret the
standard quantum-mechanical assumption that the
states of neutrinos with definite masses  (and, con-
sequently, the states with definite f lavors ) have
definite 4-momenta.

35In particular, taking into account modern cosmological con-
straints on the sum of neutrino masses (see, e.g., [132]).
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Just as any other SRGP, a neutrino WP moves, in
the average, along classical trajectory 
Quantum deviations  from this trajectory are sup-
pressed (in amplitude) by factor

Owing to the smallness of ratio ,
transverse deviations may be macroscopically large (or
infinite, if neutrinos are massless). This conclusion
agrees with the result formulated at the beginning of this
section without invoking the notion of a neutrino WP.

Thus, we verified that the effective WP of an ultra-
relativistic neutrino reproduces all the properties of an
SRGP of the general form, with the only caveat that
parameter  actually depends on the momenta (as
well as masses and momentum dispersions) of all
external packets. It should be noted here that this
dependence is not a specific feature of neutrinos or the
covariant formalism, since, as was discussed in Sec-
tion 4.3, a WP characterizing the state of any massive
particle should depend on the momenta of particles
involved both in its production and its absorption, and
the  assumption used here is just a simpli-
fying approximation.

9. MICROSCOPIC PROBABILITY 
OF MACROSCOPICALLY SEPARATED EVENTS

Using (282) and the formulas for four-dimensional
overlap volumes  derived in Section 7.11, we obtain
the following expression for the microscopic probabil-
ity of process (231):

(296)

This expression depends on coordinates  and
mean momenta  of all WPs involved in the reaction
and on parameters . Probability (296) is vanishingly
small if the product of overlap volumes

is small (i.e., if in- and out-packets in the source and
the detector do not overlap in space-time regions sur-
rounding impact points  and ).
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Note that 4-vector pν is also a function of p
û
 and σ

û
,

and  in the ,  limit. Therefore,
at sufficiently small ,

What determines the approximate equality of 
and ? To answer this question, we transform expres-
sion (296) in a way proposed by Cardall [42]. Using
the explicit form of functions  and , one readily
derives an approximate relation36

where  is an arbitrary slowly varying function of
, and . This relation yields

(297)

where the prime on “silent” integration variable  is
omitted, but it (just as vector ) is no longer
related in any way to the parameters of external pack-
ets. Formulas (296) and (297) are equivalent within the
adopted approximations, but it follows from (297) that
the energy-momentum conservation law is governed by
subintegral factors  and , which
may be replaced by common  functions at sufficiently
small . The obtained result will serve as a basis for
calculation of the quantities measured in current
experiments on neutrino oscillations.

10. PROBABILITY AND COUNT RATE
Expression (297) is the most general result of this

study. At the same time, it is too abstract for direct
processing and analysis of the data provided by current
neutrino experiments. In the majority of such experi-
ments, information on the particle coordinates in the
source (and, more often than not, in the detector) is
unavailable or is not used in data processing. In addi-
tion, it is often the case that only the momenta of sec-
ondary particles in the detector are measured. To
obtain an actually observable quantity, one needs to
average (sum) probability (297) over all variables of in-

36The accuracy of this relation is the same as that of formula
(282) for the amplitude: it is the accuracy of the saddle-point
method used in the derivation.
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(out-) particle states that are unmeasured  unused in
the analysis. We call this procedure the macroscopic
averaging. In each particular experiment, one needs to
factor in the actual physical conditions (by constructing
an adequate mathematical model of the experiment) to
perform macroscopic averaging. The subsequent analysis
becomes model-dependent in this respect.

10.1. Macroscopic Averaging

In what follows, we use a simple but fairly realistic
model. It is assumed in this model that the distribu-
tions of WPs of in-particles over mean momenta, spin
projections, and coordinates in the source and the
detector (regarded as physical macroscopic objects)
may be characterized by classical single-particle distri-
bution functions  normalized at each point
in time in accordance with the following condition:

where  is the total number of particles  at time
. We may now clarify (or, more exactly, redefine)

the terms “source” and “detector” that were used in
calculations of the amplitude to denote the blocks of
macroscopic Feynman diagrams. In what follows, the
terms source and detector are used to denote the cor-
responding experimental devices and (in an abstract,
but mathematically more rigorous sense) supports 
and  of products of the distribution functions of over
space-time variables (i.e.,  ;
the definition of  is similar), which are assumed to
be bounded and nonoverlapping. It is assumed that
the characteristic spatial sizes of  and  are small
compared to the distance between them but are very
large compared to the effective sizes of all wave packets
moving within them. For definiteness, we assume that
only the mean momenta of secondary particles in 
are measured in our experiment and that the back-
ground of secondary particles from  in  is negligi-
ble (due to the fact that  is located far from ). Under
these assumptions, the macroscopically averaged proba-
bility of process (231) may be written as follows:

(298)
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Here and elsewhere, symbol  denotes averag-
ing over spins of all in-particles and summing over
spins of all out-particles in  and , and symbol 
indicates that integration over  is not performed;
i.e., . It is thus implied in (298) that one
can measure the momenta of all secondary particles in
the detector37. It is evident that (298) is the total num-
ber, , of events that are detected in  and involve
particles  with their momenta falling within the
interval from  to  (i.e., 38).
For simplicity, we neglect effects of the order of 
(see (279)) that are related to the spreading of an effec-
tive neutrino WP at very large distances. These effects
are of potential interest for experiments with astro-
physical neutrinos, but are usually insignificant in ter-
restrial oscillation experiments (including the experi-
ments with solar neutrinos). Certain results corre-
sponding to very long baselines are presented in
Appendix E.

The integration over packet coordinates in (298)
can be performed explicitly if one uses integral repre-
sentation (229) for overlap volumes  and takes into

account the fact that factor  and distribu-
tion functions  in  and  vary considerably in time
and space only on macroscopic scales, while the sub-
integral factors in  and  differ significantly from
zero only in a small neighborhood of the correspond-
ing integration variable.

Let us formulate this more rigorously. In effect, we
demonstrate that a configuration of spatially separated
points  such that

(i.e.,  and  reach their maxima) may be found
for any configuration of external momenta and arbi-
trary x. For definiteness, . In view of the invari-
ance of functions  with respect to shifts
along the world lines of packet centers, one may
replace coordinates  by , where

37Naturally, this assumption is optional; the “placement of square
brackets” in (298) is dictated by the conditions of a specific
experiment. For example, in the hypothetical experiment with
“labeled” neutrinos, the momenta of all secondary particles
both in the source and in the detector should be measurable.

38For simplicity, we consider an “ideal” experiment with a detec-
tion efficiency of 1, although real efficiency and acceptance val-
ues, trigger conditions, and event selection criteria are easy to
introduce into the formalism.
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It is evident that  at
; i.e., at one and the same point in time, but with

mismatched spatial coordinates ,
which are sufficiently separated by construction, since
variables  are external and we have set the needed
conditions for them. Naturally,  (since 
remains unchanged if  is replaced by ). It is
implied here that a maximum of one packet may have
zero velocity. However, it is clear that the contribu-
tions from configurations with two (or more) packets
with zero velocities are insignificant. Neglecting them
and edge effects, we rewrite (298) in the following
form:

(299)

where differential forms  are defined as

(300a)

(300b)

Definition (278) and its Lorentz-invariant form (286),
where

and all the other designations remain unchanged, are
still valid for complex phase  in (299). It should be
stressed that the derivation of (299) relies on the prop-
erties of the adopted mathematical model, which does
not necessarily characterize faithfully the real experi-
ments on neutrino oscillations. The experimental con-
straints on neutrino masses, which make it natural to
assume that  varies significantly only on
macroscopically large spatial scales  and

 varies on scales much larger than ,
were also used implicitly. It bears recalling, however,
that this interpretation is based on the quantum-
mechanical analysis of experimental data. Therefore,
simple approximate formula (299) is actually not
equivalent to more general expression (298) and cer-
tainly not to (297).
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The integration in  and  in the source and the
detector in (299) is formally performed over time
intervals in which functions  are defined. Thus,
(299) is applicable to a wide range of experiments with
both stationary and nonstationary sources and detec-
tors. To simplify the analysis further, we integrate with
respect to these variables in (299). This is done for a
simple model, which is easy to generalize to a more
realistic case. More precisely, we assume that distribu-
tion functions  in  and  depend only weakly on
time in the course of the experiment and may be
approximated with a sufficient accuracy by “rectangu-
lar” dependences

(301)

where functions  are time-independent. Step func-
tions for particle distributions in the detector should
be understood as hardware or software trigger condi-
tions. The steady periods  and 
may be very long (in experiments with solar or atmo-
spheric neutrinos, where ) or very short (in
experiments with pulsed accelerator beams, where the

 condition is usually satisfied). In either case, it
is assumed in model (301) that the “on” and “off”
time intervals of the source (detector) are negligible

compared to  ( ). If model (301) is used,  is
the only factor in the integrand in (299) depending on

 and . Thus, the problem is reduced to calculating
a relatively simple integral

(302)

The following designations were used in (302):
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(305)

(306)

where  is the error function integral. To obtain a
more realistic description of experiments with a pulsed
particle beam in the source (e.g., mesons in the decay
channel), one may generalize model (301) by intro-
ducing, e.g., a series of rectangular (or more complex)
pulses with pauses between the pulses, in which

. Here, we focus on the simplest case (301),
which reproduces the most significant effects. Taking
(302) into account, we obtain the following instead
of (299):

(307a)

(307b)

We should recall that the effect of spreading of a
neutrino WP is neglected in base formula (297), which
was used to derive expression (307a). As was demon-
strated, this approximation is valid at distances  sat-
isfying condition (294). It can be seen from (294) that
formula (297) is applicable to all current experiments
with reactor (  MeV,  km), accelerator
(  MeV,  km), and atmospheric
(  MeV,  km) (anti)neutrinos if
mj  1 eV and ; the last two conditions are
definitely satisfied. A more general case with signifi-
cant spreading of a neutrino packet is considered in
Appendix E. This regime is of potential interest for
experiments with astrophysical neutrinos, but here we
limit ourselves to the conditions of “terrestrial” exper-
iments.

Differential forms  in (307a) are defined in
accordance with (300), where functions  should be
replaced by , and expression (307b) is written using
identity
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where  and  are the spatial source and detector
volumes, taken into account. Differential form  is
defined in such a way that integral

(308)

is simply the f lux density of neutrinos, which are pro-

duced in S in reactions , in 39. Quantity
 is defined so that

(309)

is the differential transverse cross section of neutrino
scattering off detector  as a whole. In the special
(and practically important) case of neutrino scattering

in reaction  with a sufficiently narrow
momentum distribution of target particles , differen-
tial form  becomes the elementary differential
transverse cross section of this reaction multiplied by
the number of particles of type  in the detector.

Let us finally turn to subintegral factor

(310)

where

(311)

(312)

Let us recall that function  is the same as  in the
case of the exact energy-momentum conservation at
the diagram vertices in Fig. 15. Therefore, sign-vari-
able difference  in (312) may be neglected in the
neighborhood of the maximum of product

 (i.e., at ), which
produces the greatest contribution to the count rate. In
view of the properties of function , contributions of
the order of  or higher can also be neglected in
(312). As was demonstrated,  in this approxi-
mation. At , , and , factor (310)
matches the well-known quantum-mechanical

39In more correct terms, integral (308) is the number of neutrinos
produced in unit time within volume , which is centered at
point , propagating within solid angle  in direction

 and crossing a unit area that is centered at
point  and perpendicular to .
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Fig. 17. Simplified (symmetrized) layout of a nonsynchronized measurement. The time “windows” of neutrino emission and
absorption are highlighted. It is assumed that  and .
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expression for the probability of neutrino f lavor tran-
sitions:

(313)

It is thus natural to regard (310) as a generalization
of the quantum-mechanical result.

It will be demonstrated in Section 11.3 that .
Therefore, all quantum-field corrections (with the
approximations used) reduce the value of (310) com-
pared to its quantum-mechanical version (313). In
addition to this quantitative difference, one should
bear in mind that the probabilistic interpretation of

 becomes technically impossible, since functions
, , and  involved in it (the last two functions are

contained in factors  and phases ) depend on the
momenta of external packets  and the neutrino
energy; notably, momenta  with 
and  are integration variables. The phase space of
processes (231) and the behavior of functions , ,
and  within these volumes do indeed differ for dif-
ferent pairs of leptons . This is attributable both
to the reaction kinematics in  and  (in particular,
the reaction thresholds) and to the uncertainties of
momenta of lepton packets , , and , which may
differ even by orders of magnitude. Thus, quantity

 does not satisfy the expected “standard” relations
like Eq. (19), which are simply the corollary of the uni-
tary property of mixing matrix  in the quan-
tum-mechanical theory of neutrino oscillations.

In real experiments, this scenario is complicated
further by the fact that the count rate of neutrino
events (in the special case considered here, events with
the production of a  lepton) is not determined by
reactions of just a single type; instead, it is affected by
a large number of processes of different types such as
(in experiments with atmospheric and accelerator
neutrinos) decays of mesons ( , , , , etc.)
and muons in the source (atmosphere or decay chan-
nel of the accelerator) and various neutrino interac-
tions in the detector ranging from (quasi) elastic to
deep-inelastic ones. The phase space and functions 

( )αβ ν α β α β
∗ ∗, = ϕ .(QM)( ) expi j j i ij

ij

E L V V V V i3

< 1ijS

αβ3

D n m

ijS Θij
û

p
û

∈ ⊕ ⊕s d sI I Fû

νE
D n

m

α β,� �( )
6 $

σe μσ τσ

αβ3

α= iVV

β�

μπ 2 μ2K μ3K 3eK

D

PHYSICS O
and  for different combination of such subprocesses
in  and  differ considerably. It helps comprehend
this better if one imagines functions , , and  and
all quantities depending on these functions as having
indices  and  attached to them.

Another technical and rather nontrivial obstruc-
tion to interpreting formula (310) and analyzing exper-
imental data stems from the dependence of factors ,
which are called the decoherence factors below, on
instrumental parameters  and . Formula (303)
was derived with no assumptions regarding the syn-
chronization of time intervals  and . It is
then hardly surprising that the decoherence factors
may be arbitrarily small in magnitude if these intervals
are not matched to allow for the obvious fact that the
characteristic time of arrival of ultrarelativistic neutri-
nos from  to  is approximately equal to mean dis-
tance  between  and . The example of a nonsyn-
chronized measurement is presented in Fig. 17, where

 and  is assumed (for simplicity, it is
also assumed that ). The QFT causality princi-
ple and common sense suggest that factor  should
tend to zero under such conditions. The general for-
mula for  substantiates these expectations and
allows one to determine the law of suppression of the
count rate. We will not dwell on this issue, since syn-
chronized measurements are our main concern.

Prior to discussing the role of decoherence factors,
we introduce another (final) simplifying modification
to the formula for the number of events. This simplifi-
cation is again based on the assumption that the char-
acteristic sizes of  and  (at the very least, their
characteristic linear sizes along the neutrino beam) are
sufficiently small compared to . Note that this con-
dition is not satisfied for several short-baseline accel-
erator and reactor experiments; the analysis for such
experiments is much more complicated40. If the sim-
plification is applicable, one may substitute  by

40Naturally, this complication should not be regarded as a draw-
back of our formalism, since quantum-mechanical formulas
are simply inapplicable in this case.
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 and differential forms  and  by their aver-
aged (over  and , respectively) values  and

 in (307b). The result is

(314)

Evidently, the domain of applicability of approxi-
mation (314) is much narrower than that of (307). This
is attributable to the additional constraints on distri-
bution functions  and on the absolute sizes and geom-
etry of  and , which were used implicitly in the tran-
sition from (307) to (314). The following is obtained in
the “nonspreading” regime of a neutrino WP:

(315)

Let us discuss the function involved in (315). Func-
tion  governs the suppression of interference at dis-
tances exceeding the coherence length in the regime
with a negligible contribution of the effect of spatial
dispersion of a WP:

(316)

where

(317)

is the quantum-field generalization of the quantum-
mechanical coherence length in (73b). This quantity
matches (73b) if one performs the  substitu-
tion. Dimensionless factor , which is new compared
to the quantum-mechanical approach, covers the
finite intervals of integration over the operating times
of the source and the detector and the probable lack of
synchronization between the times of emission and
detection of neutrinos. Let us examine this factor,
which will be called the decoherence function, in
more detail.

11. DECOHERENCE FUNCTION
The decoherence factors and the method for their

measurement in neutrino experiments are discussed in
this section. Some complementary results are pre-
sented in Appendix F. The above analysis of interac-
tions in the source and the detector was rather generic.
In particular, it was not assumed that the time intervals
of emission and detection of neutrinos are synchro-
nized in some way. It is easy to demonstrate that fac-
tors  may be arbitrarily small if the effective times of

emission and detection of neutrinos  and  are
not synchronized (an exact condition will be formu-
lated below). This important factor alone explains why
the “oscillation probability” is written in quotes. Evi-

L νΦd νσd $

6 $ νΦd
νσd $

αβ ν αβ νν= τ Φ σ , .  ( )ddN d d E L$3

af
6 $

( )αβ ν α β α β
∗ ∗, = ϕ − . 2( ) expi j j i ij ij ij

ij

E L V V V V S i3 !

ij!

ν

− π= = = coh

( ) 2 ,
2

j i
ij

ij ij

L L L
E L L

v v D D
!

ν=
π

osc
coh

2
ij

ij
E L

L
D

σ →p D

ijS

ijS
0
sX 0

dX
PHYSICS OF PARTICLES AND NUCLEI  Vol. 51  No. 
dently, quantities  are not the probabilities of f la-
vor transitions, since they do not satisfy unitarity rela-
tions (19). The reason for this is that factors  and 
depend on the momenta, masses, and dispersions of
external WPs; i.e., they depend (formally) on indices

 and . The unitarity relations are satisfied approxi-
mately only if these dependences are rather weak or if
the decoherence factors themselves are insignificant
( , ). This effect is a direct and rather
nontrivial corollary of the quantum-field approach. It
will be demonstrated below that diagonal functions 
are independent of neutrino masses and, conse-
quently, of index . Universal function 
describes the suppression of the event number in the
case of nonsynchronized processes of emission and
detection of neutrinos and when the detector exposure
time is either much longer than the source operation
time or much shorter than the space-time “width” of
the effective neutrino WP. Since these effects are not
related to the interference of neutrino states, it seems
reasonable to redefine the oscillation probability of
neutrinos by isolating factor :

where

(318)

However, this redefinition is immaterial and a mat-
ter of taste, since relations (19) are also not fulfilled for
quantities  in the general case.

In the next subsection, we assume that the times of
emission and detection of neutrinos are synchronized
and examine novel effects related to the finiteness of
intervals of neutrino emission and detection.

11.1. Synchronized Measurements
Note that general suppression factor

in the integrand in (302) is minimized at .
Therefore, time  may be interpreted as the effec-
tive (or the most probable) delay time between the
production and absorption of virtual neutrinos  and

. Since

this delay time is almost equal to . The count rate is
thus expected to be maximized if the “on” periods of
the source and the detector are shifted so that time
windows  and  overlap. The
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Fig. 18. Simplified (symmetrized) layout of a synchronized measurement. The time “windows” of neutrino emission and absorp-
tion are highlighted.
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dependence of the count rate on time intervals 
involved in function  in (303) may be studied
for such synchronized measurements. In order to
reduce the number of independent variables in the
decoherence factors, we set (without any significant
loss of generality) a certain “timing” symmetry:

where, naturally, . This timing diagram is
shown schematically in Fig. 18.

Since  is an even function, decoherence fac-
tors (303) may be written as

(319)

where

In the majority of current neutrino experiments
(astrophysical ones included), terms  in the argu-
ments of functions  involved in (319) can be
neglected. Indeed, using the current (model-depen-
dent41) cosmological constraint [132] ,
we obtain the following estimate:

On terrestrial scales, this value is exceptionally small
compared to the duration of even the shortest neutrino
pulses in accelerator experiments. In addition,  terms
for sufficiently high neutrino energies remain negligible
even at distances exceeding the size of the Galaxy. For

41The available estimates of the upper bound of , which
were obtained by analyzing cosmological data within the

 model and its extensions, span (roughly) the
interval from 0.07 to 0.30 eV.
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example, the value of  for the (anti)neutrino signal
from the SN1987A supernova explosion in the Large
Magellanic Cloud (  MeV,  kpc) is no
larger than ~  s. This estimate should be com-
pared to the typical duration of a neutrino burst in a
supernova explosion, which is  s. Let us bring for-
ward one more argument as to why the  terms
should be neglected. The formal sufficient condition
for this is written as

This inequality should be fulfilled within our ideal-
ized model if for no other reason than because time
intervals  and  cannot be set with a resolution bet-
ter than the “on/off” times of the source and the
detector, which are neglected. Thus, with these reser-
vations42, decoherence factors (319) are expressed in
terms of universal (independent of indices ) real-
valued function  of three dimensionless real
variables:

(320)

Let us examine the properties of function 
relevant to its experimental measurement.

11.2. Diagonal Decoherence Function
The mean event count rate of the detector,

, is proportional to function  of
two dimensionless variables, which is defined as

(321)

42Note that all these reservations bear no relation to the applica-
bility domain of our formalism; they just outline the region of
applicability of the simplified model used for qualitative analy-
sis of the simplest corollaries of the theory. Models that are
more realistic simply require calculations that are more tedious.

ijL�

ν � 20E .� 51 4L
−× 42 10

≈10
ijL�

τ − τ .s d ijL@ �

τs τd

,i j
, ,( ' )S t t b

( ) ( )[ ]

−

= τ , τ , ,

, , =

× + + − − + .

2

( )

( ' )
2 '

Re Ierf ' Ierf '

ij s d ij

b

S S

eS t t b
t

t t ib t t ib

D D @

, ,( ' )S t t b

αβ τddN τ , τ0( )s dS D D

( ) ( )[ ]
, = , ,

= + − − .

0( ') ( ' 0)
1 Ierf ' Ierf '

2 '

S t t S t t

t t t t
t

F PARTICLES AND NUCLEI  Vol. 51  No. 1  2020



QUANTUM FIELD THEORY OF NEUTRINO OSCILLATIONS 69

Fig. 19. Decoherence function  (left) and its distribution density in plane  (right). Dark and light regions
in the right panel correspond to smaller and larger values of , respectively.
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It is easy to demonstrate that this function, which
corresponds to noninterference (independent of the
neutrino mass) decoherence factors , varies in the
interval from 0 to 1. Since

 is a steadily increasing function of . It follows
from (388a) (see Appendix G) that  at

 for any ; thus,  at . It can
be seen from asymptotic formula (389) that

 at  and . This proves that

for all positive values of  and .

Formulas (388) and (389) define the asymptotic
behavior of  in different regimes. In particular,
at small  and ,

If  is large but finite (i.e., ), we obtain
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and in particular

if  In the contrary limiting case, 
we have

Figure 19 presents the behavior of function 
and its distribution density in the  plane. The
validity of the following important inequalities is easy
to prove:

(322)

They help isolate the regions of weak and strong
suppression of the total number of events due to the
decoherence effects43. The right panel of Fig. 19,
which presents the two-dimensional  distribu-
tion density (the darker the shade, the smaller the
value of function ), illustrates these inequali-
ties. The regions of transition between the abovemen-
tioned asymptotic regimes are seen clearly.

It follows from Fig. 19 that mean event count rate
 of the detector decreases as the 

ratio increases (note that this is not true for the total
number of events). The reason for this is clear: the

43For example, the suppression does not exceed 
( ) if  (i.e., ).
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Fig. 20. Function  (solid curve) and its asymptotics at large and small values of  (dashed curves) plotted in accordance
with (323).
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number of detected neutrinos cannot exceed the num-
ber of particles emitted by the source. The second
inequality in (322) has a less evident corollary:

 is not suppressed at sufficiently large 
ratios44. Two dashed lines in the right panel of Fig. 19
separate the regions in which  ( ) and

 ( ). Thus, the condition nec-
essary (although still not sufficient) to set  is
that detector exposure time  is either short compared
to  or (at ) much longer than effective time
scale  determined in those regions of
the phase space of reactions in  and  that produce
a significant contribution to the count rate. In the
intermediate region, the decoherence factor induces
moderate suppression of noninterference terms in the
integrand for the count rate.

The following is obtained at , which is a spe-
cial case of particular interest for experiments with
accelerator neutrinos:

(323)

Figure 20 shows function . Asymptotics
(323) at small and large values of  are also shown for
comparison. It can be seen that these asymptotics are
well defined everywhere except a relatively narrow

44This condition is definitely satisfied in experiments with solar,
atmospheric, and geophysical (anti) neutrinos, but may be vio-
lated in accelerator experiments.
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region of . It is also evident that 
approaches unity only at  (in practice, at

).

11.3. Nondiagonal Decoherence Function

The behavior of function  at  is much
more complex than that at . It is hard and point-
less to perform a full analytical examination of this
function of three independent variables, since it is
impossible to avoid Monte Caro modeling in process-
ing the data from a real experiment with its specific fea-
tures. We have performed a thorough numerical analy-
sis and analytical examination of the most important
special cases and found that  at .
Let us consider several typical examples clarifying this
result.

Figures 21 and 22 present the profiles of function
 calculated for 18 values of parameter .

Numerical calculations were carried out with the use
of formulas from Appendix G. It can be seen that the
behavior of  as a function of  and  becomes
more and more involved as  increases. For example,
at , function  oscillates rapidly near
zero even under relatively small variations of variables
 and . This results in strong suppression of nondiag-

onal (with ) contributions to 

Figure 23 presents  as a function of  at
fixed values of . At small , this dependence has a
quasi-periodic nature, which is manifested against the
background of rapid decay of  with increasing

. Function  depends strongly on the ratio of
parameters  and . At very large values of ,

 ceases to depend on  and approaches very
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Fig. 21. Profiles of decoherence function  calculated for nine different values of parameter  varying from 0.1 to 0.9.
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slowly its asymptotic form . Probability (310)
in this asymptotic regime takes the following form
known from literature (see, e.g., [45, 46, 66] and refer-
ences therein):

(324)

the only difference being that functions , , and 
involved in , , and  depend on the momenta
of external packets and the neutrino energy. This
dependence alters qualitatively the behavior of oscilla-
tion suppression factors if at least some of the external
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WPs have relativistic mean momenta. Since 

 Let us clarify the physical
meaning of the other suppression factors.

Factor  in (324) suppresses the interfer-
ence of contributions with  at distances exceeding
the coherence length

at which neutrino WPs  and  are already sepa-
rated sufficiently in space (due to the difference
between their phase velocities) and cease to interfere.

Θ ≥ 0,ij

αβ ν αβ ν, ≤ ,(QM)( ) ( ).E L E L3 3

( )− 2exp ij!

≠i j

= , Δ = −
Δ

coh 1 ( )ij ij ij j i
ij

L L v v v

v

@

D

∗ψi
∗ψ j
1  2020



72 D. V. NAUMOV, V. A. NAUMOV

Fig. 22. Profiles of decoherence function  calculated for nine different values of parameter  varying from 1.0 to 9.0.
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Naturally,  in the plane-wave limit. Factor

 suppresses interference contributions in
the contrary case, when external WPs in  or  (or in

 and ) are strongly delocalized (or, in the plane-
wave limit, smeared over the entire space). The total
size of the neutrino production and absorption regions
in  and  is of the order of . Interference contri-
butions vanish if this size is large compared to the
interference length

In other words, the quantum-field theory predicts
that neutrino oscillations should vanish in the plane-

→ ∞coh
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wave limit. The probability  f lavor transitions is
then independent of  and becomes equal to

Thus, nontrivial ( -dependent) interference of
amplitudes with intermediate neutrinos of different
masses is possible only at  It follows from the
detailed analysis of processes , , and

 (see Appendix А) that function  is nonzero if
at least two (in- or out-) WPs  with  interact at
both vertices of the diagram in Fig. 15 characterizing
process (231). The same conditions necessarily imply
that nondiagonal contributions vanish at sufficiently
large distances between  and  ( ).
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Fig. 23. Dependences of function  on  at various fixed values of  (see legend). The asymptotics of function  at
 is shown by the dashed curve for comparison.
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Thus, the domain of applicability of the standard
quantum-mechanical formula for the probability of
neutrino f lavor transitions (adopted by default in all
data processing programs of current oscillation exper-
iments) is constrained by rather stringent conditions:

(325)

Here, angle brackets denote the fact that the values
of functions , , and  are defined by the regions
of the phase space of process (231) yielding the pri-
mary contribution to the measured number of neu-
trino events.

11.4. Additional Methodological Remarks
It follows from the above analysis that the rather

strong dependence of factor  on its arguments at
 provides an opportunity to estimate function 

(or, more precisely, its mean values within the above-
mentioned regions of the phase space) experimentally
by measuring the count rate as a function of variables

 and  (at fixed distance ) and comparing the data
obtained with the results of Monte Carlo modeling. It
is evident that the optimum strategy of such an exper-
iment should be the subject of a separate study and tai-
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lored to each particular experiment. We consider here
only the most general technique without going deep
into the features of experiments.

The following ratio is a convenient measured quan-
tity for experiments with accelerator neutrino beams
emitted in time window  and detected in time :

Here,  is the number of events detected
at time  within time window , and  is the time
window expanded to the maximum45. Evidently,

 grows linearly with  as it increases from zero
(at ) almost to unity (at ). The most
intriguing region is the narrow interval near ,
where linear growth ends with the  plateau at

. This transition is smooth rather than step-

45This should be a compromise value in the sense that is needs to
exceed  considerably to ensure reliable signal detection but
needs not be too large so as to prevent the signal from being lost
in the background.
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wise, and the measurement of derivative 
in this region should allow one to measure , since

Such a measurement is very important, since func-
tion  is included in the probability of f lavor transi-
tions (see below) and needs to be known to extract the
parameters of neutrino oscillations (i.e., differences
between the squares of masses and mixing angles)
accurately. Since function  depends on both the
neutrino energy and the external momenta, quantity

 should be measured at least within sev-
eral experimentally accessible kinematic intervals.

We should recall that conditions (325) and for-
mula (324) were obtained with the use of a number of
simplifying assumptions and approximations. Their
validity in real-life experiments is by no means always
apparent. It follows from the above analysis (supple-
mented by the results detailed in Appendix F) that
conditions (325) should be used in combination with
data on the periods of operation of the source and the
detector, their size and geometry, the explicit form of
distribution functions of in- particles in the source and
the detector, and other technical features in the pro-
cessing and interpretation of measurements performed
in real neutrino experiments.

12. DISCUSSION
12.1. How a Virtual Neutrino Becomes Real

A neutrino is characterized as a virtual particle in
the macroscopic diagram corresponding to the pro-
duction of charged leptons  and  in the source and
the detector. On the other hand, it is expected intui-
tively that any virtual particle traveling over a suffi-
ciently large distance should be “similar” to a real par-
ticle with a 4-momentum on the mass shell. For exam-
ple, two approaches to the study of light emitted by a
lamp and reaching sensitive cones in our eye are pos-
sible. In the first approach, the propagation of a real
photon with a 4-momentum on the mass shell is con-
sidered. In the second approach, both the emission of
light and its detection by the eye are characterized
within the QFT formalism by a single macroscopic
diagram with two vertices: the source (lamp) and the
detector (eye). Naturally, these two descriptions do
not contradict each other.

A virtual particle46 with mass  is described in the
configuration space by the causal Green’s function
[133]

46For simplicity, we limit ourselves to scalar particles.
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where  and  at .
 is the Hankel function (Bessel function of the

third kind). Function  decreases at spatial infin-

ity (in the causally unconnected region) as 
and at temporal infinity (in the causally connected
region) as .  is concentrated near light cone

 and has singularities there.
The diagrammatic approach with the source and

the detector characterized in the coordinate space by
some functions  and , respec-
tively, yields amplitude

where ,  are points at which  and
 are maximized.

Thus, since  differs significantly from zero
only in the vicinity of the light cone and functions

 and  are concentrated near
points , , amplitude  at sufficiently
large47  corresponds rather accurately to a WP
characterizing a particle with mass  moving along
classical trajectory  from point  to
point  with an exponentially small deviation from it.
Velocity , where ,
and the modulus of momentum  is the effective
momentum at which integral 
(corresponding to the amplitude in the momentum
representation) is saturated.

Therefore, a virtual particle becomes almost real at
macroscopic distances, thus resolving the apparent
contradiction.

12.2. Neutrino Wave Function 
and Process Amplitude

Amplitude  (282) allows for a natural interpre-
tation in terms of the wave function of a virtual neu-
trino (see Section 8.4). The wave function of state ,
which was produced at point  in the source, at arbi-
trary point  is a WP in the SRGP approximation:

, where  and
 is given by (286). The momentum dispersion

of neutrino  produced in the source is defined by the
4-momenta and momenta dispersions of all in- and
out-packets in the source (see  in (293)). The wave
function of state  interacting at point  in the

47Compared to the spatial dispersions of functions .
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detector is also a WP  with momentum
dispersion  defined by the 4-momenta and disper-
sions of all in- and out-packets in the detector (293).
The projection of state  in the source onto
state  in the detector defines amplitude

12.3. Ensemble Averaging 
and Role of Relativistic Covariance

In accordance with intuitive expectations, the
interference of diagrams corresponding to external
states with well-defined momenta is suppressed.
Intermediate neutrinos with different masses  corre-
spond in this case to external states with different
momenta. In the limit of exactly determined
momenta, such states are orthogonal, and, in accor-
dance with the QFT rules, diagrams with different
external states need to be summed at the level of
squares of moduli of matrix elements. This eliminates
their interference. The calculation with WPs corre-
sponding to external states reproduces this rule. To
achieve that, one should always sum amplitudes.
Interference contributions in the square of the ampli-
tude modulus vanish automatically in the plane-wave
limit.

It is possible to determine the probability of neutrino
oscillations in the QFT formalism correctly by factorizing
expected number  of events (with the production of

charged leptons  and  in the source and the detector)
into three factors .
The calculation of the expected number of events is, in
turn, possible by the procedure of averaging over the
ensemble of initial particles and integrating in coordi-
nates and momenta of final particles. The Lorentz
invariance of  requires covariance of WPs corre-
sponding to external particles. By construction, this
requirement is fulfilled in our formalism. In addition,
the WP covariance is of fundamental importance in
the determination of impact 4-vectors. Nonzero
impact 4-vectors of scattering WPs suppress the inter-
action probability. It would be very hard, if not impos-
sible, to determine the correct form of suppression
associated with nonzero impact 4-vectors in a model

with a noncovariant WP , since the object
 is transformed in a very complex way under

Lorentz transformations.
The Lorentz invariance of the neutrino oscillation

probability follows directly from the covariance of the
formalism. It is instructive in this context to discuss an
apparent paradox related to the interference of neu-
trino states. Let there be two neutrino states with
masses  and . Let us  perform a
boost to the rest frame of the heavy neutrino. The
massless neutrino moves (with the speed of light) in

ψ , −( )dX xp
σdj
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this frame away from the massive neutrino  rest
towards the target. Is it possible for these two mass
states to be in a coherent superposition and induce
neutrino oscillations? The massless neutrino reaches
the detector well in advance of the heavy one and, it
should seem, may cease to overlap with it, thus damping
oscillations. The solution to this paradox is simple:
under Lorentz boosts, the WP form is transformed in
such a way that two WPs overlapping in a certain refer-
ence frame remain overlapping in any other. Thus, oscil-
lations do not vanish in any reference frame, although
their “pattern” may change dramatically. The formalism
covariance ensures the reconstructibility of this pattern
after the transition from one frame to another.

An important detail should be pointed out: since
the ultrarelativistic approximation was introduced in
calculations, the Lorentz invariance of the resulting
formulas is, strictly speaking, an “approximate” one.
This is still a fine approximation, since the velocity of
even a moderately energetic (anti) neutrino is close to
the speed of light:

However, the approximate Lorentz invariance,
which holds under Lorentz boosts with gamma factors

, is certainly violated in the formal
transition to the rest frame of a neutrino48. At the same
time, the formalism itself does not require the ultrarel-
ativistic approximation and may be applied to any pro-
cess with an arbitrary (even the most exotic) configu-
ration of momenta of external in- and out-packets49.
The ultrarelativistic approximation (together with
other simplifying assumptions) was used just to sim-
plify calculations and for convenience of comparison
of the obtained results with other approaches and
experimental data.

12.4. Probability of Flavor Transitions

Function  is not the probability of
neutrino oscillations in the quantum-mechanical
sense. It depends on the neutrino energy, the source–
detector distance, effective dispersion  of a neutrino
WP, and the widths of time intervals of operation of
the source ( ) and the detector ( ). In the general
case considered here, the neutrino emission and
detection times are not necessarily synchronized.

12.4.1. Synchronized and nonsynchronized mea-
surements. In the case of nonsynchronized production

48This is why the “proofs” of Lorentz invariance of the standard
formula for the oscillation probability, which one may find in
literature, are erroneous.

49We have prepared some “work pieces” for such potentially
interesting problems (and with educational purposes); see Sec-
tions 8.2.2 and Appendix D.
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and detection processes,  is, in accor-
dance with intuitive expectations, suppressed expo-
nentially. This fact alone explains why one should not
expect unitarity conditions (19) to be satisfied. In the
case of synchronized measurements, formula (315) (or
(318)) predicts a number of intriguing phenomena
stemming from the hierarchy of time scales , , and

.

Stationary source. The case of a stationary source,
which was discussed in Section 3.8, is obtained in the

 limit (or the  approximation). It differs
significantly from the quantum-mechanical approach
in that functions  and  depend on the event kine-

matics and, consequently, on the 4-momenta of 
and  (i.e., on indices , ). Therefore, the unitarity
conditions for  can be satisfied only if

the dependence of functions  and  on their vari-
ables and parameters (i.e., on indices , ) is weak.
With the exception of these important factors, the
quantum-field result is similar to the quantum-
mechanical one (see (71)). In particular, the vanishing
of interference terms at distances exceeding the coher-
ence length is predicted. The exponential loss of
coherence is compensated in part by the longitudinal
neutrino WP spreading. The spreading effect is also
manifested in the power suppression of interference
terms.

Function  gives rise to the exponential and dis-
tance-independent suppression of interference terms
in . The lower the neutrino energy-
momentum dispersion , the stronger the suppres-
sion. Thus, the probability of f lavor transitions
becomes distance-independent in the plane-wave
limit,  and neutrino oscillations vanish. The
formal reason for oscillation suppression is the above-
mentioned rule of the squared amplitudes summation
corresponding to diagrams with orthogonal external
states. The quantum-mechanical experiment with two
slits and an electron, which passes through them and
reaches a screen inspected by the experimenter, pro-
vides a fine physical illustration of this effect. If the
experimenter is able to determine the slit through
which the electron passed, the interference pattern on
the screen vanishes. The  case is thus equiva-
lent to identifying unambiguously the mass of an inter-
mediate neutrino; the interference of diagrams with
the exchange of  and  ( ) is then destroyed.

Function  illustrates why charged leptons do not
oscillate. The answer to this question was first pro-
vided in [134]; in the present study, we reproduced it
by using a different technique.
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The loss of neutrino coherence depends on  or
on relative dispersion . The available esti-
mates of its value for, e.g., reactor antineutrinos vary
within several orders of magnitude. Thus, assuming

 cm, which is equal to the size of the uranium
nucleus, one obtains an upper bound:  MeV.
Atomic or interatomic distances provide the following
estimate:  cm and  eV.
The broadening of lines at a nonzero ambient tem-
perature results in  cm and  eV. The
decoherence in neutrino oscillations may manifest
itself in future experiments with a large number of
oscillation cycles (e.g., the JUNO reactor experiment
[135]). Figure 24 shows the  survival probability for
distance L = 52 km (the planned experimental base-
line) as a function of the antineutrino energy. Calcula-
tions were performed in the standard (plane-wave)
model of neutrino oscillations and in the model with a
neutrino WP for two values of parameter ,
which are not exactly realistic, but are also not
excluded by the current experimental constraints. It
can be seen that the decoherence effect may play a sig-
nificant part in the determination of the neutrino mass
hierarchy at sufficiently large values of . Note that
the region of allowed  values, 
identified in [135] corresponds to the case when the neu-
trino WP effects for distances L  52 km are negligible
and the formula for  becomes numerically
equivalent to the formula for the flavor transition proba-
bility in the plane-wave approximation.

Nonstationary source. If condition , which
is typical for certain accelerator experiments, is ful-
filled, it becomes possible to measure dispersion  by
comparing the count rate to the one obtained from the
formula for . A new important factor
should also be mentioned here. If  and  are finite,

the suppression of interference terms (by factor ) is
somewhat weaker than that for a stationary source.
The functional dependence of the corresponding sup-
pression factor, which is independent of distance ,
but depends on operating time intervals  and  of
the source and the detector, was examined in detail in
Section 11. Let us discuss the issue of why the 
suppression at finite  and  is below the asymptotic

 limit, where  depends on the neu-
trino energy dispersion, on a qualitative level. This
effect may be interpreted by appealing to a quantum-
mechanical analogy: the measurement of the energy-
momentum at finite times is equivalent to introducing
an additional uncertainty, which makes the neutrino
states more coherent.

The proposed theory of f lavor transitions conclu-
sively resolves all the paradoxes of naïve plane-wave
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Fig. 24.  survival probability (at L = 52 km) as a function of the antineutrino energy in the plane-wave model and the model
with a neutrino WP for two values of .
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approximation  the quantum-mechanical theory.
In addition, it predicts a number of novel effects,
which can be studied in experiments with accelerator,
atmospheric, and reactor neutrinos and neutrinos
emitted by artificial radioactive sources. The results of
the first study of this kind were presented in [88]. The
potential influence of decoherence effects on the
accuracy of determination of mixing angle  in accel-
erator experiments was examined in [91]. However,
the possible loss of coherence is not associated here
with the WP nature; instead, it is related to the poten-
tial effects of interaction with the environment.

12.5. Wave Packet Observability

Although the model with a WP is undeniably effi-
cient in producing a theoretical description of neu-
trino oscillations, a reader familiar with classical stud-
ies (see, e.g., [98, 117]) on scattering theory can ask a
legitimate question: “It is indeed demonstrated in
textbooks on scattering theory that a consistent theo-
retical description of scattering processes cannot be
constructed without a WP. However, no information
on the WP properties is left in the cross section
obtained by averaging the interaction cross section
over an ensemble of scattering particles. At the same
time, event number Nαβ obtained after averaging over
a particle ensemble in the theory of neutrino oscilla-
tions with a WP depends explicitly on the dispersions

of

θ23
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of all WPs via functions , , etc. Is there a contra-
diction?” Let us try to answer this interesting question.
Let us retrace the key steps of Taylor’s calculations
[98] using our notation. WP scattering amplitude

can be presented as (see Section 6)

where  is the
state norm, and  is the matrix element in the plane-
wave approximation. The Taylor’s calculation [98]
(reproduced later by Peskin and Schroeder [117])
assumes that the dependence of matrix element

 of the process on momenta  is
weaker than the momentum dependence of a WP

. The following factorization is possible in this
approximation:
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and macroscopically averaged  is indeed inde-
pendent of the WP type [98].

However, the Taylor’s approximation is not always
valid. Let us list several counterexamples.

(1) The dependence of  on momenta
 may be strong (e.g., hadronic resonances).

(2) The possibility of measurement of the phase of
a matrix element in the linear approximation to the
plane-wave cross section is proposed in electron vor-
tex beams (a variation of a WP) [136, 137]. The intro-
duction of quadratic corrections to the Taylor’s
approximation also allows one to measure the phase of
a matrix element [122]. Such measurements are not
possible in the plane-wave approximation.

(3) The cross sections of certain processes (e.g.,
) calculated in the plane-wave approxi-

mation contradict experimental data [118]. As was
noted in Section 6, the measured cross section turned
out to be ~30% lower than the calculated one in the
region of low photon energies. This is attributable to
the fact that impact parameters  up to 5 cm produce
a significant contribution to this cross section,
whereas the transverse size of colliding beams was no
larger than  cm. If impact parameters are lim-
ited to , the observed number of photons
decreases. The theory with a finite size of colliding
beams taken into account was developed in [120].

(4) If the matrix element is a sum of singular matrix
elements, e.g.,

it is not possible to “defactorize” the WP form at a sin-
gle point in the transfer of 4-momentum  if masses

 are different. Matrix elements of this type corre-
spond to the interference of diagrams with virtual neu-
trinos in the quantum-field theory of neutrino oscilla-
tions (or, more correctly, f lavor transitions). Thus, the
analysis of neutrino oscillations in the quantum field
theory with a WP is indeed an important exception
that is not covered by the Taylor’s approximation.

13. CONCLUSIONS
Let us summarize the results.
It has already been noted multiple times (starting

from the 1970s) in the literature that the plane-wave
quantum-mechanical theory of neutrino oscillations
is incomplete and self-contradictory. We have dis-
cussed critically the hypotheses and approximations
underlying this theory and tried to outline the domain
of their applicability using one of the simplest exten-
sions of the plane-wave theory based on the model of
a neutrino WP. The general properties of a WP were
studied within the noncovariant quantum-mechanical
formalism. Several well-known features of a WP such

2
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as the quasi-classical nature  its trajectory and the
general law of spreading in the configuration space
were reproduced. One novel result is the proof that the
WP spreading leads to inverse-square law  for
the probability of finding a state at distance  from the
source in a sufficiently long observation time. The the-
ory of neutrino oscillations was constructed within the
model of a noncovariant Gaussian WP. A correct der-
ivation of the formula for the probabilities of f lavor
transitions via macroscopic averaging of the squared
modulus of the transition amplitude was proposed. A
general formula for the probabilities depending on
oscillation length , coherence length , disper-

sion length , and effective spatial size  of a neu-
trino WP (see the definitions in (73)) was obtained as
a result. This formula predicts the following:

(1) Loss of coherence for a pair of states  and 

at distances . The probability of oscillations at
very large (astronomical) distances is then reduced to
noncoherent sum  that is inde-

pendent of energy and distance50.
(2) Noncoherent production (or detection) of neu-

trinos, which is governed by factor
 (see (78)). This

factor explains why charged leptons do not oscillate.
(3) Corrections to the oscillation phase associated

with the neutrino WP dispersion effect.
(4) Partial compensation of the loss of coherence

for a pair of states  and  due to packet spreading.
(5) Additional suppression of interference terms by

factors of the  form (see (79)).
A covariant theory of relativistic wave packets,

which are constructed as linear superpositions of sin-
gle-particle Fock states with definite momenta and
evolve into these states in the plane-wave limit, was
proposed. The properties of such packets were studied.
It was demonstrated, e.g., that mean 4-momentum

 of a relativistic packet and its effective volume 
are exact integrals of motion. At the same time,

, where  is the effective mass of a WP,
which always exceeds the mass of quanta of the corre-
sponding free field. A relativistic packet moves, on the
average, along a classical trajectory with velocity

 (where  and  are its most probable
3-momentum and energy, respectively), and quantum
fluctuations about this trajectory decay at distances

50This result is also reproduced in the quantum-field theory and
is the real reason (as opposed to the meaningless “averaging
over sources” mentioned in many papers) why astrophysical
neutrinos do not oscillate, with an important reservation that
the interactions of neutrinos with matter in the astrophysical
source are neglected.
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QUANTUM FIELD THEORY OF NEUTRINO OSCILLATIONS 79
that are large compared to the effective size of the
packet. The suppression of f luctuations transverse to
vector  is weaker than that of longitudinal f luctua-
tions, and ultrarelativistic packets may have only
transverse f luctuations (i.e., packets move within clas-
sical light cones). Multipacket states characterizing
systems of  free identical bosons or fermions were
studied. It was demonstrated that the effects of Bose–
Einstein attraction and Fermi repulsion are significant
only at distances comparable to the effective size of
packets and become negligible at larger distances.

A relativistic Gaussian packet characterized by a
single phenomenological parameter , which defines
the scale of quantum 4-momentum fluctuations and
the effective packet size, was examined thoroughly as
the simplest working model of a “memoryless” relativ-
istic wave packet satisfying all the requirements of the
formalism. The regime in which the RGP spreading is
negligible (SRGP model) was studied in detail. This
regime provides an opportunity to use an RGP in the

-matrix QFT formalism to characterize asymptoti-
cally free states of stable and unstable (but relatively
long-lived) particles. It was demonstrated that all
unstable long-lived particles and atomic nuclei
regarded as important decay sources of neutrino and
antineutrino beams have fairly wide regions of allowed
values of  satisfying all the constraints of the SRGP
model under which a wave packet does not spread
within the particle lifetime.

The developed theory was used to describe the
scattering of relativistic WPs. The amplitude of an
arbitrary process of the form  in the

-matrix QFT formalism with WPs was calculated.
The general formula for the rate of this process was
obtained (see (180)):

where  is the standard plane-wave cross section,
and  is the luminosity of scattering of
two WPs as defined in the scattering theory and accel-

erator physics. Factor  introduces geomet-
ric suppression of the interaction probability of two
WPs scattered with a nonzero impact parameter

, where  is the impact vector and  is
a unit vector codirectional with relative velocity .

 is the effective spatial dispersion of
the region of overlap of two Gaussian WPs with spatial
dispersions  and  and impact parameter .
This result has been obtained for the first time in [120]
with the use of the Wigner function. In the present
study, it was reproduced within the covariant WP for-
malism. Macroscopic averaging of the probability of
interaction of colliding packets over the impact
parameter yields standard formula , where
luminosity  is defined by the spatial dispersions of

pv
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WPs and beams of particles  and . The Lorentz
invariance of impact parameter  was proven.

The technique of calculation of macroscopic Feyn-
man diagrams with the exchange of massive neutrinos
was developed. It is based on the covariant theory of
wave packets, where the states of free fields (external
legs of macrodiagrams) are constructed as linear
superpositions of single-particle Fock states that pass
into these states in the plane-wave limit. The overlap
integrals of packets, which characterize the spatiotem-
poral overlap of in- and out-packets in the source and
detector, were studied in detail. These integrals
account for the key differences between our approach
and the standard QFT formalism, which utilizes states
with definite momenta smeared over the entire space-
time. It was demonstrated that the overlap integrals are
small in absolute value if the classical world tubes of
packets are located far away from impact points (4-
vectors  and , which define the position of effec-
tive regions of interaction of packets near the macrodi-
agram vertices). The conditions under which in- and
out-packets may be considered asymptotically free
were formulated.

The amplitude of process (231) of the general form
with the production of two oppositely charged leptons

 and  at macroscopically separated diagram verti-
ces with an arbitrary number of other particles
(all external legs are wave packets) was calculated. It
was demonstrated that diagram blocks characterizing
the interactions of hadrons may be presented as a
product of two hadronic currents that are associated
with the source and detector vertices and depend only
on the corresponding sets of variables (momenta,
spins, and coordinates of external packets). As a result,
the amplitude was presented as a sum of products of
matrix elements of the subprocesses of production and
absorption of a real massless neutrino and factor

, which may be interpreted as a spherical wave of
a neutrino with mass  with amplitude  having the
form of a relativistic Gaussian packet with its “disper-
sion” being a relativistically invariant function of the
effective neutrino energy as well as momenta, masses,
and momenta dispersions of all external packets. The
amplitude includes geometric suppression factors,
which are associated with the incomplete overlap of
external packets at the diagram vertices, and nonsin-
gular factors, which ensure approximate energy-
momentum conservation at these vertices, as common
factors.

Since process (231) is, in the general case, lepton
number violating, experimental studies of this process
are an important source of information on the mixing
parameters and the differences between squared neu-
trino masses. A Lorentz-invariant formula for the
probability of process (231) was derived and subjected
to statistical averaging, which led to an experimentally
measurable quantity, the differential number of events

a b
×b n
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80 D. V. NAUMOV, V. A. NAUMOV
in the detector (dNαβ). The terms “source” and
“detector” are used here to denote mathematical
models characterizing the conditions of an actual
experiment. With a number of simplifying assump-
tions introduced, the formula for  can be pre-
sented as a multidimensional integral of the product of
differential forms  and , which characterize
the f lux (energy spectrum) of massless neutrinos and
the differential cross section of their interaction with
the detector, and factor , which is the generaliza-
tion of the standard quantum-mechanical expression
characterizing f lavor transitions . It was
demonstrated that quantum-field function  did
not have probability features, since it includes, in
addition to the standard oscillation factor, decoher-
ence factors that depend on neutrino energy  and
momenta  of external packets (variables of integra-
tion over the phase space of process (231)) and on
masses  and parameters  (uncertainties of
momenta of external packets, including the packets of
leptons ).

The value of general decoherence factor , which
suppresses the mean event count rate in synchronized
measurements, is defined within a simple model for
the distribution functions of in-packets in the source
and detector by the ratio of source operation time 
and detector exposure time  and by space-time
width  of the effective neutrino WP, where

is a function of  and . The suppression is weak
if  or . The strong dependence of

 on parameters  and  provides an opportunity to
measure the averaged value of function  by varying
these parameters (or one of them) in a specialized
accelerator or reactor experiment51. Such measure-
ments (even rough ones) would provide useful refer-
ences for planning and processing the data of future
precision experiments at neutrino factories and exper-
iments with -beams, “ultrabeams,” etc. The behavior
of nondiagonal decoherence factors  ( ) is more
complex, which is illustrated by analytical and numer-
ical estimates given above. It was demonstrated that
factor  ceases to depend on  and  in the

 asymptotic regime and may induce
strong suppression of oscillatory contributions to .
The conditions under which the decoherence effects
are weak (and, consequently, the standard quantum-
mechanical formula for the probability of f lavor tran-
sitions is applicable) were formulated. It was shown
that the decoherence effects need to be taken into
account in current accelerator experiments utilizing

51Only one experiment of this kind, where our model (in its max-
imally simplified form) was used in the data analysis on vanish-
ing of reactor , has been performed to date [88].
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short pulsed neutrino beams. These effects are also
significant in astrophysical neutrino experiments (due
to the spreading of a neutrino wave packet at large dis-
tances). The procedure for measurement of decoher-
ence factors in future experiments was discussed.

To conclude, let us formulate the key results of this
study.

(1) The covariant WP formalism, which eliminates
artificial singular state normalizations typical of the
standard -matrix QFT approach, was developed.

(2) The new model of a relativistic Gaussian WP
was proposed. The difficulties in generalizing the for-
malism with a WP of a more general form are technical
rather than fundamental.

(3) The interaction points of in- and out-packets
are arbitrary. This leads to a four-dimensional gener-
alization of the impact parameter. A correct definition
of points  and , which characterize the neutrino
production and absorption, follows automatically
from the formalism. These points are not set ad hoc,
as is done in all the other approaches that we know of.
In contrast, they emerge automatically as effective
points contained in the phase of the complex-valued
four-dimensional overlap volume of packets with arbi-
trary initial or final coordinates  and velocities ,
which define uniquely the classical world tubes of
packets. The factors of geometric suppression of the
WP interaction probability for noncollinear collisions
and the overlap volumes (with nonzero impact param-
eters factored in) were calculated.

(4) The longitudinal dispersion of the effective
neutrino WP is automatically taken into account in the
formalism.

(5) A correct method for macroscopic averaging,
where arbitrary (finite or infinite, synchronized or
nonsynchronized) time intervals of operation of the
source and detector are taken into account, was devel-
oped and applied. A formula for the number of events
corresponding to a macroscopic Feynman diagram of
a rather general form was derived. Its generalization to
other types of macrodiagrams is fairly evident. An
expression generalizing the probability of a f lavor
transition, , with consideration of all the above
effects was obtained.

(6) In all physically reasonable limiting cases, the
formulas for  either agree with the ones verified
experimentally or predict novel nontrivial effects.

The following are examples of novel effects:
(1) Dependence of the probabilities of f lavor tran-

sitions (more exactly, the count rate for events with
violation of lepton numbers) on finite time intervals of
operation of the source and detector. This is import-
ant, e.g., for experiments with accelerator neutrinos.

(2) Exponential suppression of the number of non-
synchronized events.

S

Sx Dx
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QUANTUM FIELD THEORY OF NEUTRINO OSCILLATIONS 81
(3) Spreading of the effective neutrino WP at large
distances.

(4) Dependence of the neutrino momentum dis-
persion on the event kinematics in the source and
detector. Explicit formulas describing this dependence
were derived in the most general case (i.e., for arbi-
trary reactions in the source and detector) and ana-
lyzed in detail for the simplest and the most important
processes (two- and three-particle decay, quasi-elastic
scattering) in the plane-wave limit.

APPENDIX A
PROPERTIES OF OVERLAP TENSORS

A.1. General Formulas for  and 
Let us examine the general properties of overlap

tensors

It is useful in this regard to write matrices
 in the explicit form:

or, equivalently,

Here and elsewhere,  and  ( ) are the
components of vectors  and , respec-
tively ( ). As above, index  designates packets
from all four sets of initial ( ) and final ( ) states.
It is evident that , but . This

follows from the positivity of quadratic forms 
under the assumption that  for at least two
packets . Note also that  and,

consequently,  The positivity of all
principal minors is another important property of the
determinant . It then follows that the spatial parts

of matrices  (i.e., matrices  ( )) are
also positively defined; therefore, quadratic forms
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In what follows, the following definitions are used:

(A.1)

Here and elsewhere, indices  and  are omitted for
simplicity. Spatial indices  assume the values of 1,
2, 3; it is assumed, unless stated otherwise, that

, and the  triad in each formula con-
taining all three indices is a cyclic permutation of (1, 2,
3). The determinants of  and  may be written in
this notational convention as

(A.2)

A.2. Inverse Overlap Tensors 

The matrices inverse to  are defined in terms of

algebraic cofactors  of the matrix elements of :

(A.3)

(A.4)

The matrix elements of  are then given by

where

Explicit formulas for the components of inverse
overlap tensors in terms of the most probable 4-veloc-
ities were obtained in [123]:
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The multiindex expressions (symmetric in Lorentz
indices) appearing in (A.5) take the form

This result was obtained without assuming energy-
momentum conservation.

The positive definiteness of symmetric matrices
 (and, consequently, ) leads to a number of

strict inequalities; in particular52,

(A.6a)

Similar inequalities are valid for the cofactors 

and  (since ) and for the elements of

matrix  (without summation over
repeated indices):

(A.6b)

Inequalities (A.6b) have important corollaries such
as the positivity of functions  and .
Indeed, the following is true in the reference frame
with axis  directed along unit vector :

52The left-hand sides of inequalities (A.6a) are the principal
minors of the first and the second orders. It is implied that
summation over repeated indices is not performed in (A.6a)
and (A.6b).
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Since these quantities are rotationally invariant, it
follows from (A.6b) that  and .
It is evident from the latter inequality that quantity (285)
is positive. This results in the suppression of probabil-
ity (297).

Functions  and  are constructed from the com-
ponents of 4-vector , where

and tensor components . Note that
scalar product  and zeroth com-
ponent  are the only quantities actually
needed to calculate function . It is also sufficient to
determine them in the PW  limit, where calculations
are simplified considerably. In what follows, we use
symbol  to denote that function  is calculated in
the PW  limit. In these terms,

Let us examine several simple types of processes in
the source and detector, which are relevant to real-life
neutrino experiments, to clarify these general formulas.

A.3. Two-Particle Decay in the Source

Let us study the simplest process: lepton decay
 in the source ( ). Here,  is a charged

meson ( , , ),  is a charged lepton
( ), and  is a virtual neutrino or antineu-
trino. Since such decays are the primary sources of
high-energy accelerator, atmospheric, and astrophys-
ical neutrinos and antineutrinos, we examine this
example in sufficient detail53.

A.3.1. Formulas for arbitrary momenta. In the case
under consideration, the determinant of matrix  is
easy to calculate using formula (A.2) written in the
intrinsic frame of the meson packet54:

(A.7)

53Naturally, the formulas given in this section hold true for any
two-particle decay (e.g., decays of relativistic ions via the cap-

ture of an orbit electron (such as ) in the
thought experiment on detection of low-energy neutrinos from
the EC decay. With certain reservations, the formulas are also
applicable to the consecutive processes of emission and reso-
nance absorption (induced by the electron capture) of a Möss-

bauer antineutrino (e.g., , ).
54Subscript  denotes the intrinsic reference frame of a meson.

Throughout the present section, indices  and  denote the
corresponding particles and should not be confused with
Lorentz indices.
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Here,  and . Since
determinant  is Lorentz-invariant, it is trans-
formed to the laboratory frame by substitution

where

is the invariant relative velocity of a meson and a lep-
ton in the laboratory frame. Note that the kinematic
variables corresponding to different particles are inde-
pendent in this formula because they are not con-
strained by the energy-momentum conservation law.
In the particular case with a virtual neutrino on the
mass shell and the neutrino mass and the spreads of
lepton and meson momenta being negligible, one may
use the common relations of the two-particle decay
kinematics, which state that

A somewhat more complex calculation involving
general formulas (A.4) allows one to determine the
explicit form of cofactors :

(A.8)

An explicitly Lorentz-invariant formula for the
components of the inverse tensor may be derived
from (A.8) or (A.5):

It follows that

(A.9)

Let us now find the explicit form of 4-vector  with
its components defined as

With elementary transformations, the following is
derived from (A.8):

(A.10)

Useful identities:

A.3.2. PW0 limit. Since kinematic constraints were
not applied in the derivation of formulas in the previ-
ous section, they hold true for an arbitrary 4-vector .

Let us now introduce the exact conservation laws (i.e.,
pass to the PW  limit, which implies in this special
case that  and ):

where

are the energies of a lepton and a neutrino in the
intrinsic reference frame of a meson. Inserting these
relations into (A.9), we find the PW  limit for qua-
dratic form :

(A.11)

Estimation of the parameters of an effective neutrino
packet. In order to illustrate the result, we consider a
special (although fairly realistic) case when the contri-
bution from the reaction in the detector to complete
function  may be neglected (i.e., it is assumed that
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parameters  for all  are sufficiently large com-
pared to  and ). This assumption is valid in exper-
iments with accelerator and atmospheric muon neu-
trinos and antineutrinos. The interactions of mesons
and muons in the source (decay channel, atmosphere)
with each other and the medium are normally negligi-
ble in such experiments; therefore, the values of  and

 are very small (close to the limiting ones in the
SRGP model). The values of parameters  for long-
lived in- and out-particles  (nuclei, hadrons, leptons)
in a typical detector are defined by their mean free
paths in the detector medium rather than by their
decay widths55; thus, . At the very least, the

 condition is satisfied for short-lived particles
and resonances that are produced in the detector and
decay prior to interacting with the medium.

Thus, using (A.11), we find

(A.12)

and, consequently,

(A.13)

It is evident that the effective wave packet of a vir-
tual neutrino with a given mass is defined completely
in this simplest case by the masses and momentum
spreads of packets  and , and the values of  for all
three known neutrinos are exceptionally small at any

 and  allowed by the SRGP approximation. In
addition, since all the other (known) elementary par-
ticles with a nonzero mass are many orders of magni-
tude lower than the three known neutrinos, we con-
clude that . Although these estimates were
obtained without including the contributions of the
reaction in the detector, they explain qualitatively the
relevance of the standard quantum-mechanical
assumption that light neutrinos have definite
momenta in spite of the fact that they are produced in
processes involving particles with relatively large
momentum spreads. It follows from (A.12) that 
at ; i.e., massless neutrinos may be regarded as
plane waves. With obvious reservations, this remark-
able fact may be used in the analysis of processes sim-
ilar to those depicted in Fig. 8, where light massive
neutrinos act as external wave packets.

The conditions of applicability of the SRGP
approximation for unstable particles

(  is the total decay width of particle ) yield
the following important constraint:

Thus, two-particle decays of any mesons with a
muon in the final state ( , , etc.) are constrained
from the above:

therefore, . This yields the
following lower bounds for the effective sizes of a neu-
trino packet transverse and longitudinal with respect
to the neutrino momentum56:

The constraints on the characteristics of neutrino
packets emerging in  decays depend on the type of the
decaying particle. For example,  in
the decay of a  meson. At  eV, this corre-
sponds to a limiting effective transverse size of a neu-
trino packet of “just” 6.6 m.

Effective sizes  and  define (in the order of
magnitude) the allowed transverse and longitudinal
quantum deviations of the center of the neutrino wave
packet from “classical trajectory” . Evi-

dently, transverse deviations  may be huge
and exceed in magnitude the size of current neutrino
detectors and the natural accelerator neutrino beam
divergence (all over distances of several hundred or
thousand kilometers from the source). This should
come as no surprise if one remembers that the stan-
dard quantum-mechanical description of a massive
neutrino as a state with definite momentum implies
(as a direct consequence of the uncertainty principle)
that its transverse and longitudinal “sizes” are infinite.
When data from common experiments on neutrino
oscillations are interpreted, this description does not
yield nonphysical results because neither the trans-
verse size of a neutrino packet nor transverse quantum

55Wave packets form anew in each (inelastic or elastic) interaction
of a particle with the medium and external fields.
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QUANTUM FIELD THEORY OF NEUTRINO OSCILLATIONS 85
f luctuations are found in the expression for the count
rate of neutrino events averaged properly over spatial
coordinates  of external packets. This averaging also
eliminates automatically the dependence on time
components ; only the dependence of the count rate
on external (“instrumental”) space-time variables set
by the experimental conditions57 remains. Large trans-
verse sizes of a neutrino packet may manifest them-
selves in specialized neutrino experiments, where both
the source–detector distance and the time interval
between the neutrino production and its interaction
are monitored. Such experiments will be discussed in
a separate study.

The effects of noncollinearity of momentum trans-
fers in the source and detector are contained in func-
tions  and . The properties of these functions are dis-
cussed below.

Contributions to functions  and . Using general
formula (A.10), we find 4-vector Ys in the PW0 approx-
imation:

Scalar products needed to calculate the a,2 contri-
butions to function  take the form

This yields the following:

Function  may serve as an estimate for complete
function  if, just as with function , we neglect the
contribution to  from the detector part of the dia-
gram (in the present case, from  and ) assuming
that parameters  ( ) are sufficiently large com-
pared to  and . Since function  depends linearly

57However, it should be kept in mind that the applicability condi-
tions of the mathematical averaging procedure are rather
restrictive and are by no means guaranteed to be fulfilled in all
neutrino experiments. For example, they are definitely violated
in accelerator experiments with a baseline shorter than the
effective transverse sizes of neutrino packets.

û
x

û

0x

n

n m

� � ν
ν

ν
ν

  
= + −  σ σ σ  

  
= + − .  σ σ σ  

�

�

� �
�

� �

w

w

2 22

2 2 2

22 2

2 2 2

1

1

a a
s a

a a a

a

a a

m mmY p p
m E

mm mp p
m E

n

� �
μν

μ ν
νν

 
= = + σ σ 
ℜ �

�

� �
� �
�

22

2 2
1 1a

s s
a

mmY l q q
EE

� � � �
ν

ν ν

ν

Γ= − =

    
× + − − .    σ σ σ    

�

�

w

w

0

2 22

2 2 21

a
s s s

a a a

a aa a

Y Y Y l
E

m m E m Em
E E E

l

( )

ν

ν
ν

ν

   σ= Γ −   σ + σ   

× − ≡ , .

�

� �

� �
� �
� �
� �� �

n
w

2 2

2 2 2 2

1

a
a

aa a

s a

m Es
Y l mm ms

E E E
E

Y l

n s

n D
n

0
dY dY l

σ
û

∈û D
σa σ� n s
PHYSICS OF PARTICLES AND NUCLEI  Vol. 51  No. 
on Ea at a fixed value of Eν, the following inequality
holds true:

where

is the minimum energy of particle  needed to produce
a massless neutrino with energy  in an  decay.
Thus, the absolute minimum of function  is negative:

Function  increases with neutrino energy and
may be arbitrarily large at :

As is well known, the neutrino energy distribution
in an  decay is uniform (i.e., independent of )
within the following kinematic bounds:

It follows that the mean energy of a decay neutrino
is . Therefore, the following is true to
within  at high energies of decaying mesons,

:

Consequently,

Under the same assumptions, retaining only the
leading terms in  and , one may estimate the

-decay contribution to function :
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It can be seen that ; however, inequali-
ties (284) assumed in Section 8.2.1 remain valid at

.

A.4. Quasi-elastic Scattering in the Detector
Let us consider the quasi-elastic scattering of a vir-

tual neutrino , where target particle  may
be an electron, a nucleon, or a nucleus and  is a
charged lepton, as the simplest (and the most import-
ant) example of a reaction at the detector vertex. Since
the velocities of target particles in the laboratory frame
are very low (thermal) in a typical neutrino experi-
ment, we assume that the laboratory frame coincides
with the intrinsic frame of a wave packet describing the
state of particle . If necessary, all formulas may be
rewritten in any other reference frame, since we are
concerned just with vectors and tensors, and the laws
of their transformations are well known.

A.4.1. Formulas for arbitrary momenta. The deter-
minant of matrix  in the intrinsic reference frame of
packet  takes the form

(A.14)

Here,  is the relative velocity of particles  and
, and . One important implication

of this formula is that determinant  remains non-
negative even if one (but only one) of the particles
( , , or ) is described by a plane wave. If, e.g., one
neglects the terms proportional to , formula (A.14)
takes the form coinciding with that of (A.7):

(A.15)
This important feature provides an opportunity to

simplify the analysis of multipacket in- and out-states
by neglecting the contributions of packets with very
large spatial sizes (characterized by very small values of
parameters ). However, it should be kept in mind
that approximate formula (A.15) is applicable only if

58. The same is true in the general case; i.e.,
when omitting the contributions of packets with very
small values of , the phase-space regions within
which determinants  and  calculated in this
approximation vanish, should be cut-off. Such regions
are typically located near the kinematic boundaries of
the phase space and do not contribute to experimen-
tally measureable characteristics.

According to (A.4), cofactors  are written as
follows:

58We should recall that  in (A.7) is always nonzero.
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The following is then obtained for an arbitrary
4-vector :

Using (A.16), we determine the components of
4-momentum :

The coefficient functions found here are given by
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As it should be, the above expressions are symmet-
ric with respect to index interchange , and their
explicitly noncovariant form is attributable to the use
of a special reference frame.

A.4.2. PW0 limit. The kinematics of reaction 
in the PW  limit allows one to write quantities ,

, and  in terms of two arbitrary indepen-
dent invariant variables; we used the standard pair of
variables

In order to rewrite the expressions from the previ-
ous section in terms of these variables, we use the fol-
lowing exact kinematic relations:

where  and  are the
energy and the momentum of a massless neutrino in
the laboratory frame;

are the energies of particles , , , and  in the cen-
ter-of-mass system of colliding particles  and ,
which is determined by

and . Lepton scattering angle  in the cen-
ter-of-mass system is related to :
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The kinematically allowed region of the phase
space is defined by the following inequalities:

(A.17)

(A.18)

Performing elementary (although rather cumber-
some) algebraic transformations, we find

Nonzero coefficients ,  ( ), and
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Thus, quadratic form  and scalar product

 are rational functions of variables  and :

The following function was introduced here59:

It is also expedient to introduce function 
defined in the following way:

Although neither  nor  have a clear physical
meaning, they help illustrate the behavior of functions

 and , which are of interest to us, in the special case
when the contributions to  and  from the reaction
in the source can be neglected60. This case is defined
by the following conditions:

In the simplest particular case with  =
 (these relations characterize the

scaling of effective sizes of packets), one can demonstrate
that functions  (and, consequently, ) and 
are independent of parameter  and are defined by the
kinematics only. The domains of functions  and 
are bounded by kinematic conditions (A.17) and (A.18),
and the shape variations of surfaces shown in different
panels are attributable primarily to the differences in
reaction thresholds (A.17) (essentially, the differences in
masses of final leptons). Therefore, these variations are
smoothed out at sufficiently high energies (i.e.,

). The fact that function  turns to zero at
 for thresholdless reaction  is irrele-

vant to our analysis limited to ultrarelativistic neutrinos61.

59It is worth noting that, in contrast to , function  is not a
relativistic invariant, although it is expressed (in the laboratory
frame) in terms of two invariants.

60This case is exactly the opposite of the one discussed as an
example in Section A.3.2.

61We should recall that the formulas for dispersion are modified
greatly at ; see Section 8.2.2.
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In the general case, the behavior of functions  and
 is much more complex. Naturally, this assumption,

which was adopted for purely illustrative purposes, is com-
pletely arbitrary and unrealistic. In a more realistic case,

, even function  varies strongly within
its domain, and the features of its behavior are hard to
reproduce in a two-dimensional plot. Let us consider the
most important limiting cases, asymptotics, and inequali-
ties to gain a better understanding of the properties of func-
tions  and .

A.4.3. Low-energy limits of functions  and .
The limits of functions  and  at the kinematic
threshold of quasi-elastic reaction  in
the detector are as follows62:

It is assumed here that . The thresh-
old values of  and  are

The following is then obtained for the thresholdless

reaction ( ,  ):

Thus, function  may assume a value of exactly zero
only in a thresholdless reaction (e.g., ) at .
Naturally, this formal limit goes well beyond the bounds of

ultrarelativistic approximation , which
was used in derivation of the formulas for functions  and

, and is of no practical importance, because ultrarelativ-
istric neutrino and antineutrino beams63 only are used in
all current neutrino experiments. It is of interest to note

that the limit of  at  and 
(for a thresholdless reaction), which is given by

may still be large in magnitude if at least two out of three parameters , , and  are small compared to .

A.4.4. High-energy asymptotics of functions  and . Under the assumption that  and ,

the asymptotic behavior of functions  and  at high energies is independent of :

These asymptotics satisfy the following inequalities:

( , ), and their limiting values at kinematic boundaries are

62All formulas are written in the PW  limit, which implies the exact energy-momentum conservation in reaction  plus .
It is also assumed (unless stated otherwise) that all parameters  are nonzero.
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It is evident that these quantities are symmetric with
respect to index interchange . The 
threshold values vanish at specific relations between
parameters  and masses. The next ( ) corrections
need to be taken into account in these exotic cases.

In the particular case when target particle  is a
nucleon, it follows from dynamic considerations that,
at high neutrino energies, the mean scattering angle in

the center-of-mass system, , is equal in order of
magnitude to the inverse Lorentz factor of a lepton

. Therefore,  and ,
where  is the scattering angle of a lepton in the labo-
ratory frame (coinciding with the intrinsic frame of a
nucleon). It can be demonstrated that the correspond-
ing asymptotics of functions  and  take the form

Since only a narrow region of angles close to
 produces a significant contribution to the

count rate for quasi-elastic events at high energies, one
may conclude that effective asymptotic value  is
almost constant and is defined primarily by momen-
tum dispersion  of the lepton WP. Arbitrary64 varia-

tions of parameters  and  may change the asymp-
totics only within a factor of two.

The asymptotic behavior of  changes dras-
tically if one (and only one) of the  parameters turns
to zero. If  or , the asymptotics is inde-
pendent of :

and if , increases quadratically with :

Other variables. Certain properties of function  become more evident if it is rewritten in terms of variables
 and . Let us consider the asymptotic expansion of  at  and a fixed value of . If the values of

 are not too small, it can be written as

At , one finds

As was already noted,  at high
energies. It can be demonstrated that the correspond-
ing asymptotic expansion takes the form
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where

It is evident that the effective asymptotic 
value is almost constant and, since , is
defined primarily by the momentum dispersion of the
lepton packet.

The case of strong hierarchy. Function  is
simplified considerably in the case of a strong hierar-
chy of parameters , , and  Calculating the cor-
responding sequential limits, we obtain the following:

It can be seen that65 the shape and the value of
function  are not affected by the smallest and
the largest of parameters σ. This nontrivial property
may be generalized to the case of processes with an arbi-
trary number of particles in the final state. In the strong
hierarchy scenario, the only significant parameter is the
second-largest dispersion. This is useful in the analysis of
multiparticle processes (with more than two external
packets), since one may then treat packets with (compar-
atively) very small  as plane waves. In particular, the
calculation of radiative corrections with plane-wave pho-
tons in the external legs of Feynman diagrams is simpli-
fied significantly, since the standard QFT calculation
methods become available. We should recall that loop
electroweak corrections do not introduce additional
computational complications associated with the WP
formalism, since all of them are formally included in the

corresponding matrix elements and are in no way related
to the characteristics of external in- and out-states.
Under the convention adopted in the main text, the
external legs of diagrams do not feature gauge bosons.

A.5. Three-Particle Decay in the Source
The general formulas characterizing three-particle

decay  agree formally with the ones for the
 scattering (if they are considered in the intrinsic ref-

erence frame of particle ). The primary difference is of
kinematic origin. Therefore, we discuss this case in brief.
Just as in the case of the  scattering, functions 
and  may be written in terms of two independent
invariant variables. One may use, e.g., any pair of invariants
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which are related by identity  =
, as these variables. The physical domain

for them is defined by conditions

For definiteness, we use the  pair. The
domain of definition for this pair is the Dalitz diagram

where

Using the results obtained in the previous section,
we find Therefore, quadratic form  is a rational

function of variables  and ,

Nonzero coefficients  and  ( ) take the form

We will not study the limiting cases and asymptotics
in detail, because they may  obtained from the formu-
las for quasi-elastic scattering in the detector. As an

example, we consider the case of a strong hierarchy of
parameters , , and , where, as in the case of the

 scattering, function  is especially simple:
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It can be seen that, under strong hierarchy, the
shape and the value of function  are not
affected by the smallest and the largest of parameters.

APPENDIX B

MULTIDIMENSIONAL 
GAUSSIAN QUADRATURES

Integrals

(B.1)

where  is a symmetric positively defined
matrix and  are arbitrary complex constants66, are
used often in the main text. Although such integrals
are well known (see, e.g., [138]), we detail here a sim-
ple calculation of (B.1), since the published papers
suffer from a certain confusion (or, to put it better, lack
of agreement) regarding the definition of the matrix
inverse to  in the Minkowski space. Symmetric
matrix  can always be diagonalized with orthogonal
transformation  (see, e.g., [139]):

(B.2)

where  are (positive) eigenvalues of matrix . There-
fore, the quadratic form in the exponent of the inte-
grand in (B.1) may be rewritten as

(B.3)

where  and, consequently, .
The Jacobian of this transform is , so .
Inserting (B.3) into (B.1), we reduce the integral to a
product of standard Gaussian quadratures:
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The following is then obtained for the 3-dimen-
sional Euclidean space:
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In the 4-dimensional Minkowski space,
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Note that  in the latter case, because
,  It is evident that the

eigenvalues of matrix  are ; therefore, it is
positively defined. Naturally,  In the case of

most importance to us (with quantities  and 
constituting a tensor and a 4-vector, respectively),

 is a Lorentz scalar, since integral (B.1) is also
a Lorentz scalar.
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66In this study, quantities  and  are the components of a
tensor and a 4-vector, respectively, but this is not significant for
subsequent analysis. In addition, (B.4) is independent of the
dimensionality and signature of spacetime.
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APPENDIX C
FACTORIZATION OF HADRON BLOCKS
Let us demonstrate that, under certain reasonable

assumptions formulated below, hadronic matrix ele-
ment (233) may be reduced to form (235).

To this end, we express the matrix element at the
right-hand side of (234), which includes elementary
quark currents  and , in terms of hadronic cur-
rents. Using the definition of a chronological product
of local operators, we write67

(C.1)

where

(C.2a)

(C.2b)

and

(C.3)

is the evolution operator for the hadronic part of the
Lagrangian. Utilizing the well-known properties of
this operator

we rewrite expression (C.2a) in the following way:

(C.4)

Here,  is an arbitrary parameter. Let us now
define the hadronic current operator (in the Heisen-
berg representation) as

(C.5)

Equation (C.4) may then be rewritten as

(C.6a)
In a similar fashion, the following is derived

from (C.2b):

(C.6b)
Inserting (C.6) into (C.1), we find

(C.7)

As is known, single-particle hadronic states do not
change under the effect of a hadronic -matrix.
Since our states  are direct products of single-
particle hadronic states, it may be assumed that

 to within an insignificant phase fac-
tor. Therefore, the following expression derived from
(C.7) is true to within this factor:

(C.8)

Let us now discuss matrix element

Owing to the translational invariance, current 
satisfies equation

(C.9)

where  is the complete 4-momentum operator cor-
responding to the hadronic part of the Lagrangian
(see, e.g., [140]). Using (C.9), one obtains

(C.10)

where

The formal solution of differential equations (C.10)
takes the form

(C.11)

where xs and xd are arbitrary space-time 4-vectors, and
 are the components of a certain tensor68 such

that 

A similar result may also be obtained for matrix ele-
ment (C.8). Indeed, rewriting (C.8) in the explicit form

67Lorentz indices and normal ordering symbols are omitted for
brevity in this section (when it can be done without ambiguity).
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68In the general case, this tensor may depend parametrically on
the momenta and spins of the initial and final single-particle
Fock states of hadrons.
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and taking relation 
and (C.10) into account, we obtain the following
equations:

(C.12)

Their solution coincides with (C.11), where  is
substituted by . It is convenient for our purpose to
choose the impact points for in- and out-packets in
the source and detector as 4-vectors  and , respec-
tively. Since points  and  are macroscopically
separated, currents  and  are mutually
commuting:  As a result, matrix

element  is factorized into two cofac-
tors that are associated with the source and detector
vertices and depend on the corresponding variables
only. Thus, having introduced 4-vectors ( -number
hadronic currents)

one obtains

(C.13)

Tensor components , which satisfy con-
ditions

(C.14)

may feature a singularity (no stronger than a  func-
tion or its derivatives) only at point . At the same
time, by virtue of condition (C.14), they should vanish
after integration over  and  performed over suffi-
ciently small space-time volumes surrounding the
impact points. Functions  enter the ampli-
tude only via integral

(C.15)

where  and  are  functions describing the WPs

of final leptons  and  with momenta  and ,

respectively. The contribution of product  to the
integrand in (C.15) is significant only within the clas-
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sical world tubes located near the corresponding
impact points. Therefore, the integrand in (C.15) is
not negligible only if they have a considerable overlap
region (in the limiting case, if the axes of lepton tubes
coincide). However, this configuration is strongly sup-
pressed by virtue of the approximate energy-momen-
tum conservation. This is evident from the analysis of
the simplest case with  Integral
(C.15) is then proportional to the smeared  function

 and is negligible, since 
These qualitative arguments enable one to ignore non-
physical long-range correlations induced by term

 in (C.13). By virtue of (C.8), one can
rewrite the right-hand side of (233) as

Taking the properties of the form factor in
 and  into account, one can substi-

tute variables  and  in functions  and  by the
corresponding external momenta  and . Having
introduced this (last) approximation, we arrive
at (235), thus completing the proof.

APPENDIX D

STATIONARY POINT 
FOR AN ARBITRARY CONFIGURATION 

OF MOMENTA OF EXTERNAL WAVE PACKETS

Let us detail the algorithm for solving Eq. (249) in
the general case (i.e., for an arbitrary configuration of
external momenta). The general solution is of interest
both in the methodological context and for purposes
of data processing in neutrino experiments at interme-
diate (subrelativistic) energies. Although the proposed
algorithm is rather cumbersome, it is easy to imple-
ment in the form of a computer program and is thus
convenient primarily for numerical analysis.

Form (267) of Eq. (249), where the velocity of a
virtual neutrino is the unknown quantity, is more con-
venient to work with. Raising both parts of (267) to the
second power, we arrive at algebraic equation of the
fourth order
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with coefficients

Here, ; it is assumed from now on that
 (the case of a massless neutrino is trivial), and

index “ ” numbering neutrinos is omitted to simplify
the formulas, which are already cumbersome enough.
The other designations are the same as in the main
text. Equation (D.1) can be solved using the Des-
cartes–Euler method (see, e.g., [141]). Following the
corresponding algorithm, we write Eq. (D.1) in the
"incomplete” form

(D.2)

The solutions of this equation are constructed from
the roots of cubic equation

(D.3)
where

Equation (D.3) may also be reduced to the incom-
plete (Cardano) form:

Here,
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PHYSICS O
The number of real roots is defined by the sign of
function

which coincides with the sign of polynomial
 +  with coefficients

Three different real roots are found at ; at
, one real root and two mutually conjugate com-

plex roots are present; at , two (or all three) real
roots may coincide. The validity of the following use-
ful identity may be proven:

(D.4)
Del Ferro–Tartaglia–Cardano solution in radicals.

The roots of incomplete cubic equation (D.3) are

where

 at  and  at . The expression for
 is simplified if identity (D.4) is taken into account:

Solution in the Vieta’s trigonometric representation.
For completeness, we also present the more compact
trigonometric solution (Vieta’s representation), which
may turn out to be more convenient for numerical cal-
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culations. If nothing else, it is useful for monitoring the
accuracy of calculations by means of comparison with
the canonical solution. The explicit form of the trigono-
metric solution depends on the sign of function .

B < 0. As was already noted, Eq. (D.3) has three
real roots in this case (sometimes called the irreducible
case):

where

B ≥ 0. Equation (D.3) has one real and two com-
plex roots. Let us introduce the following notation69:

Then, the roots are

Roots of Eq. (D.1). The roots of incomplete equa-
tion of the fourth order (D.2) are given by combina-
tions

where four out of the possible eight combinations of
signs are chosen so that condition

is satisfied. Here,

69Note that  and ; the real value of the cubic
root is taken in all cases.
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All four roots of Eq. (D.1) can then be derived
using formula

The real nonnegative root of interest to us, which
corresponds to the stationary point, should satisfy the
condition of positivity of the second derivative (251).
The solutions found in the main text for two opposite
limiting cases (  and ) may serve as addi-
tional criteria of uniqueness of the solution of the gen-
eral form based on the algorithm described here, since
they should “join” the correct numerical solution
smoothly under the corresponding variations of
momenta of the external WPs and discrete parameters
defining the effective velocity of a virtual neutrino.

APPENDIX E
SPREADING OF A NEUTRINO WAVE PACKET 

AT EXTREMELY LONG DISTANCES
Let us consider the generalization of some results

from the main text to the case with spreading of an
effective neutrino packet at astronomical distances.
This generalization can apply in the processing of data
from neutrino telescopes (Baikal GVD, IceCube,
KM3Net ARCA, etc.), various experiments on radio
detection of ultrahigh-energy neutrinos, and future
orbital experiments that are aimed, among other
things, at measuring the f lavor composition of neu-
trino and antineutrino fluxes from remote astrophysi-
cal sources.

The integration over  in (302) yields the follow-
ing expression for the decoherence factor:
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and the other notations are the same as in the main
text. Using the primitive of error function (306) intro-
duced in the main text and integrating over  in (E.1),
we find the generalization of formula (303):

(E.3)

Although this expression is much more complex
than (303), there are no difficulties in analyzing the
decoherence effects numerically. In the present sec-
tion, we examine only the key properties of complex-
valued phase . To this end, we need to isolate real
and imaginary parts of the phase and determine the
length scales governing its behavior.

Using the definitions introduced above and drop-
ping evidently small corrections, we find70

Inserting these expressions into (E.2), one obtains
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The corresponding asymptotic values of  cal-
culated to an accuracy of  take the form
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Here and elsewhere, the common definitions for
oscillation lengths and differences between the neu-
trino masses squared are used:
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Fig. 25. Variation of function  with  (in kiloparsecs) calculated at  eV,  eV, and  GeV for

seven values of ratio  (indicated next to the curves). Function  was estimated under the assumption that the dominant
contribution to it is produced by the  decay in the source.
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lead to model-independent inequalities

Therefore, as is seen from (E.4), a wide interval of
distances , where  increases qua-
dratically with , exists for any pair of neutrinos :

All these features of behavior of the real part of
phase are illustrated by Fig. 25, which presents func-
tion  within a wide range of  values, which
vary from terrestrial (  km) to cosmological
(  Mpc) distances, at several arbitrary values of
dimensionless ratio . The curves in this figure
were calculated for  eV,  eV, and
Eν = 10 GeV. In order to estimate the value of import-
ant factor , we assumed, for illustrative purposes,
that it is saturated by the contribution from pion
decays (the typical source of accelerator, atmospheric,
and astrophysical neutrinos) and that the contribution
of reactions in the detector is negligible. It was also
assumed that the pion WP in the momentum space is
much wider than the muon packet; i.e., . It is
then easy to demonstrate that factor  has the follow-
ing approximate form at ultrarelativistic energies,

:
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The results of a similar analysis for the imaginary
part of phase (E.4) reveal that this part increases lin-
early (although with different coefficients) with  in
regions  and . In particular,

(E.7a)

(E.7b)

These two regimes are separated by a relatively nar-
row transition region near . Nothing unex-
pected occurs in the  region. This behavior of

 is illustrated by Fig. 26, which shows the

 ratio calculated with the same approxi-
mations that were used for the real part of the phase.
The unconventional behavior of function  at

 is of a purely academic interest, since it is
rendered unmeasurable by an enormous suppression
factor

which eliminates interference terms ( ) found in
the expression for the event count rate. Thus, the
oscillatory behavior of the count rate is encountered
only at . This is exactly the region that
was examined thoroughly in the main text.
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Fig. 26. Ratio  as a function of  calculated with the same parameters as those used for the real part of the phase (see

the caption of Fig. 25) for three values of ratio  (indicated next to the curves).
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APPENDIX F

SPATIAL AVERAGING
In realistic scenarios, the sizes of the source and

detector are not always negligible compared to the dis-
tance between them. If this is the case, one needs to
perform accurate spatial averaging of the count rate
over the effective volumes of the source and detector.
The plausible spatial inhomogeneities of the neutrino
beam and the detector medium need to be taken into
account. In the present section, we limit ourselves to
the simple (but methodologically interesting) case
when such inhomogeneities are negligible. This implies
that density functions  are independent of 
within the source and detector volumes and turn to zero
outside the bounds of these volumes. Within these
approximations, we are interested only in -dependent
factor  (with ) in the
complete expression for the count rate; it is worth
reminding that  and  do not depend on .

The following simplification is also adopted below:
the linear size of the detector in the direction of the
neutrino beam is assumed to be negligible compared
to the size of the source in the same direction, which,
in turn, is small compared to the average source–
detector distance. The origin of coordinates is located
within the detector (point  in Fig. 27), and axis  is
codirectional with unit vector  (i.e., directed toward
a certain inner point  of the source). Let  and

; the sought-for integral over the spatial vol-
ume of the source may then be written as follows:

(F.1)

Here,  is the working volume of the source,  is
the solid angle under which this volume is seen from
point , and  and  are the distances from  to

, ;( )a a af sp x x
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PHYSICS O
the near and far boundaries of the source (for simplic-
ity, it is assumed to be convex) along unit vector

. It is convenient to
introduce the following measure of distance between
the source and detector:

To avoid any misunderstanding, we note that,
depending on the angular resolution of the detector
and features of the experimental setup, solid angle 
may turn out to be smaller than the full solid angle
under which the source is seen. Figure 27 illustrates
this possibility schematically, while equality (F.1)
holds true in the general case. Note also that the small-
ness of angle  is not equivalent to the smallness of
the source itself; a well-collimated meson beam from
an accelerator (neutrino factory) in a long decay chan-
nel is an important counterexample. Elementary inte-
gration over  yields

(F.2a)

and

(F.2b)

These general formulas may be used in processing
the data of short-baseline neutrino experiments,
where the distance from the source (e.g., a decay
channel) to the detector is comparable to the longitu-
dinal size of the source.
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Fig. 27. Schematic illustration of spatial averaging.
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In an ideal experiment with

(F.3)

one can use the following expansion of the error func-
tion:

(F.4)

The contributions of order  and  in
this expansion may be neglected under the assumption
that  and . In the case under consider-
ation, the first condition implies that

(F.5)

while the second one is not necessary due to the
approximate cancellation of terms of second order.
Using (F.4), we indeed find that

where

Evidently, . Assuming that

(F.6)

we arrive at the following result (valid for any  and ):

(F.7)

which could be deduced from the mean-value theo-
rem. Our result, however, is supplemented by fairly
nontrivial sufficient conditions (F.3), (F.5), and (F.6),
which are impossible to obtain from the mean-value
theorem alone. Volume  in (F.7) is estimated (with
the same accuracy) as

If we now assume that working (reference) detector
volume  is sufficiently small compared to  (this
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condition is satisfied in a typical neutrino experiment)
and that the detector geometry is not too fancy, the
integration over  becomes trivial and yields

(F.8)

where  still denotes the conventional measure of dis-
tance between the source and detector.

In order to illustrate the importance and nontrivial
nature of conditions (F.3), (F.5), and (F.6), we con-
sider the simplest case of a spheroidal source with
radius . Its angular size  does not exceed the angu-
lar resolution of the detector. It follows from simple
geometric considerations that  and,
naturally, . Therefore,

(F.9)

To simplify the scenario further, we assume that
 (this inequality is always fulfilled for solar

and astrophysical neutrinos detected on the Earth)
and  (this is not always true for
remote astrophysical sources, but is valid for the Sun).
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Condition (F.5) is then satisfied automatically, while
condition (F.6) takes the form

(F.10)

This inequality is definitely not fulfilled for the Sun
and the currently adopted value of . The regions
of efficient neutrino production in the solar core are
relatively thin concentric layers with typical radii vary-
ing from  for 8B, 7Be, and CNO neutrinos to

 for , , and  neutrinos71 (  is the solar
radius). The left-hand side of (F.10) may then be esti-
mated as

which demonstrates (and this is no news) that approx-
imation (F.8) is definitely not applicable in the analy-
sis of oscillations of solar neutrinos.

Summarizing the results, we note the following:
although the above analysis was simplified in many
respects72, it demonstrates that the finite size of the
source needs to be taken into account to process data
correctly in both short-baseline oscillation experi-
ments and very-long-baseline experiments (including
the ones with  on the order of an astronomical unit,
which is the case with experiments involving solar
neutrinos).

APPENDIX G
 COMPLEX ERROR FUNCTION 
AND ASSOCIATED FORMULAS

The error function and the complementary error
function of complex argument have already been stud-
ied extensively (see, e.g., [146–150] and references
therein). Let us list here some results that were used in
Section 11 to analyze the decoherence function. For
convenience, we first write the following well-known
formulas [103]:

(G.1)

(G.2)

71See [142, 143] for details.
72A more accurate analysis should cover the spatial distributions

of colliding and/or decaying particles in the source and the
effects of interaction of virtual neutrinos with the source
medium (namely, coherent scattering of neutrinos off electrons
in the medium, or the MSW effect [144, 145]), which are cru-
cial for astrophysical applications such as experiments with
solar neutrinos.

π .!

22 1
ij

r
L L

Δ 2
12m

. �0 1R
. �0 3R pp pep hep �R

−
ν

    Δπ ≈ ,     . ×     �

2 22
12
5 2

12

1 MeV2 26
0 2 8 10 eV

mr r
L L R E

L

∞ ∞+ +
−

= =

−= = ,
+ ! + !!π π 

22 1 2 1

0 0

( 1)2 2 2erf( )
(2 1) (2 1)

n n n n
z

n n

z zz e
n n n

( )

∞−

=

 − − !!+ π  
π→ ∞, < .

∼

2

2
1

( 1) (2 1)erfc( ) 1
(2 )

3arg
4

nz

n
n

nez
z z

z z
PHYSICS O
The following expansions for function ,
which was introduced in the main text, are derived
from (306) and (G.1):

(G.3a)

(G.3b)

These expansions are useful for small and interme-
diate values of 73, respectively. In order to determine
the asymptotics of functions  and  at
large , one needs to use (G.2) for  and then
apply the following rule:

The result derived from (306) and (G.2) is

(G.4)

where the upper (lower) sign should be taken for
 ( ).

The formulas given below are helpful in high-accu-
racy numerical calculations of the error function. They
are based on the following integral representation of
the complementary error function (see, e.g.,
[146, 149]):

From this it follows that (cf. the result in [147])

where

73In practice, (G.3a) and (G.3b) work fine at  and
, respectively.
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All the quantities found here are real. Note that the
integrands in integrals  are positive, nonsingu-
lar (with the exception of the trivial case of ),
and decrease rapidly at large . These properties are
helpful in numerical integration based on the standard
quadrature formulas.
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