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A discovery that neutrinos are Majorana fermions would have profound implications for
particle physics and cosmology. The Majorana character of neutrinos would make possible
the neutrinoless double-b (0nbb) decay, a matter-creating process without the balancing
emission of antimatter. The GERDA Collaboration searches for the 0nbb decay of 76Ge by
operating bare germanium detectors in an active liquid argon shield.With a total exposure of
82.4 kg⋅year, we observe no signal and derive a lower half-life limit of T1/2 > 0.9 × 1026 years
(90% C.L.). Our T1/2 sensitivity, assuming no signal, is 1.1 × 1026 years. Combining the
latter with those from other 0nbb decay searches yields a sensitivity to the effective
Majorana neutrino mass of 0.07 to 0.16 electron volts.

N
eutrinos were discovered in 1956 (1), but
only at the turn of the millennium was
it experimentally proven that the three
known neutrino types (flavors) na (a = e,
m, t) can convert into one another (2–4).

These flavor oscillations are possible only if
neutrinos have nonzero mass, which is currently
the only established contradiction to the stan-
dardmodel (SM) of particle physics. From tritium
b decay experiments (5, 6) and cosmological
observations (7), we know that their masses are
very small—less than 10−5 of the electron mass.
Neutrinos are the only fundamental spin-½ par-
ticles (fermions) without electric charge. As a
consequence, they might be Majorana fermions
(8)—particles identical to their antiparticles.
This is a key ingredient of some explanations

for why matter is so muchmore abundant than
antimatter in today’s Universe and why neutrinos
are so much lighter than the other elementary
particles (9).
Majorana neutrinos would lead to nuclear

decays that violate lepton number conservation
and are therefore forbidden in the SMof particle
physics. The so-called neutrinoless double-b
(0nbb) decay simultaneously transforms two
neutrons inside a nucleus into two protons with
an emission of two electrons (Fig. 1). The SM-
allowed double-b (2nbb) decay occurs with an
emission of two electrons and two antineutrinos.
In the 0nbb decay, the two electrons together
carry the available decay energy (Qbb) and the
resulting monoenergetic signal is the chief ex-
perimental signature. A positive detection of

this process would imply the first observation of
a matter-creating process, without the balancing
emission of antimatter, and would establish the
Majorana nature of neutrinos (10, 11).
We report here on the search for the 0nbb de-

cay 76Ge→ 76Se + 2e– [Qbb = 2039.061 ± 0.007 keV
(12)] with the Germanium Detector Array
(GERDA). Unlike previous experiments, GERDA
surpasses the sensitivity for a 0nbb decay half-
life of T1/2 ~ 1026 years (90% C.L.) and operates in
a background-free regime such that the expected
number of background events is less than 1 in the
energy region of interest at the final exposure
(13); here the sensitivity is defined as the median
limit expected from many repetitions of the ex-
periment assuming no signal. This achievement,
together with the excellent energy resolution of
Gedetectors, is crucial in reaching a regimewhere
it would be possible to detect a nonzero signal for
the decay.
The GERDA experimental design was guided

by the requirement to reduce interfering signals
from naturally occurring radioactivity and from
cosmic rays to negligible levels. The Ge detectors
are made from high-purity (99.9999%) Ge mate-
rial that is enriched in the 76Ge isotope from the
natural abundance of 7.8% tomore than 85%. The
Ge detectors act as both the source and detector
for the 0nbb decay, as illustrated in Fig. 1. In total,
GERDA deploys 37 enriched detectors with two
different geometries [coaxial and broad-energy
Ge (BEGe) detectors; see fig. S1] and with a total
mass of 35.6 kg as bare crystals in 63m3 of liquid
argon (LAr). The LAr serves as high-purity shield-
ing against radiation from radioactive decays,
and it also provides cooling for the Ge diodes.
Moreover, the LAr—as a result of its scintillation
property—acts as a veto system to discard events
originating from background radiation, which
simultaneously deposit energy inside the Ge
detectors and the adjacent LAr. The scintillation
light is detected by 16 photomultipliers and
wavelength-shifting fibers connected to silicon
photomultipliers. A water tank encloses the LAr
cryostat to further attenuate g radiation and
neutrons from the experimental environment.
It also serves as a water Cherenkov detector to
identify cosmic-ray muons and their secondary
shower particles that couldmimic signal events.
GERDA is operated deep underground, at the
Gran Sasso National Laboratories (LNGS) of
INFN in Italy, at a depth of 3500 m water equiv-
alent to reduce the cosmic ray muon flux by six
orders of magnitude with respect to Earth’s sur-
face. Detailed descriptions of phases I and II of
the experiment can be found in (14, 15).
The signals of the Ge detectors are read out

by low radioactive charge–sensitive amplifiers,
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digitized at a sampling rate of 100 MHz and
stored for off-line analysis. Weekly calibrations
with 228Th sources are performed to monitor
the energy scale and resolution, as well as to
define and monitor the analysis cuts. The de-
rived energy resolution, full width at half max-
imum (FWHM), at Qbb is 3.6 ± 0.1 keV for the
coaxial detectors and 3.0 ± 0.1 keV for the BEGe
detectors, both corresponding to s/Qbb < 10−3

(s = FWHM/2.35).
During physics data taking, all Ge and LAr

scintillation channels are read out if one or more
Ge diodes detect a signal above a preset trigger
threshold. Multiple detector hits are discarded
as background events. Similarly, events are
classified as background (Fig. 1) if at least one

photoelectron is detected in the LAr within
~6 ms around the Ge detector signal—that is,
~5 times the lifetime of the argon excimer ob-
served in GERDA. Random coincidences lead
to a loss of potential 0nbb signals of 2.3 ± 0.1%.
All events with a muon trigger preceding a Ge
trigger by less than 10 ms are rejected with a
signal loss of <0.1%. Background events from g
radiation often lead to multiple interactions
separated in space but within the same detector.
The time structure of the recorded signal allows
us to reject this background as well as events
occurring at the surface of a detector from a or b
decays (Fig. 1, pulse shape discrimination, PSD).
More than 95% of the background is rejected
by the LAr veto and PSD (Fig. 2), whereas 69%

of the 0nbb decay events would be kept for the
coaxial detectors and 86% for the BEGe detec-
tors. Relative to (16), the Phase II exposure has
been more than doubled while improving both
energy resolution (by 10%) and background rate
(by ~80%) in the coaxial detectors and main-
taining the excellent energy resolution of the
BEGe detectors throughout the run; the result
is a doubling of the sensitivity to more than
1026 years.
Since the outset, GERDA has adopted a rig-

orous blind analysis strategy to ensure an un-
biased search for 0nbb decays. Events with a
reconstructed energy ofQbb ± 25 keV are blinded
(i.e., removed from the data stream) until the
data selection is fixed. Figure 2 displays the
energy spectra corresponding to 53.9 kg⋅year
Phase II exposure before and after analysis cuts,
including a PSD method for coaxial detectors
that was not used in prior work (15). At low
energies, the spectrum after analysis cuts is
dominated by 2nbb decays. The insets in Fig. 2
display separately the event distribution of the
coaxial detector and BEGe detector datasets
in the analysis window 1930 to 2190 keV. Af-
ter unblinding, only three events in the coaxial
dataset and four events in the BEGe dataset
remain in the analysis window (17). GERDA thus
reaches an unprecedented low background rate
of 5:7þ4:1

�2:6 � 10�4 counts/(keV⋅kg⋅year) for the
coaxial detectors and 5:6þ3:4

�2:4 � 10�4 counts/
(keV⋅kg⋅year) for the BEGe detectors.
Anunbinnedmaximum likelihood fit is carried

out simultaneously in the different datasets (see
table S3), including those from GERDA Phase I
(18). In total, 82.4 kg⋅year have been scrutinized
for a 0nbb signal so far. The fit function (13)
comprises flat distributions for the background,
independent for each dataset, and Gaussian dis-
tributions for a possible 0nbb signal: Themean is
Qbb, the resolutions are taken from calibration
data individually for each set, and the normal-
izations are calculated from the target half-life
T1/2. A null signal maximizes the likelihood.
Confidence intervals are evaluated in both the
frequentist and Bayesian frameworks (15). The
frequentist analysis is based on the profile like-
lihood method, and systematic uncertainties are
included as nuisance parameters with Gaussian
pull terms. The derived limit of T1/2 > 0.9 ×
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Fig. 1. The concept of active
background suppression. GERDA
searches for the 0nbb decay 76Ge→ 76Se +
2e–, Qbb = 2039 keV, with high-purity
Ge detectors enriched in 76Ge that are
operated in liquid argon (LAr). (i) Artist’s
view of the 0nbb decay of a nucleus by
an emission of two electrons (b particles).
(ii to iv) Three BEGe detectors, out of the
40 Ge detectors of the GERDA detector
array (table S1 and fig. S2), immersed in
LAr (bluish cylinder). Events from 0nbb
decays would deposit energy Qbb within
a few cubicmillimeters in a single detector
(ii). Events with coincident LAr scintillation
light or with multiple interactions in the
Gedetector [e.g., fromCompton scattering
(iii)] are classified as background events.
The special detector design with a small
readout electrode (fig. S1) enhances
drift time differences between different
trajectories (black dashed lines) of
the charges (holes) generated by the
energy depositions. The color code
(see fig. S1 for color bar) indicates the
electrical signal strength at the
respective location. Hence, single- and
multi-site events can be identified
efficiently by the time profile of their
electronic signal. Similarly, a decays at
the readout electrode show unique
signal characteristics (iv).

Table 1. Comparison of present and prior experiments. Lower half-life limits L(T1/2) and sensitivities S(T1/2), both at 90% C.L., reported by recent 0nbb

decay searches with indicated deployed isotope masses Mi and FWHM energy resolutions. Sensitivities S(T1/2) have been converted into upper limits of

effective Majorana masses mbb using the nuclear matrix elements quoted in (20).

Experiment Isotope Mi (kmol) FWHM (keV) L(T1/2) (10
25 years) S(T1/2) (10

25 years) mbb (meV)

GERDA (this work) 76Ge 0.41 3.3 9 11 104 to 228
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

MAJORANA (27) 76Ge 0.34 2.5 2.7 4.8 157 to 346
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

CUPID-0 (28) 82Se 0.063 23 0.24 0.23 394 to 810
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

CUORE (29) 130Te 1.59 7.4 1.5 0.7 162 to 757
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

EXO-200 (30) 136Xe 1.04 71 1.8 3.7 93 to 287
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

KamLAND-Zen (21) 136Xe 2.52 270 10.7 5.6 76 to 234
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Combined 66 to 155
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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1026 years (90% C.L.) is compatible with the sen-
sitivity (assuming no signal) of 1.1 × 1026 years;
this is an improvement over previous experiments,
which had sensitivities of less than 1026 years.
The weaker limit is a consequence of an event in
the signal region at 2042.1 keV, 2.4 standard devi-
ations (s) away from Qbb. The statistical analysis
attributes it to background. Statistical analysis
including Bayesian inference is detailed in (15).

Table 1 compares our results with those of
other 0nbb decay searches. The T1/2 sensitivities
of other experiments are at most half of ours
despite sometimes higher exposures; this is
caused by GERDA’s lower background and su-
perior energy resolution (15). Several physical
processes beyond the SMcanproduce 0nbb decay.
Here, we focus on the paradigm of the mixing of
three light Majorana neutrinos. In this context,

the half-life can be converted into a 0nbb decay
strength that has the dimension ofmass, denoted
the effective Majorana mass (19),

mbb ¼
X3
i¼1

U 2
eimi

�����
����� ð1Þ

Nuclear structure details enter the decay rate, and
uncertainties in the nuclear structure calculations
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Fig. 2. GERDA Phase II energy spectra (53.9 kg⋅year). Enriched coaxial
and BEGe data are displayed in a combined spectrum after indicated
cuts. Main contributions to the spectra are labeled. The insets
display the analysis window for coaxial and BEGe detectors separately,

including the background rates (solid blue lines). No event reconstructs
within Qbb ± 2s. The dashed blue curves depict the 90% C.L. limit for
a 0nbb signal of T0n

1=2 ¼ 0:9� 1026yearsderived from the likelihood
analysis of all GERDA datasets.

Fig. 3. Constraints of the parameter space for mbb in the scenario of
three light Majorana neutrinos. Constraints are shown, left to right,
as function of the lightest neutrino mass mlight, the sum of neutrino
masses S, and the effective neutrino mass mb. Contours follow from a
scan of the Majorana phases with the central oscillation parameters from
NuFIT 4.0 (22). The blue horizontal band shows the upper limits on mbb

obtained by GERDA; the gray band shows those from combining
sensitivities of all leading experiments in the field (see Table 1). Vertical
lines denote S = 0.12 eV and S = 0.66 eV, a stringent limit from cosmology
(24) and an extended model bound (7), as well as mb = 0.23 eV, the
5-year sensitivity of the KATRIN experiment (23). Hatching denotes the
excluded parameter space.
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result in a spread of mbb values for a given T1/2
by typically a factor of 2 to 3 (20). Some re-
ported half-life limits L deviate by almost a
factor of 2 from the associated sensitivity S, in-
dicating significant underfluctuation (CUORE,
KamLAND-Zen) or upward fluctuation (EXO-
200). To overcome this possible behavior of
frequentist limits, we used the sensitivity to
extract the constraints onmbb shown in Table 1.
For GERDA, the median limit is mbb < 0.1 to
0.23 eV. Combining it with the sensitivities of
the other searches (15), the bound tightens to
mbb < 0.07 to 0.16 eV (90% C.L.), very similar
to the bound deduced by KamLAND-Zen from
their T1/2 limit (21).
Figure 3 shows the dependence of the effective

Majorana mass mbb as a function of the lightest
neutrino massmlight = min(mi), the cosmological
observable of the sum of neutrino masses, S =P

imi, and the effective neutrino mass,

mb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

jU 2
eijm2

i

r
ð2Þ

—that is, the mass observable in single beta de-
cays. The allowed parameter space is classified
according to the ordering of the neutrino mass
eigenstates as normal (Dm2

31 > 0) or inverted
(Dm2

31 < 0). The overlap region is called quasi-
degenerate; here, the mass splittings are small
relative to the absolute mass scale. The latest
oscillation data prefer normal ordering at the
3s level (22). Figure 3 shows that our extracted
limits of mbb disfavor a large fraction of the
parameter space of quasi-degenerate Majorana
neutrino masses. The combined limit of mbb =
0.16 eV corresponds to constraints on mlight <
0.15 to 0.44 eV, S < 0.46 to 1.3 eV, andmb < 0.16
to 0.44 eV. Direct measurements of mb yield a
limit of ~2.3 eV (5, 6). In the coming years, the
KATRIN tritium decay experiment will increase
the sensitivity to ~0.2 eV (23). The sum of the
neutrino masses influences the evolution and
structure of the Universe. In the framework of
the 6 + 1–parameter cosmological SM, the latest
Planck data on the anisotropy of the cosmic mi-
crowave radiation along with baryonic acoustic
oscillation data provide limits as lowasS <0.12 eV
(95% C.L.) (24). Extended models relax these
limits to <0.37 eV for one additional parameter,
and to <0.66 eV for five additional parameters (7).
Currently, there are no tensions among the

three mass observables. A discovery of 0nbb de-

cay close to the current experimental half-life
sensitivity should have counterpart signals in
tritium b decay and in cosmology, provided that
the paradigm of three light Majorana neutrinos
holds. In case of discrepancies with the other
mass observables, a 0nbb signal would point to
other lepton number–violating processes.Within
the framework of three light Majorana neutrinos
and the cosmological SM, and in the absence
of a 0nbb decay at or close to the current sen-
sitivity, the KATRIN experiment would not
observe a signal. Conversely, a positive mea-
surement of mb > 0.44 eV in KATRIN would
point to Dirac neutrinos or to an incomplete
understanding of the nuclear physics (20) of
0nbb decay. It also would require extensions to
the current minimal cosmological model. In-
stead, if the cosmological limit on S holds, 0nbb
decay experiments would have to probe a mass
range mbb < 0.05 eV, which requires a half-life
sensitivity of 1027 years and above for a 76Ge-
based experiment.
The leading performance of GERDA in terms

of background suppression, energy resolution,
and sensitivity opens theway to LEGEND, a next-
generation Ge experiment with sensitivity to
half-lives of 1027 years and beyond. A first-phase
200-kg 76Ge experiment, LEGEND-200 (25), is in
preparation at LNGS.
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process but did place improved boundaries on its half-life.
germanium. Housed deep underground to reduce the background signal, the experiment did not detect the elusive 
two electrons but no antineutrinos. The GERDA Collaboration searched for this decay in a particular isotope of
would become possible: an unstable nucleus could decay by turning two of its neutrons into protons with the emission of 

 decayβparticles equal to their antiparticles. If neutrinos were Majorana fermions, a process called neutrinoless double-
by having a tiny, but nonzero mass. One explanation for their properties is that they are Majorana fermions, which are 

defy the standard model of particle physics−−elementary fermionic particles with no electrical charge−−Neutrinos
Looking for an exotic decay
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