Anna Belova, JINR, 2020.

Prospects to use
the FairMQ data

exchange system
for SPD

SPD ROOT

Monte Carlo simulation, event reconstruction for both simulated
and real data, data analysis and visualization are planned to be
performed by an object oriented C++ toolkit SPDroot. It is based
on the FairRoot framework initially developed for the FAIR
experiments at GSI Darmstadt and partially compatible with
MPDroot and BM@Nroot software used at MPD and BM@N,
respectively.

The SPD detector description for Monte Carlo simulation is based
on the ROOT geometry while transportation of secondary
particles through material of the setup and simulation of detector
response is provided by GEANT4 code. The standard
multipurpose generators like Pythiab and Pythia8 as well as
specialised generators can be used for simulation of primary

nucleon-nucleon collision.

What is FairMQ

What is FairMQ?

Organize processing tasks in topologies, consisting of independent processes (Device
that communicate via asynchronous message queues over network or inter-process.

FAIRMQ TOPOLOGY (example)

RN
e

PROCESSOR
PROCESSOR

| Communication patterns: PUB-SUB, PUSH-PULL, REQ-REP, ... \

MERGER

Ready to use devices are provided for typical scenarios.
User-defined devices can be implemented by inheriting from FairMQDevice.

FairMQ structure

Transport Interface

FairMQ transport interface keeps the | | —— :
user code independent of the data || TestDetectordigiLoader | FairTestDetectorMQRecoTask
transport implementation. o Vv — Vv
o zeromq wransport implementation T
o | nanomsg wansport implementation |
E E FairMQSampler D FairMQDevice <]— FairMQProcessor
| "

Currently two implementations:
With ZeroMQ or nanomsg libraries.

Possible implementation using future
emerging technologies.

Experience of using on ALICE

Example Use Case: FLP2EPN Topology for ALICE 0?

Switching Storage 33 Storage
Network SSRRMESINS Network Servers

e
= orlc

Detectors 250 FLPs Storage

1278/ 500 GB/s 90 GB/s
Input: 250 ports 1500 x 60MB/s
8100 Sﬁzg‘f’“t Output : 1500 ports

Source: 02 Upgrade TDR

Parallelization throughput with FairMQ

Fy
Ky
&
&
&
&
&
r
F,
F
Fy
Ky
Fy

8
ER-I i
L
f=]
= |
£
= 20t _
15 L T process —— |
2 processes —w—
3 processes
0 4 processes
1 1 1 T T

0 10 20 30 40 50
Message size (MB)

Figure 10.1: Throughput between two machines connected with 40 Gh/s Ethemet.

Data transport layer

The data transport layer is the part of the software which ensures the
reliable arrival of message sand provides error checking mechanisms
and data flow controls. The data transport layer in ALFA provides a
number of components that can be connected to each other in order
to construct a processing topology. They all share a common base
class called device. Devices are grouped in three categories:

« Source: Devices without inputs are categorised as sources. A

sampler is used to feed the pipeline (Task topology) with data from
files.

 Message-based Processor: Devices that operate on messages
without interpreting their content.

« Content-based Processor: This is the place where the message
content is accessed and the user algorithms process the data.

I

Serialization

* Boost serialization. This method depends only on ANSI C++4 facilities.
Moreover, it exploits features of C++ such as RTTI (Run-Time Type Information),
templates or multiple inheritance. It also provides independent versioning for each
class definition. This means that when a class definition changes, older files can still
be imported to the new version of the class. Another useful feature is the save and
restore of deep pointers.

* Protocol buffers. Protocol buffers are Google’s language-neutral, platform-neutral,
extensible mechanism for serializing structured data. The structure of the data
is defined once and used to generate code to read and write data easily to and
from a variety of data streams, using a variety of languages: Java, C++ or Python.

* ROOT. The ROOT Streamer can decompose ROOT objects into data members and
write them to a buffer. This buffer can be written to a socket for sending over the
network or to a file.

» User defined. In case it is decided not to use any of the above methods, binary
structures or arrays can still be written or sent to a buffer. Although this method does
not include any overhead for size of the data, issues can occur and will need to be
managed. These include: schema evolution, different hardware, different languages.

The Dynamic Deployment System (DDS) is an independent set of utilities and interfaces,
providing a dynamic distribution of different user processes for any given topology on any
Resource Management System (RMS). The DDS uses a plug-in system in order to deploy
different job submission front-ends. The first and the main plug-in of the system is a Secure Shell (SSH)
that can be used to dynamically transform a set of machines into user worker nodes. The DDS functions
are the following:

*Deploy a task or set of tasks

*Use any RMS (Slurm, Grid Engine, ...etc)

*Execute nodes securely (watchdoq)

*Support different topologies and task dependencies
*Support a central log engine

During 2014, the core modules of the DDS were developed and the first stable prototype wasreleased.
This has been tested on the ALICE HLT development cluster using 40 computingnodes with 32
processes per node. The SSH plugin for DDS has been used to successfullydistribute and
manage 1281 ALICE O2user tasks (640 First Level Processor (FLPs) and 640Event Processing units
(EPN)). The FLP processes here are emulating the FLP nodes whichwill collect the data wheres the
EPN emulates the second step of data processing: assigningeach cluster to a track ([10])The DDS
was able to propagate the allocated ports for each process to the dependentprocesses and set
the required topology for the test. Throughout the test on this cluster, oneDDS commander server

propagated more than 1.5 million properties in less than 5 seconds.

Performance measurement on ALICE O2

Two different systems were used for the performance measurement of data transport layer in ALFA. The
performance tools delivered by ZeroMQ were also used to investigate any penalties introduced by FairMQ
package. The goal of these measurement is to test the usability of the framework on different and
existing system, so no effort was made to optimise or tune the network on the existing systems.

Ethernet-based prototype

This system consists of 8 dual-Xeon machines, 4 connected with 40 Gb Ethernet while the other 4 are
connected with 10 Gb Ethernet. The throughput was measured as function of message size. For the ALICE
RUN3 a message part size of 10 MB is expected, for this size,a rate of about 37.6 Gbs was achieved using 4
core CPUs for sending data between two of the machines (point to point). This test demonstrates that the
overhead introduced by the FairMQ and ZeroMQ is marginal with a bandwidth equivalent to 94% of the
theoretical one and that the technology scales well above the performance required by the FLPs on their
output network link. More details are in Referance.

InfiniBand-based prototype

The second system is composed of a 40 Gb IB using 4 dual-Xeon machines (Intel Xeon E5520 with 4
physical cores and 8 threads each) all running the same software but with the IPolBprotocol. Three
processes were used to send data from one machine and 4 processes on each of the other machines
received data. A message size of 10 MB was used. An average rate of2.5 GBs was reached without any
optimisation of the kernel parameters. This test confirms that the marginal overhead introduced by the
FairMQ and ZeroMQ software with a measured performance equivalent to the one measured with
benchmarking programs. The test also demonstrates the portability of the FairMQ software to different
network technologies (Ethernet and IB) which provides the independence about the underlying network

technology.

The simplest ZeroMQ pattern Request-

ending Hello 6..
ived Hello
Received World
ding Hello
ived Hello
Received Wo
ding Hello 2..
d Hello
d World 2

Received Hello
ved World 4
ing Hello 5..

World 5
Hello 6..

ved Hello
d World 6

ved Wor

ending Hello
ived Hel
Received W
ding Hello 9..
ived Hello
Received World 9

// Hello World server

#include <zmg.h>

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>

int wversien (void)

{
int major, minor, patch;
zmg_version (&major, &minor, &patch);
printf ("Current @MQ version is %d.%d.%d\n", major, minor, patch);
return 8;
1
int main (void)
{
version();// Socket to talk to clients
void #context = zmg_ctx_new ();
void #*responder = zmg_socket (context, ZMQ_REP);
int re = zmg_bind (responder, "tcp://#:5555");
assert (rc == 0);
while (1) {
char buffer [18];
zmq_recv (responder, buffer, 108, @);
printf ("Received Hello\n");
sleep (1); // Do some 'work'
zmq_send (responder, "World", 5, @);
}
return 8;
i

Client

Server

// Helle World client
#include <zmg.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

" * int version (void)

{
int major, minor, patch;
zmg_version (&major, &minor, &patch);
printf ("Current @MQ version is %d.%d.%d\n", major, minor,
return B8;
i
5 * int main (void)
{
version();
printf ("Connecting to hello world server.\n");
void *context = zmg_ctx_new ();
void *requester = zmg_socket (context, ZMQ_REQ);
zmg_connect (requester, "tcp://localhost:5555");
int request_nbr;
for (request_nbr = @; request_nbr != 18; request_nbr++) {
char buffer [10];
printf ("Sending Hello %d..\n", request_nbr);
zmg_send (requester, "Helle", 5, €);
zmg_recv (requester, buffer, 10, @);
printf ("Receiwved World %d\n", request_nbr);
1
zmg_close (requester);
zmg_ctx_destroy (context);
return @;
}

patch);

Publisher-Subscriber

1 Pf Pubsub envelope publisher 1 |r‘f Pubsub envelope subscriber |

7 // Note that the zhelpers.h file also provides s_sendmore 2
3 #include "zhelpers.h"

4 #include "zhelpers.h" 4

5 #include <unistd.h> 5 % 4dnt main (void)
5 i
= 7 * int main (void) T // Prepare our context and subscriber
1e0¢ upda B { 8 void *context = zmg_ctx_new ();
1006¢ upda g /! Prepare our context and publisher] void #subscriber = zmq_socket (context, ZMQ_SUE);
108 3 updat 18 void #context = zmg_ctx_new (); 18 zmq_connect (subscriber, "tcp://localhost:5563");
108¢) updat 11 void #*publisher = zmg_socket (context, ZMQ_PUB); 11 zmq_setsockopt (subscriber, ZMQ_SUBSCRIBE, "B", 1});
il updat 12 zmg_bind (publisher, "tcp://+:5563"); 12
13 13 ¥ while (1) {
14 w while (1) { 14 // Read envelope with address
1000000 15 // Write two messages, each with an envelope and content '-_ char *address = s_recv (subscriber);
it 16 s_sendmore (publisher, "a"); 1 /! Read message contents
17 s_send (publisher, "We don't want to see this"); 17 char *contents = s_recv (subscriber);
Fublisher 18 s_sendmore (publisher, "B"); 1 printf ("[%s] %s\n", address, contents);
19 s_send (publisher, "We would like to see this"); 1 free (address);
FUB REP 20 sleep (1); 28 free (contents);
21 1 21 }
22 // We never get here, but clean up anyhow 22 // We never get here, but clean up anyhow
(3) (1) (2) 23 zmq_close (publisher); 23 zmg_close (subscriber);
24 zmg_ctx_destroy (context); 24 zmg_ctx_destroy (context);
25 return 8; 2 // [[span style="color:#808008"]]return [[span style="color:#666666"]]0
—_— 2 1 26 i

SUB REQ

Subscriber

Ventillator-Worker-Sink

anna@anna-System-Product-Name:~$. /ventilator_worker_sink.sh
Ventilator Jusr/[share/modules/init/bash: line 36: fusr/bin/tclsh: No such file or directory
Jusr[share/modules/init/bash: line 58: export: _moduleraw: net a function
Jusr/share/modules/init/bash: line 68: export: module: not a function
starting worker:
Starting sink:
starting ventillator:
anna@anna-System-Product-Name:~$ Press Enter when the workers are ready: Sending tasks to workers..
Total expected cost: 5193 msec
28.75.:98..79..62..5..11..48..29..24..8..41.:70, .87..15..16.,20..81..66..55. .42..92.:34..89..84..55..53..95, .43, .67..90,.71.:42. .88, .49..3..92..60..51..21..84.,58,:61..53..44,.75..71..64..55..37..18..97.:
28..52..85..11..7..37..6..49,.4,.96.:20..46. .84, .69,.48..76..28..98..96..12. :56..56..64..100..31..34, ,63..86..70..81.:82,.97..32,.67..8..38..4.,14, .67..8.:9.,6..53..92.,74,.1,.68..2...Total elapsed time:
5391 msec

anna@anna-System-Product-Name:~$. /ventilator_2worker_sink.sh

Jusr [share/modules/init/bash: line 36: fusr/bin/tclsh: No such file or directory
Jusr/share/modules/init/bash: line 58: export: _moduleraw: not a function
Jusr[share/modules/init/bash: line 60: export: module: not a function

Starting 2 worker:

Starting sink:

Starting ventillator:

Press Enter when the workers are ready:

Sending tasks to workers.

Total expected cost: 5283 msec

results 96.2.5.31. :annaganna-Systen-Product-Name:~5 98..39..29..70..42..41..86..16..160..85.:32..45..12..43..40..24..18..35..90..33.:77..29..99..56..50..3..98..52..83..83.:28..41..51..28..21..50..32. .46..29..92.:
96..70..86..77..98,.8..86..51,.95.,69.:97..36..1,.30.,28,.64,,36..10..38..70,:96..88., .46..24..28..96..94.. 16.:51..48..86..15..10..38.,.34,.51..65.,:100,.61,.57..91,,.67..67..13..75.8...56.:B5,.25..9
3...94,.23..51..61...Total elapsed time: 2899 msec

anna@anna-System-Product-Name:~$. /ventilator_3worker_sink.sh

Jusr [share/modules/init/bash: line 36: fusr/bin/tclsh: No such file or directory

Jusr[share/modules/init/bash: line 58: export: _moduleraw: not a function

Jusr[share/modules/init/bash: line 60: export: module: not a function

Starting 3 worker:

Starting sink:

Starting ventillator:

Press Enter when the workers are ready:

Sending tasks to workers
.AVem”atorthatprOHUCEStaSkS Gl Ean b doya []ﬁra”el ctdeEDSt: 2822 Nzect P t-N $ 90.:89..94..10..85..48..91..30..56.70...43.:12..6..82..81..86..33..16..70..14..82.:87..85..43..89,.22..4..47..42..3. .86.:24..93. .14, .50..24..14. .57..9.99

es ; E.14.73.annaganna-Systen-Product-Name: .189..94,.10..85..48..91..30..56.70...43.:12..6..82..81..86..33..10,.70..14. .82, :87..85..43..89..22..4..47..42,.3. .86.:24..93. .14..50. .24, .14. .57..9.99.

) ASQIOTWOkaISIhaIDIDCESStasks §..56..96..15..92..63..6..44..49,:26..15,.51..36..81..18. .84. .17..17..61.:19. .11, .3..74..27.14...78..92..76..62.:26. .58. .42.. .34, .77..72..23..30. .46.:46. . 42..93..97. .14, .22..76...19..:18. .69..%4
* Asink that collects results back from the worker processes | TIRRORIE R TR CIA

annafganna-System-Product-Name:~5 . /ventilator_dworker_sink.sh

Jusr/share/modules/init/bash: line 36: fusr/bin/tclsh: No such file or directery

Jusr [share/modules/init/bash: line 58: export: _meduleraw: not a function

Jusr[share/modules/init/bash: line 60: export: module: not a function

Starting 4 worker:

Starting sink:

Starting ventillator:

Press Enter when the workers are ready:

sending tasks to workers.

Total expected cost: 4871 msec

49,2.58.66.47.32.46.15.16.45.47. :anna@anna-Systen-Product-Name:~5 51..87..84..43..76..46..5.60...42..69.:76..39..13..91,.3..32..76..73..100..36.:78..90..55..12. .59..15. .85. .74, .55..5.:79.40...96..16..81..

29..1..21,.56..108.:20..55..79.26.,.38..31..29..72..086..59.:11..66,.60..61.18...83..78..71..53..79.:50. .45..25..61..25..81..15..85..89, .58.:.46..15..39..11...51..5..34. . 43. : .24, .45.. .47. .38, .25, ,93. .31..2
- ..Total elapsed time: 616 msec

Problem solving in ZeroM

————
Do you set a

subscription B

for messages? No

So you're not

getting every
message?

On SUB sockets
you have to
subscribe to
get messages

Yes

—
Do you start Start all SUB
the SUB socket ————»| sockets first
after the PUB? Yes then the PUB

Are you losing
messages in a
SUB socket?

[+]

R 1

Send and recv in
a loop and check
return codes.
With REP, recv
and send

Are you using
REQ and REP?

See explanation
of slow joiners
in the text

First PULL can
grab many msgs

while others
are still busy _L’

connecting

Are you using
PUSH sockets?

Use the load
balancing

pattern and
ROUTER/DEALER
sockets

Do you check
return codes on
all methods?

Use sockets omnly

Yes in their owning
threads unless
e you know about
Are you using a memory barriers
socket in more
than 1 thread? Yes
I No ————— To use inproc
Do you call your sockets

Zmq_ctx_new ——p

twice or more? Yes

must be in
the same OMQ
context

Are you using
the inproc://
transport?

Check that you
bind before you
Yes connect

Are you using
ROUTER sockets?

Check that the If you use

reply address identities
Make a minimal is valid. OMQ ——| set them
test case, ask drops messages before you
on IRC channel it can't route connect

Benefits of using ZeroMQ

* The ability to create any custom data structures to be
exchanged, ranging from an empty message to a full set of
various characteristics

 When re-sending the same message, a "zero copy" occurs:
a data link is sent. After sending any data, memory is freed

* Either the entire message is sent without errors, or nothing
Is sent, which prevents any data loss

* Possibility of excellent parallelization of processes
 Vertical and horizontal scaling

« When implemented with multithreading, the use of
mutexes, lockers and symaphores is not required

Producer-Consumer with FairMQ

extending

%DEB?E% é?;ﬁxgng new device channel from config #1/bin/bash FairMQDevicePtr getDevice(const FairMQProgOptions& config);
STA 3INDIN

[DEBUG] '_fi"‘J‘ : ault transport for tl e export FAIRM) PATH=/home/anna/fairsoft jun19p2z/basics/FairMQ/build/fairmq
[DEBUG] Adding 'zeromq port export LD_LIBRARY_PATH=.

el : NHECTU;JC . - ¥ int main(int argc, char* argv[])
[DEBUG] Validating channel 'data[e@]'... \w‘.LID_ transport="zeromq" {

oMQ library, =N usin
[DEBUG] ng tra : ort for chan ata if [[S1 =~ "[a-z]+$]1; then usin
transport=51

// to be implemented by the user to add custom command line options (or just with empty body
void addCustomOptions(boost::program_options::options_description&);

e fair::mg;
fair:imq::hooks;

[DEBUG] Reusing existing 'zeromq' transport

[STATE] INITIALIZING DEVICE ---> INITIALIZED L N

[STATE] INITIALIZED - BINDING {

[DEBUG] Validating channel 'data[@]'... VALID SESSTON="$(/home/anna/fatrsoft_jun19p2/basics/FairMQ/build/fairmq/fairmq-uuid-gen -h)"

[DEBUG] 5 t sinki.data[e].pull /{ runner.AddHook<LoadPlugins>([] (DeviceRunnerg r){
t samplerl.data[0].push # setup a trap to kill everything if the test fails/timeouts 1 Jf for example:

fair:imq::DeviceRunner runner{argc, argv};

data[@] to tcp://*:22184 (bind) (push) trap 'kill -TERM $SAMPLER_PID; kill -TERM $SINK_PID; wait $SAMPLER_PID; wait $SINK_PID;' TERM Il r-fPluginManager->SetSearchPaths({"/Lib", "/lib/plugins"});
i r.fPluginManager->LoadPlugin("asdf");
NECTiHG v SAMPLER="fairmqg-ex-1-1-sampler" h;
DEVICE REA ' --ud samelerl' - runner . AddHook<SetCustonCmdLineOpt-ons> ([] (DeviceRunnerk r){
INITI [IZIHG TA READY - -rate 1 ; boost::program_options::options_description customOptions("Custom options");
P - e e oS (I . SAMPLER+= -transport Stransport addCustomOptions (customOptions);
Attached chan ata[0] to tcp://127.0.0.1:22184 (connect) (pull) #SAMPLER+=" --verbosity veryhigh" r.fConfig. AddTaCmdl ineOptions (customOptions) ;
d SAMPLER+=" --session $SESSION" H
Y --control static --color false"
STATE] CONNECTING / | --max-iterations 1" /{ runner.AddHook<Modi fyRawCmdLineArgs>([](DeviceRunner& r){
Nf‘-—’] SAMPLER+=" --channel-config name=data,type=push,method=bind,address=tcp://*:22184,rateLogging=g' ;; ‘{”f;G""CE::lei: e btk (b Lubb®
fhome/anna/fairsoft_jun19p2/basics/FairmMQ/build/examples/1-1/$SAMPLER & s [R TEATEs. push_backl TR b
SAMPLER_PID=§! '
- runner . AddHook<InstantiateDewice>([] (DeviceRunner& r){
SINK="fairmq-ex-1-1-sink" r.fDevice = std::unique_ptr<FairMQDevice>{getDevice(r.fConfig)};
" --id sink1" 1
--transport Stranspert”
" __verbosity veryhigh” return runner.Run();

> DEVICE_R --session SSESSION"
. o " BEETETTIRE =) --control static --color false"
o ived: "Hello --max-iterations 1" 1
[STATE] RESETTING_ DEVICE - IDLE . . --channel-config name=data,type=pull,method=connect,address=tcp://localhost:22184,rateles; » Catch (std::exceptionk e
p (p)
[INFO] Configured maximum number of iterations reached. Leaving RUNNING state. fhome/anna/fairsoft_jun19pz/basics/FairMQ/build/examples/1-1/3SINK & i
[STATE] IDLE - EXITING SINK_PID=$! - LOG(error) << "Uncaught exception reached the top of main: " << e.what();
DEBUG] Shutting down Plugin Manager - return 15
TATE] RU’:‘NI,NG R # walt for sampler and sink to finish .
READY RESETTING_TA! wait SSAMPLER PID catch (...)
RESETTING_TASK - DEVICE_READY wait CSTNK BTN {

DEVICE_REA : . .OG(err;r) << "Uncaught exception reached the top of main.";
S \ / - return 1;

RESETTING DEVICE Producer FairMQ channel Consumer

Shutting down Pl e

Unloaded plugin

// Run with builtin catch all exception handler, just:
// return runner.RunWithExceptionHandlers();

[DEBUG]

[DEBUG] Shutting down devi
[STATE] Exiting FairMQ sta
[DEBUG] Unloaded plugin: 'contr
[DEBUG] Shutting down Plugin

Conclusions

FairMQ uses ZeroMQ as its main transport layout and
therefore has superior process parallelization, data
integrity, and easy multithreading capabilities. ALICE
02 experiments have demonstrated high throughput
using FairMQ, and therefore, there are good prospects
for using the FairMQ package in SPD experiments.

References

1. http://spd.jinr.ru/spd-software/

2. Alexey Rybalchenko, GSI Darmstadt, FairRoot group,
FairMQ Data Transport for Online & Offline Processing,
ALICE Offline Week CERN, July 1, 2015

3. M. Al-Turanyl,2, P. Buncic2, P. Hristov2, T.
Kolleggerl, C.Kouzinopoulos2, A. Lebedevl, V.
Lindenstruthl,3, A. Manafovl, M.Richter2,4, A.
Rybalchenkol, P. Vande Vyvre2, N. Winckler: ALFA: The
new ALICE-FAIR software framework

4. http://wiki.zeromg.org/intro:read-the-manual

http://spd.jinr.ru/spd-software/

Thank you

for
attention!
I

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

