
1

Anna Belova, JINR, 2020.

Prospects to use
the FairMQ data
exchange system
for SPD

2

SPD ROOT

Monte Carlo simulation, event reconstruction for both simulated
and real data, data analysis and visualization are planned to be
performed by an object oriented C++ toolkit SPDroot. It is based
on the FairRoot framework initially developed for the FAIR
experiments at GSI Darmstadt and partially compatible with
MPDroot and BM@Nroot software used at MPD and BM@N,
respectively.

The SPD detector description for Monte Carlo simulation is based
on the ROOT geometry while transportation of secondary
particles through material of the setup and simulation of detector
response is provided by GEANT4 code. The standard
multipurpose generators like Pythia6 and Pythia8 as well as
specialised generators can be used for simulation of primary
nucleon-nucleon collision.

3

What is FairMQ

4

FairMQ structure

5

Experience of using on ALICE

6

Parallelization throughput with FairMQ

7

Data transport layer

The data transport layer is the part of the software which ensures the
reliable arrival of message sand provides error checking mechanisms
and data flow controls. The data transport layer in ALFA provides a
number of components that can be connected to each other in order
to construct a processing topology. They all share a common base
class called device. Devices are grouped in three categories:
● Source: Devices without inputs are categorised as sources. A
sampler is used to feed the pipeline (Task topology) with data from
files.
● Message-based Processor: Devices that operate on messages
without interpreting their content.
● Content-based Processor: This is the place where the message
content is accessed and the user algorithms process the data.

8

Serialization

● Boost serialization. This method depends only on ANSI C++ facilities.
Moreover, it exploits features of C++ such as RTTI (Run-Time Type Information),
templates or multiple inheritance. It also provides independent versioning for each
class definition. This means that when a class definition changes, older files can still
be imported to the new version of the class. Another useful feature is the save and
restore of deep pointers.
● Protocol buffers. Protocol buffers are Google’s language-neutral, platform-neutral,
extensible mechanism for serializing structured data. The structure of the data
is defined once and used to generate code to read and write data easily to and
from a variety of data streams, using a variety of languages: Java, C++ or Python.
● ROOT. The ROOT Streamer can decompose ROOT objects into data members and
write them to a buffer. This buffer can be written to a socket for sending over the
network or to a file.
● User defined. In case it is decided not to use any of the above methods, binary
structures or arrays can still be written or sent to a buffer. Although this method does
not include any overhead for size of the data, issues can occur and will need to be
managed. These include: schema evolution, different hardware, different languages.

9

DDS

The Dynamic Deployment System (DDS) is an independent set of utilities and interfaces,
providing a dynamic distribution of different user processes for any given topology on any
Resource Management System (RMS). The DDS uses a plug-in system in order to deploy
different job submission front-ends. The first and the main plug-in of the system is a Secure Shell (SSH)
that can be used to dynamically transform a set of machines into user worker nodes. The DDS functions
are the following:

•Deploy a task or set of tasks

•Use any RMS (Slurm, Grid Engine, ...etc)

•Execute nodes securely (watchdog)

•Support different topologies and task dependencies

•Support a central log engine

During 2014, the core modules of the DDS were developed and the first stable prototype wasreleased.
This has been tested on the ALICE HLT development cluster using 40 computingnodes with 32
processes per node. The SSH plugin for DDS has been used to successfullydistribute and
manage 1281 ALICE O2user tasks (640 First Level Processor (FLPs) and 640Event Processing units
(EPN)). The FLP processes here are emulating the FLP nodes whichwill collect the data wheres the
EPN emulates the second step of data processing: assigningeach cluster to a track ([10])The DDS
was able to propagate the allocated ports for each process to the dependentprocesses and set
the required topology for the test. Throughout the test on this cluster, oneDDS commander server
propagated more than 1.5 million properties in less than 5 seconds.

10

Performance measurement on ALICE O2

Two different systems were used for the performance measurement of data transport layer in ALFA. The
performance tools delivered by ZeroMQ were also used to investigate any penalties introduced by FairMQ
package. The goal of these measurement is to test the usability of the framework on different and
existing system, so no effort was made to optimise or tune the network on the existing systems.

Ethernet-based prototype

This system consists of 8 dual-Xeon machines, 4 connected with 40 Gb Ethernet while the other 4 are
connected with 10 Gb Ethernet. The throughput was measured as function of message size. For the ALICE
RUN3 a message part size of 10 MB is expected, for this size,a rate of about 37.6 Gbs was achieved using 4
core CPUs for sending data between two of the machines (point to point). This test demonstrates that the
overhead introduced by the FairMQ and ZeroMQ is marginal with a bandwidth equivalent to 94% of the
theoretical one and that the technology scales well above the performance required by the FLPs on their
output network link. More details are in Referance.

InfiniBand-based prototype

The second system is composed of a 40 Gb IB using 4 dual-Xeon machines (Intel Xeon E5520 with 4
physical cores and 8 threads each) all running the same software but with the IPoIBprotocol. Three
processes were used to send data from one machine and 4 processes on each of the other machines
received data. A message size of 10 MB was used. An average rate of2.5 GBs was reached without any
optimisation of the kernel parameters. This test confirms that the marginal overhead introduced by the
FairMQ and ZeroMQ software with a measured performance equivalent to the one measured with
benchmarking programs. The test also demonstrates the portability of the FairMQ software to different
network technologies (Ethernet and IB) which provides the independence about the underlying network
technology.

11

The simplest ZeroMQ pattern Request-
Reply

12

Publisher-Subscriber

13

Ventillator-Worker-Sink

14

Problem solving in ZeroMQ

15

Benefits of using ZeroMQ

● The ability to create any custom data structures to be
exchanged, ranging from an empty message to a full set of
various characteristics
● When re-sending the same message, a "zero copy" occurs:
a data link is sent. After sending any data, memory is freed
● Either the entire message is sent without errors, or nothing
is sent, which prevents any data loss
● Possibility of excellent parallelization of processes
● Vertical and horizontal scaling
● When implemented with multithreading, the use of
mutexes, lockers and symaphores is not required

16

Producer-Consumer with FairMQ
extending

17

Conclusions

FairMQ uses ZeroMQ as its main transport layout and
therefore has superior process parallelization, data
integrity, and easy multithreading capabilities. ALICE
O2 experiments have demonstrated high throughput
using FairMQ, and therefore, there are good prospects
for using the FairMQ package in SPD experiments.

18

References

1. http://spd.jinr.ru/spd-software/

2. Alexey Rybalchenko, GSI Darmstadt, FairRoot group,
FairMQ Data Transport for Online & Offline Processing,
ALICE Offline Week CERN, July 1, 2015

3. M. Al-Turany1,2, P. Buncic2, P. Hristov2, T.
Kollegger1, C.Kouzinopoulos2, A. Lebedev1, V.
Lindenstruth1,3, A. Manafov1, M.Richter2,4, A.
Rybalchenko1, P. Vande Vyvre2, N. Winckler: ALFA: The
new ALICE-FAIR software framework

4. http://wiki.zeromq.org/intro:read-the-manual

http://spd.jinr.ru/spd-software/

19

The end

Thank you
for

attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

