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Introduction to KinFit

What is it needed for?

p

Pbeam

p

At least two hypotheses:

1 pp→ pp

2 pp→ ppπ0

Conservation laws should be used to select the correct hypothesis!
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History

χ2 =

np,np∑
k=1,j=1

(Xi −Xm
i )Zi,j(Xj −Xm

j ) (1)

fλ( ~X) = 0; λ = 1 . . . nc (2)

[1] J.P. Berge, F.T. Solmitz and H.D. Taft, Rev. Sci. Instr. 32 538
(1961);

[2] R. Bock, CERN 60-30 (1960).

The authors have shown that if Xj distributed according to Gaussian
and the hypothesis is true, then form (1) has χ2 distribution with
number of degree of freedom (ndf) equal to nc after substitution those
values Xj , which turn (1) to minimum and satis�es (2).
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Example of an application: WASA discovery
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An example of the employment of a similar technique is the WASA

observation of the resonance-like cross section behavior for the pd→ dπ0π0psp
reaction.

The authors identifed the following chain of the processes:

p+ d→ d+ π0 + π0 + psp → d+ 2γ + 2γ + psp.

There were 12 equations, and ~psp, ~pπ0
1
, ~pπ0

2
were found with KinFit.
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Realization and Restriction of proposed method

WASA approach used the method of Lagrange multipliers:

χ2 =

np,np∑
k=1,j=1

(Xi −Xm
i )Zi,j(Xj −Xm

j ) + 2

nc∑
λ=1

αλ · fλ( ~X) (3)

Here αλ are arbitrary multipliers to be found during minimization;
both Xi and αλ are varied.
Shortcoming of the method:

1 In (3) the kinematical parameters themselves are used. In the
experiment we obtain a number of primary observables like hit
coordinates. Often we have limited knowledge on their errors, and
they may be far from Gaussian;

2 Thus, for applying the technique (3) one should somehow �nd the
matrix Zi,j ;

In other words we have the problem of error propagation!
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Generalization of the method

In order to bypass the propagation error problem we considered more
general case( see (A.J. Ketikian, . . . , V.S. Kurbatov, . . . ,
NIM A314 (1992) 572�577, Generalized kinematical �t in event

reconstruction ) when instead (3) we proposed to search for minimum,
minimizing the form

χ2 = 1/2 ·
nf,nf∑
i=1,j=1

(Ci( ~X)− Cmi )Qi,j(Cj( ~X)− Cmj ) (4)

and satisfying (2) Here Ci( ~X) are observables,i.e. functions of
kinematical parameters ~X,Cmi - their measured values, matrix Qi,j -
inverse of error matrix.
It was shown that if errors are distributed by Gauss Law and
hypothesis is true, then the form (4) has χ2 distribution with ndf = nf -
np + nc. Here np - the number of kinematical parameters or
dimensionality of vector ~X. In the case when nf=np, ndf = np as was in
original proposal of the method.
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KinFit in JINR in 1960-s

I FUMILI by S.N. Sokolov and I.N. Silin;

I Penalty function method by V.I. Moroz [V.I. Moroz, JINR, P-1958,
1965].

χ2 =

np,np∑
k=1,j=1

(Xi −Xm
i )Zi,j(Xj −Xm

j ) + T

nc∑
λ=1

(fλ/∆(fλ))2

T : large number;

∆(fλ): �error� of the constraint.

The idea is if T →∞ the parameter estimates approach the true ones.
Drawbacks of this method:

I Selection of the value T?

I The resulting value of χ2 and parameters are distorted and one
should control it.

Later in last half of 60-s JINR switched to the method of Lagrange
multipliers used in CERN.
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Method of FUMILI

At the time when we considered generalised case we came to the idea
how to solve such a problem by other approach. This approach is valid
in any other gradient method but because we implemented it into
FUMILI let me remind its main features. Let us have a look once more
on (4).

χ2 = 1/2 ·
no,no∑
i=1,j=1

(Ci( ~X)− Cmi )Qi,j(Cj( ~X)− Cmj ) (5)

Parameter estimates are those which turn (4) into minimum and you
�nd them by iteration method. In doing so you take some initial values
for the parameters ~X0, expand (4) near ~X0, getting the form similar (6).

F = F0 + ~G ·∆ ~X + 1/2∆ ~XT · Z ·∆ ~X (6)

Then you apply standard requirement of the minimum-namely �rst
derivatives of (6) over parameters in the minimum should be equal
zeros.
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Method of FUMILI ,cont-ed

The latter give you formula for the parameters increments leading to
the minimum,namely:

∆ ~X = −Z−1 · ~G (7)

But there is very serious problem - you will go to the real
minimum(without problems!) if the matrix of the second
derivatives(hessian) - is positively de�ned! If the function to be
minimized is (4),then second derivatives matrix is (8)

Zi,j =

no,no∑
k=1,l=1

[dCk/dXi ·dCl/dXj+d2Ck/(dXi ·dXj) ·(Cl( ~X)−Cml )] ·Qk,l

(8)
If you in (8) drop the second term, then matrix Zi,j becomes ever
positively de�ned. That is exactly what is done in a FUMILI method.
Real practice during many years of FUMILI exploitation showed its
simplicity, reliability over enormous quantity of the problems, though it
has its defects.
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Change Of Parameter Increments(COPI) Method

Let's get back to the search for the minimum of the form (9)

χ2 = 1/2 ·
no,no∑
i=1,j=1

(Ci( ~X)− Cmi )Qi,j(Cj( ~X)− Cmj ) (9)

It is performed by iteration procedure, when near some beginning
values of parameters ~X = ~X0 the function (9) is approximated by
quadratic form (6),i.e.

F = F0 + ~G ·∆ ~X + 1/2∆ ~XT · Z ·∆ ~X (10)

where ~G is vector of derivatives and Z matrix of the second derivatives
over parameters ~X.
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COPI Method,cont-ed

Near the same values ~X0 you can expand constraints (2) into :

~f = ~f( ~X0) + DF ·∆( ~X) = 0 (11)

where DF rectangular matrix of the constraint derivatives over
parameters( nc rows and np columns). We may rewrite (11) as follows

~f = ~f( ~X0) + DF1 ·∆ ~Xf + DF2 ·∆ ~Xc = 0 (12)

Here DF1 and DF2 - submatrices of DF, 1-st has nc rows and (np - nc)
columns, second nc rows and nc columns. Having (12) we may express
∆ ~Xc as a function of ∆ ~Xf in the form

∆ ~Xc = ~R+ ~S ·∆ ~Xf (13)
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..Continued

Subvector ∆ ~Xc may be changed according to (13) and we come the
new quadratic form depending only on nf= np -nc increments ∆ ~Xf :

F → F ′ = F ′0 + ~G′ ·∆ ~Xf + 1/2∆ ~Xf
T · Z ′ ·∆ ~Xf (14)

F
′
0 = F0 +

nc∑
k=1

Rk · [Gnf+k + 1/2 ·
nc∑
l=1

Znf+k,nf+lRl] (15)

G
′
i = Gi +

nc∑
k=1

Gnf+k · Sk,i +

nc∑
k=1

Rk[Znf+k,i +

nc∑
l=1

Sl,iZnf+l,nf+k] (16)

Z
′
i,j = Zi,j +

nc∑
k=1

[Sk,i ·Znf+k,j +Sk,j ·Zi,nf+k] +

nc,nc∑
k=1,l=1

Sk,iZnf+k,nf+lSl,j

(17)
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ANKE,COPI Method,pp→ ppSπ
0(ppS =1 S0 state)

prelim
inary
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Tutorial Example of COPI Method

PDF(x, y) = (1 + α1 · x+ α2 · y)/(1 + 0.5 · α1 + 0.5 · α2)

Area: 0 < x < 1 and 0 < y < 1;
True values: α1 = 0.5 and α2 = 0.8;

Events: 105;
Constraint: α1 + α2 = 1.3.

The values of the estimates for the constrained and unconstrained cases.

Errors cited are those calculated by the program.

parameter constrained option unconstrained option

α1 0.501± 0.013 0.515± 0.023
α2 0.799± 0.013 0.815± 0.026

1 In both cases the estimates are within one calculated error of true values;
2 Calculated errors in constrained option are two times less than in

unconstrained;
3 The values of estimates in constrained option are much nearer to the

true one.
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What About SPD?

Strictly opinion of Presenter:

I think that all of the three methods

must be incorporated in SPD

software and it is up to user
to select which is preferrable
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Thank You!
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