

SPD meeting, 7 October 2020

Reconstruction of short-lived particles in SPD experiment (update)

<u>V. Andreev</u>

Selection criterion in KF Particle package:

1. select tracks (primary and secondary) on the base of chi2 of track and primary vertex (rec and sim)

$$\chi^2_{prim} = \Delta \mathbf{r}^T (C_{track} + C_{PV})^{-1} \Delta \mathbf{r},$$

where Δr – distance between track and the primary vertex position, C_{track} is covariance matrix of a track and C_{PV} is a covariance matrix of primary vertex

- 2. consider only combination of 2 particles with different charge (q1*q2 < 0) for 2 particles decay case
- 3. check the distance between 2 daughter particles
- 4. check L / dL decay length normalized on the error
- 5. check χ^2_{topo} of mother particle to primary vertex
- 6. check some kinematic variables (θ of mother particle, P_{τ} mother or daughter particles)

Ideal D^o finder (M=1864,84 MeV/c²)

1. consider $D^0 \rightarrow K^- \pi^+$ decay (BR 3.9 %) => ct = 122.9 µm, M=1864,84 MeV/c²

- 2. simulate 100000 Minimum Bias (MB) events with Pythia6, $\sqrt{s} = 27$ GeV
- 3. additionally simulate 20000 D⁰ events, uniform θ and ϕ (~15240 reconstructed, ~76%)
- 4. consider $K^-\pi^+$ ombination with different charge (q1*q2 < 0) in each event

5. need to suppress MB background:
a) S/B ~ 1 => ~10⁻⁵ times (with ~50% D⁰ reconstruction and selection efficiency)
b) S/B ~0.1 => ~10⁻⁴ times (with ~50% D⁰ reconstruction and selection efficiency)

Ideal D^o finder

distance between 2 tracks

 χ^2 of V0 link with PV

 $0.57 < \theta < 2.57 = > \sim 85\%$ of D^o accepted

Ideal D^o finder

Invariant mass

Ideal D^o finder

S/B ~0.05 inside $3*\sigma$ around signal

100000 MB events + 50 D^o events S/B \sim 5*10⁻⁴ - no selection S/B \sim 2.5*10⁻⁴ - with selection

Selection efficiency (~50%): a) dist<0.02 cm b) chi2 link D^o to PV<5 c) $\Delta\theta < 1.0$

Ideal D*+ finder (M=2010.27 GeV/c²)

1. consider $D^{*+} \rightarrow D^0 + \pi^+_{slow}$ decay (BR ~67.7 %) with $D^0 \rightarrow K^- \pi^+$ (BR ~3.9%)

- 2. main advantage of this channel 3 particles decay and very narrow mass difference $\Delta M = M(D^{*+}) M(D^0)$ (~145 MeV) => good background suppression
- 3. simulate 100000 Minimum Bias (MB) events with Pythia6, $\sqrt{s} = 27$ GeV
- 4. additionally simulate 20000 D^{*+} events, uniform θ and ϕ (~2880 reconstructed, ~14.4%)
- 5. reconstruct D⁰ using $K^-\pi^+$ combination => apply some mass window, then add slow positive pion in some momentum range => 0.10-0.20 GeV/c and reconstruct invariant mass of $K^-\pi^+\pi^+_{slow}$ particles combination and finally apply also some ΔM window

Used selection (~12% accepted D^{*+}):

1) 0.100 Mev/c $< P_{slow}^{+} < 0.165$ MeV/c 2) 1.840 MeV/c² $< M(D^{0}) < 1.890$ MeV/c² 3) 1.980 MeV/c² $< M(D^{*+}) < 2.04$ MeV/c² 4) 0.138 MeV/c² $< \Delta M(D^{*+}-D^{0}) < 0.152$ MeV/c² Need to suppress MB background:

a) S/B ~ 1 => ~10⁻⁶ times

b) S/B ~0.1 => ~10⁻⁵ times

Ideal D*+ finder (M=2010.27 GeV/c²)

Ideal D*+ finder (Minimum Bias)

Ideal D*+ finder (Minimum Bias)

Invariant mass of D*

 10^7 MB events + 100 D*+ events S/B ${\sim}10^{\text{-5}}$ - with selection

S/B ~0.2 inside $3*\sigma$ around signal

- 1) KF Particle package for finding and reconstruction of short-lived particles is available in SPDroot
- 2) separation of D^o candidate is possible with more complicated selection cuts
- 3) registration of $D^{*+} \rightarrow D^0 + \pi^+_{slow}$ is possible with standard cuts

Backup slides

y \in (0.5,1.0), p_{_{\rm T}} \in (0.2,0.4) GeV/c, p+p @ 158 GeV/c

Ideal V^o finder (K^o_c)

1. consider $K_s^0 \rightarrow \pi^+ \pi^-$ decay (68,6 %) and $\tau = 0.895*10^{-10} => c\tau = 2.7$ cm

2. simulate Minimum Bias (MB) events with Pythia6 and $\sqrt{s} = 27$ GeV

- 3. additionally simulate 5000 K⁰_s events, uniform θ and ϕ (~1800 reconstructed)
- 4. consider 2 pions combination with different charge (q1*q2 < 0) in each event

Ideal V⁰ finder (K⁰_s)

Normalize distance L/dL of V⁰ particle to PV

Ideal V⁰ finder (K⁰_s)

Distance between 2 particles

chi2 of track to PV

Ideal V⁰ finder (K⁰_s)

