MPD prospects for the study of the strangeness production and strangeness-to-entropy ratio at NICA energies

V. Kolesnikov*, A. Mudrokh, V. Kireyeu, V. Vasendina (VBLHEP, JINR)

*Support from RFBR grant № 18-02-40037

RFBR grants for NICA JINR, Dubna, October 21-23, 2020

OUTLINE

□ Motivation of the study: why to measure strangeness at NICA

□ MPD detector setup and analysis principles

□ Results

- pT-spectra of pions and kaons
- rapidity distributions of hadrons
- excitation function of the strangeness-to-entropy ratio

□ Summary

"NAUKA" NATIONAL PROJECT

Decree of the President of RF № 204 on 7 May, 2018

TIMELINE: 01.10.2018 – 31.12.2024

GOALS AND TARGETS:

- Ensuring the presence of the Russia among the 5 leading countries engaged in R&D in priority areas of science and technology development.
- 2. Ensuring the attractiveness of employment in Russia for Russian and foreign leading scientists and distinguished young researchers.
- ◀ 3. Advanced increase of internal R&D expenditures using all possible sources in comparison with the growth of the gross domestic product of the country.

FEDERAL PROJECTS INCLUDED IN THE "NAUKA" PROJECT:

Development of the scientific

and industrial cooperation.

ŤŽ

Development of the advanced infrastructure for R&D in Russia. Start of the NICA complex operation – 2022 –

	2020	Establishing 4 world-class international mathematical centers. Establishing 3 world-class genomic research centers. Beginning of international research at the megascience facility of the International Center for Neutron Research (based on the
	2021	PIK high-flux reactor). Establishing 3 world-class research centers for R&D in priority fields of scientific and technological development.
		Holding of 29th World Mathematical Congress (St. Petersburg)
ſ	2022	Beginning of international research at the megascience facility "The complex

of superconducting rings on colliding

heavy ion beams - NICA".

Development of the human resources for R&D.

Unique RFBR program to support preparation of the NICA scientific program prior to the start of operation!

NICA – Nuclotron-based Ion Collider fAcility

- Chain of accelerators providing ion beams (from *p* to Au) for fundamental physics studies & applied research
- Modern detectors for study dense nuclear matter and spin phenomena (MPD, SPD, BM@N)
- Experimental zone with beam lines for fundamental and applied research
- Factory with cryogenic infrastructure for production, testing and supply superconducting elements

Scientific pillars of the NICA program

Heavy-ion program

Probing of fundamental laws of physics with heavy-ion collisions:

- Formation of new state of matter (QGP)
- Properties of physical vacuum
- Origin of particle mass

Properties of massive stellar objects (neutron stars)

Spin physics program

New comprehensive studies with polarized beams to:

- Resolve nucleon spin crisis
- New precise measurements of the nucleon Parton Distribution Functions

Program of applied research

- Development of universal charged particle accelerators
- Universality of operating modes & increasing limiting parameters of superconducting magnets
- Radiation hardness and modification of materials
- Radiobiology research with heavy-ion beams

NICA/MPD physics cases: strangeness production

- Excitation function of hadrons, including strangeness (yields, spectra, and ratios)
- Nuclear matter EOS, in-medium effects, and chemical equilibration can be probed
- Non-monotonic strangeness-to-entropy ratio seen in heaviest systems (phase transformation?)

MultiPurpose Detector for A+A collisions @ NICA

MPD performance for Stage'1

Based on realistic event simulation within the MPDRoot framework

- High tracking efficiency over the reaction phase-space
- Efficient vertexing

Track multiplicity

600

 $- \bullet - \sigma_X$

800

Analysis details : PHSD/PHQMD model for A+A collisions

- PHSD/PHQMD event generator simulates heavy-ion collisions from the initial touch until freezeout
- Partonic and hadronic degrees of freedom, tunable parameters for the EoS
- Implements chiral symmetry restoration (CSR) effects
- Reproduces experimental data for the bulk observables

Analysis details : particle ID for hadrons

- ✓ Combined dE/dx+TOF particle ID
- ✓ High efficiency for charged hadrons

Analysis details : hyperon reconstruction

 $\Lambda \rightarrow p + \pi$

dca- distance of closest approach path – decay length

- track reconstruction and PID (dE/dx+TOF)
- secondary vertex finding technique with a set of

Principal results of the study

In the study we used central (0-5%) Au+Au collisions at center-of-mass energies 4, 6.3, 7.6, 8.8 and 12 GeV. Moreover, two CSR settings in the model were used (CSR On/Off)

Results: phase-space for hadrons

0-5% central Au+Au at 8.8 GeV

 MPD provides large coverage for identified pions and kaons (> 70% of the full phase space at 8.8 GeV)

Results: invariant pT-spectra of K+

Results: invariant pT-spectra of π^+

Results : Invariant spectra of K⁻ and π ⁻

0-5% central Au+Au at 7.6 GeV

Integrals of invariant spectra (dN/dy) are obtained by summing the reconstructed points and adding the extrapolations from BW fits

Results : rapidity distributions of K⁺

Extrapolation to full phase space can be performed exploiting the spectra shapes (Gaussian for rapidity distributions)

Small difference between reconstructed data and model predictions

Results : rapidity distributions of π **+**

Results : Excitation function of the strangeness-to-entropy ratio at NICA

Grant RFBR 18-02-40037

The scope of the study is testing MPD performance to the probes sensitive to phase transformations and critical phenomena in dense nuclear matter:

- Strangeness production and strangeness-to-entropy ratio (this talk)
- Event-by-event fluctuations of conserved charges (talk of A.Mudrokh today at 17:00)

The achieved results were presented at 5 Conferences (very recent are Cherenkov-2020 and Nucleus-2020) and published in 3 papers

A.A. Mudrokh et al, Physics of Particles and Nuclei, 2020, Vol. 51, No. 3, pp. 327–330
V. Kolesnikov et al, Physics of Particles and Nuclei Letters, Vol. 17, No 3 (2020), pp. 358–369
V. I. Kolesnikov and A. A. Mudrokh, Physics of Atomic Nuclei, 2020, Vol. 83, No. 9, pp. 1–6

ISSN 1547-4771, Physics of Particles and Nuclei Letters, 2020, Vol. 17, No. 3, pp. 358-369. © Pleiades Publishing, Ltd., 2020.

METHODS OF PHYSICAL EXPERIMENT =

Performance of the MPD Detector in the Study of the Strangeness to Entropy Ratio in Heavy-Ion Collisions at the NICA Accelerator Complex

V. Kolesnikov^a, *, V. Kireyeu^a, A. Mudrokh^a, A. Zinchenko^a, and V. Vasendina^a ^aJoint Institute for Nuclear Research, Dubna, Russia *e-mail: Vadim.Kolesnikov@cern.ch Received December 27, 2019; revised January 13, 2020; accepted January 17, 2020

Summary

- Strangeness production is among the key topics in the NICA program
- A realistic MPD simulation and reconstruction of the yields of K^{+/-}, $\pi^{+/-}$ and Λ is conducted at several collision energies
- MPD potential for the study of the excitation function of the strangeness-to-entropy ratio is estimated

Thank you for attention