АННОТАЦИЯ

<u>На цикл работ:</u> "Исследование вероятности образования и распада сверхтяжелых систем в зависимости от кулоновского фактора реакции Z_1Z_2 при энергиях вблизи кулоновского барьера".

Представляемый на конкурс цикл работ посвящен экспериментальному исследованию процессов деления и квазиделения в реакциях с тяжёлыми ионами, приводящих к образованию сверхтяжёлых составных систем с Z=114-120 в зависимости от входного канала реакции.

Получение и исследование свойств ядер вблизи «острова стабильности» является одной из основных задач современной физики сверхтяжелых элементов. Согласно теоретическим предсказаниям, «остров стабильности» ожидается вблизи нейтронной N = 184 и протонной Z = 114 или Z = 120-126 оболочек. Протонная оболочка пока точно не определена, т.к. ее значение, получаемое в различных моделях, сильно зависит от выбора параметров ядро-ядерных взаимодействий. Имеющиеся экспериментальные данные подтверждают существование «острова стабильности», но не позволяют сделать окончательного вывода о значениях протонной и нейтронной оболочек. В связи с этим, синтез сверхтяжелых элементов с Z > 118 представляет особый интерес в этих исследованиях. Чтобы продвинуться в область ядер с Z > 118 с использованием реакций полного слияния, из-за ограниченного числа актинидных ядер, пригодных для эксперимента, необходимо использовать ионы тяжелее 48Са. Однако при переходе к более растет кулоновское отталкивание тяжелым налетающим ионам взаимодействующими ядрами ($\mathbf{Z}_1\mathbf{Z}_2$). Этот фактор является одним из ключевых параметров, определяющим вклады процессов квазиделения и глубоко неупругого рассеяния, что приводит к подавлению процесса формирования составного ядра.

Для исследования вероятности образования и распада сверхтяжелых систем в зависимости от кулоновского фактора реакции Z_1Z_2 при энергиях вблизи кулоновского барьера нами был проведен цикл работ по изучению характеристик массово-энергетических распределений бинарных фрагментов, получаемых в реакциях 52 Cr + 232 Th, 52,54 Cr + 248 Cm, 86 Kr + 198 Pt и 68 Zn + 232 Th, ведущих к образованию сверхтяжелых систем с Z=114 и 120. Проведенный в представленных на конкурс работах [1–4] сравнительный анализ полученных результатов с уже имеющимися для реакций с ионами 36 S, 40,48 Ca, 48,50 Ti, 58 Fe и 64 Ni позволил получить вероятности слияния для сверхтяжелых систем в широком диапазоне изменения кулоновского фактора Z_1Z_2 от 1472 до 2808. Измерения проводились в ЛЯР в Дубне и Университете г. Ювяскюля с помощью двухплечевого времяпролетного спектрометра CORSET.

В этих исследованиях нами показано [1,3], что в случае реакций с ионами Ті и Сг свойства асимметричных фрагментов квазиделения аналогичны фрагментам реакций с ионами 48 Са со средним временем реакции около 5–7 зептосекунд. Более того, меньшее время реакции, около 3 зептосекунд, наблюдалось в случае взаимодействия с ионами Ni и Zn. Из сравнения массовых и энергетических распределений и сечений захвата было обнаружено, что при переходе от систем с $Z_1Z_2 \approx 2300$ (52 Cr + 232 Th, 52,54 Cr + 248 Cm) к системам с $Z_1Z_2 > 2500$ (86 Kr + 198 Pt, 68 Zn + 232 Th) вклад фрагментов, образующихся в долгоживущих композитных системах, сильно уменьшается, а основными каналами реакции становятся реакции малонуклонных передач и глубоконеупругого рассеяния.

Кроме того, нами было обнаружено значительное изменение свойств симметричных фрагментов в реакциях с ионами 48,50 Ті и 52,54 Сг и кардинальное изменение в реакциях с ионами 64 Nі и 68 Zn по сравнению с реакциями с ионами 48 Ca. В работах [1,3] показано, что при энергиях выше барьера вклад симметричных осколков не меняется с увеличением энергии взаимодействия и составляет около 5-6% для реакций с ионами

 52 Сг, в отличие от реакций ядер актинидов с ионами 48 Са, где этот вклад монотонно возрастает. Это может свидетельствовать о значительном усилении процесса квазиделения при переходе от ионов Са к ионам Ті и Сг. Таким образом, можно сделать вывод, что для ядерных систем с $Z_1Z_2 > 2000$, квазиделение является доминирующим процессом даже при образовании симметричных фрагментов.

Вероятности синтеза для реакций 52,54 Сг + 248 Сm, 68 Zn + 232 Th были оценены в

Вероятности синтеза для реакций 52,54 Cr + 248 Cm, 68 Zn + 232 Th были оценены в работе [1] на основе анализа массовых и энергетических распределений. Полученные вероятности слияния хорошо согласуются с зависимостью вероятности слияния от среднего параметра делимости, найденной для реакций деформированных ядер с ионами 36 S, 48 Ca, 48 Ti и 64 Ni. Обнаружено, что при энергиях выше кулоновского барьера вероятность слияния падает примерно на три порядка при переходе от реакции 48 Ca + 238 U к реакции 54 Cr + 248 Cm и более чем в 10^5 раз при переходе к реакции 68 Zn + 232 Th. На основании полученного значения вероятности слияния для реакции 54 Cr + 248 Cm ожидается, что сечение образования сверхтяжелого элемента с Z=120 составит около нескольких фемтобарн. В случае реакций 64 Ni + 238 U и 68 Zn + 232 Th сечения образования на один и два порядка меньше, чем в реакции 54 Cr + 248 Cm, соответственно.

- 1. K. V. Novikov, E. M. Kozulin, G. N. Knyazheva, I. M. Itkis, M. G. Itkis, A. A. Bogachev, I. N. Diatlov, M. Cheralu, D. Kumar, N. I. Kozulina, A. N. Pan, I. V. Pchelintsev, I V. Vorobiev, W. H. Trzaska, S. Heinz, H. M. Devaraja, B. Lommel, E. Vardaci, S. Spinosa, A. Di Nitto, A. Pulcini, S. V. Khlebnikov, Pushpendra P. Singh, Rudra N. Sahoo, B. Gall, Z. Asfari, C. Borcea, I. Harca, and D. M. Filipescu, Investigation of fusion probabilities in the reactions with ^{52,54}Cr, ⁶⁴Ni, and ⁶⁸Zn ions leading to the formation of *Z* = 120 superheavy composite systems, Phys. Rev. C 120, 044605 (2020).
- 2. K. V. Novikov, E. M. Kozulin, G. N. Knyazheva, I. M. Itkis, A. V. Karpov, M. G. Itkis, I. N. Diatlov, M. Cheralu, B. Gall, Z. Asfari, N. I. Kozulina, D. Kumar, I. V. Pchelintsev, V. N. Loginov, A. E. Bondarchenko, P. P. Singh, I. V. Vorobiev, S. Heinz, W. H. Trzaska, E. Vardaci, N. Tortorelli, C. Borcea, and I. Harca. Formation and decay of the composite system *Z* = 120 in reactions with heavy ions at energies near the Coulomb barrier. Bull. Russ. Acad. Sci. Phys. 84, 495 (2020).
- 3. E. M. Kozulin, G. N. Knyazheva, T. K. Ghosh, A. Sen, I. M. Itkis, M. G. Itkis, K. V. Novikov, I. N. Diatlov, I. V. Pchelintsev, C. Bhattacharya, S. Bhattacharya, K. Banerjee, E. O. Saveleva, and I. V. Vorobiev. Fission and quasifission of the composite system Z = 114 formed in heavy-ion reactions at energies near the Coulomb barrier, Phys. Rev. C 99, 014616 (2019).
- 4. E. Vardaci, M. G. Itkis, I. M. Itkis, G. Knyazheva, E. M. Kozulin. Fission and quasifission toward the superheavy mass region, J. Phys. G: Nucl. Part. Phys. 46, 103002 (2019).