

Проект GERDA (LEGEND): поиск безнейтринного двойного бета распада ⁷⁶Ge

Константин Гусев

НТС ЛЯП ОИЯИ | 05 Ноября 2020

К.Н. Гусев | ЛЯП | 05.11.2020

Search for 0νββ-decay Why and how?

0νββ

- violates lepton number?
- forbidden in SM?

New Physics!

YES!

YES!

 \checkmark

- v has **Majorana** mass component
- IF light neutrino exchange

Access to v mass scale

Experimental sensitivity:

• Zero background:

 $T_{1/2}^{0\nu} \propto M t$

• Non-zero background:

Isotope	$ \begin{array}{c} G^{0\nu} \\ \left(10^{-14} \mathrm{yr}\right) \end{array} $	Q (keV)	Nat. ab. (%)
⁴⁸ Ca	6.3	4273.7	0.187
⁷⁶ Ge	0.63	2039.1	7.8
⁸² Se	2.7	2995.5	9.2
¹⁰⁰ Mo	4.4	3035.0	9.6
¹³⁰ Te	4.1	2530.3	34.5
¹³⁶ Xe	4.3	2461.9	8.9
¹⁵⁰ Nd	19.2	3367.3	5.6

enrichment required except for ¹³⁰Te, not (yet) possible for all, costs differ

Target mass and detector efficiency as high as possible

Resolution remains essential

✓ "Zero-background" to have linear increase of sensitivity vs exposure

 $\sigma_E = 1\%$

Search for 0νββ-decay What about mass?

Effective Majorana neutrino mass contributes in the decay rate:

NMEs for different isotopes/models

No preferred isotope from Nuclear Physics (G*M)

GERDA/LEGEND phased approach HPGe detectors enriched in ⁷⁶Ge

- \checkmark very good energy resolution ~0.1% at $Q_{\beta\beta}$
- high detection efficiency source = detector
 - "background-free" regime of data taking
 - deep underground location (LNGS, Italy, 3500 m.w.e)
 - ✓ careful assay of materials
 - \checkmark passive and active shields
 - bare Ge detectors in liquid argon first time ever!
 - pulse shape discrimination
 active LAr veto (from GERDA Phase II)

GERDA results

roof of clean room

lock glove box floor of clean room

cryostat (Ø 4m, 64m³)

Ge detector array & LAr veto system

PMT of muon veto

water tank

(Ø 10m, 590m)

First background free 0vββ search

- ✓ GERDA successfully finished data taking in Dec 2019
- ✓ Full data set analyzed in 2020
- ✓ 103.7 kg yr of ⁷⁶Ge exposure collected in Phase II (127.2 kg yr with Phase I)

✓ All design goals are surpassed!

	GERDA Phase II	achievements			
	background	~ 10^{-3} cts/(keV kg yr)	$5.2^{+1.6}_{-1.3} imes 10^{-4}$ c	ts/(keV kg yr)	
	exposure	\geq 100 kg yr	103.7	kg yr	
✓	sensitivity GERDA achieved	$T_{1/2}^{0\nu} \ge 10^{26} \text{ yr}$ world best half-life limi	$T_{1/2}^{0 u} > 1.8$ t!	× 10 ²⁶ yr	
	T	$_{1/2}^{0 u}>1.8 imes10^{26}~{ m yr}~{ m (s)}$	90% CL) $\stackrel{(L)}{\underset{g_{0}}{\overset{g_{0}}{=}}}$ 1.5	→ expected for rO observed	
✓ ✓	Linear increase of Bright future for the	sensitivity vs exposure ne next step:	is proven! 1.0	2018 2017 O 2013 O 2013 O	

Floor

Universität Zürich

INFN

INFI

INFN

LEGEND

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

First stage (LEGEND-200):

- Existing GERDA infrastructure large enough for 200 kg of enriched detectors
- 14 strings arranged on maximum diameter of 550 mm \checkmark
- ✓ Number of readout channels will increase substantially
 - raise clean room roof \checkmark
 - new lock
 - new cabling
 - new detector suspension
- Detectors
 - BEGe's from GERDA \checkmark
 - PPC's from Majorana (successfully tested in LAr)
 - new ICPC detectors (baseline 1.5 kg each)

LEGEND mission:

"The collaboration aims to develop a phased, ⁷⁶Ge based double-beta decay experimental program with **discovery potential** at a half-life significantly close to 10²⁸ years, using existing resources as appropriate to expedite physics results."

Subsequent stages (LEGEND-1000):

- 1000 kg (staged)
- Combine best ideas from MAJORANA, GERDA, others
- Baseline design: Ge detectors in LAr
 - LAr detector volume separated by thin Cu from main cryostat volume
 - use depleted LAr in inner detector volumes
- Investigating alternatives
- Profit from experience with LEGEND-200

Background goal < 0.1 cnt/(FWHM t yr)

К.Н. Гусев | ЛЯП | 05.11.2020

Background goal: ~ 0.6 cts/(FWHM t yr)

LEGEND: the best from **GERDA** and **MAJORANA**

<u>GERDA</u>

- \checkmark LAr veto
- ✓ Low-A shield, no Pb

GERDA achieved the lowest background index: 5x10⁻⁴ cts/(keV kg yr) LEGEND-200 needs only ~ 3x better

 \checkmark Clean fabrication techniques

Both

- ✓ Control of surface exposure
- ✓ Development of large point-contact detectors
- Best BI and FWHM in 0νββ field

MAJORANA

✓ Radiopurity of nearby parts (FETs, cables, Cu)

- ✓ Low noise FE improves PSD
- ✓ Low energy threshold

MAJORANA achieved best energy resolution: 2.5 keV FWHM at Q_{bb}

In fact, this LEGEND-200 goal is similar to the best of the GERDA detectors

GERDA Nylon mini-shroud (NMS)

Разработанный NMS обладает хорошей радноактивной чистотой, стабилен в жидком артоне, улучшает работу артонового вето и позволяет в комбинации с PSD узненышть уровень фона в области интереса более чем в 1000 раз. NMS были успешне применены в GERDA. Новые улучшенные версии NMS будут спешиально приготовлены в чистой комнате ОИЯИ для эксперимента LEGEND.

Upgrade 2018

GERDA Phase II

GERDA LArGe test facility

Большая часть исследований по разработке аргонового вето и методик подавления фона от радиоактивного ⁴²Аг была выполнена при непосредственном участии сотрудников ОИЯИ с помощью низкофоновой тестовой установки LArGe

Для детального изучения фона от ⁴²Ar, был искусственно произведен ⁴²Ar и добавлен в жидкий аргон криостата LArGe. Были разработаны и протестированы различные способы подавления фона от ⁴²Ar.

GERDA Collaboration

GERDA collaboration, Eur. Phys. J. C 78 (2018) 388

GERDA

Editorial Board: P. Grabmayr, R. Hiller, K.T. Knöpfle, <u>A. Smolnikov</u>, A. Zsigmond; (ex officio: R.Brugnera, B. Schwingenheuer) 📫 mail to <u>EB</u> Speakers Bureau: L. Baudis, J. Jochum, <u>A. Lubashevsky, B. Majorovits, F. Salamida;</u> (ex officio: R.Brugnera, B. Schwingenheuer) 📫 mail to <u>SB</u>

Groups and Principal Inves	tigators	Task Groups and Leaders
INFN Gran Sasso, GSSI:	M. Laubenstein	TG1: modification &test of existing diodes S.Schönert
Cracow:	M. Wojcik	TG2: design &production of new Ge diodes A. Caldwell
TU Dresden:	K. Zuber	TG3: front end electronics C. Cattadori/V. D'Andrea
JINR Dubna:	K. Gusev	TG4: cryostat & cryogenic infrastructure B. Schwingenheuer
Geel:	M. Hult	TG5: clean room & lock system B. Majorovits
MPIK-Heidelberg:	W. Hofmann	TG6: water tank & water plants C. Cattadori
	M. Lindner	TG7: muon veto J. Jochum/AK.Schütz/D.Zinatulina
Milano Bicocca & INFN:	E. Bellotti	TG8: infrastructure & logistics M. Junker
INR Moscow:	L. Bezrukov	TG9: DAQ &online software B. Schwingenheuer/R.Brugnera
ITEP Moscow:	I. Kirpichnikov	TG10: simulation& background studies L. Pandola/L. Pertoldi
Kurtchatov Moscow:	K. Gusev	TG11: material screening J. Schreiner/G. Zuzel
MPI-P Munich:	A. Caldwell	TG12: energy calibration L. Baudis/R. Hiller
TU Munich:	S. Schönert	TG13: data reduction & analysis software M. Agostini/C. Wiesinger
Padova University & INFN:	R. Brugnera	TG14: LArGe H. Simgen/S. Schönert
EKUT Tübingen:	J. Jochum	TG15: detector integration, operation & maintenance K. Gusev
U. Zürich:	L. Baudis	TG16: pulse shape analysis Y. Kermaidic/A. Zsigmond

К.Н. Гусев | *Л*ЯП | 05.11.2020

- ✓ В отделе НЭОЯСиРХ ЛЯП было разработана, произведена, установлена и запущена система пластикового мюонного вето.
- ✓ Наши ученые внесли очень заметный вклад как в разработку и тестирование принципов регистрации сцинтилляций аргона, так и в непосредственное создание в 2015 году первой системы активного аргонового вето, успешно примененной в эксперименте.
- ✓ В 2018 году специалисты ЛЯП ОИЯИ, совместно с коллегами из Мюнхенского университета, разработали, изготовили и установили в GERDA модифицированную систему аргонового вето с улучшенной эффективностью сбора света.
- ✓ Сотрудниками ОИЯИ была разработана оригинальная методика по подавлению доминирующего фона от ⁴²Ar. Специально изготовленные сверхнизкофоновые нейлоновые кожухи со спектросмещающим покрытием, смонтированные вокруг германиевых детекторов, позволяют значительно снижать этот фон.
- ✓ Физики нашего института участвовали в анализе полученных данных.
- Сотрудники ОИЯИ непосредственно отвечали за все операции с открытыми обогащенными германиевыми детекторами, начиная с демонстрации их работоспособности в криогенной жидкости в самом начале проекта и заканчивая инсталляцией (и деинсталляцией) всех детекторов в установку GERDA в обеих фазах эксперимента.

People

- K.N.Gusev Project Leader (technical coordination of the GERDA experiment, project coordination at JINR, Ge detectors, active veto systems), 0.6 FTE
- A.V.Lubashevskiy Deputy Leader (analysis coordination, ultrapure materials, Ge detectors), 0.3 FTE.
- N.S.Rumyantseva Deputy Leader (Ge detectors, analysis), 0.4 FTE
- V.B.Brudanin Participant (⁷⁶Ge procurement, ultrapure materials), 0.1 FTE
- M.V.Fomina Participant (active veto systems), 0.2 FTE
- S.A.Evseev Participant (Ge detectors), 0.1 FTE
- D.V.Filosofov Participant (ultrapure materials), 0.1 FTE
- L.Grubchin Participant (Ge detectors), 0.1 FTE
- Yu.B.Gurov Participant (Ge detectors), 0.2 FTE
- Zh.H.Hushvaktov Participant (ultrapure materials), 0.2 FTE
- I.I.Kamnev Participant (active veto systems), 0.2 FTE
- A.A.Klimenko Participant (analysis), 0.7 FTE
- F.Mamedov Participant (ultrapure materials, analysis), 0.2 FTE
- I.B.Nemchenok Participant (ultrapure materials, active veto systems), 0.2 FTE
- A.V.Rakhimov Participant (ultrapure materials), 0.1 FTE
- S.V.Rozov Participant (Ge detectors), 0.1 FTE
- V.G.Sandukovsky Participant (Ge detectors), 0.5 FTE
- K.V.Shakhov Participant (ultrapure materials), 0.1 FTE
- E.A.Shevchik Participant (active veto systems), 0.3 FTE
- Yu.A.Shitov Participant (analysis), 0.1 FTE
- A.A.Smolnikov Participant (active veto systems, ultrapure materials, analysis), 0.7 FTE
- S.I.Vasilev Participant (active veto systems, analysis), 1.0 FTE
- V.P.Volnikh Participant (technical support), 0.1 FTE
- E.A.Yakushev Participant (Ge detectors, analysis), 0.1 FTE
- I.V.Zhitnikov Participant (analysis), 0.1 FTE

GERDA (LEGEND) & **JINR** Plans

2021-2022:

Modification of GERDA cryostat for LEGEND-200. Integration of the first strings and start data taking of the LEGEND experiment. Working on the conceptual design of LEGEND-1000.

2022-2023:

Taking data in LEGEND-200. Finalizing the array by adding the rest of the enriched Ge detectors. Publication of the first results of LEGEND-200. Preparation of the LEGEND-1000 (procurement of enriched ⁷⁶Ge, production and testing of new Ge detectors, R&D of low background materials and electronics).

2023-2024:

Taking data in LEGEND-200. Adding the new detectors strings in the center of the LEGEND-200 array. Publication of improved results of LEGEND-200. Completion the design of LEGEND-1000. Continuation of preparation of the LEGEND-1000 (procurement of enriched ⁷⁶Ge, production and testing of new Ge detectors, R&D of low background materials and electronics).

GERDA (LEGEND) & JINR Financing (forms Nº 26 and Nº 29)

Expenditures, resources, financing sources		Costs (k\$) Resource requirements	Proposals of the Laboratory on the distribution of finances and resources			
			1 st vear	2 nd vear	3 rd vear	
Expenditures		 R&D of ultrapure materials Procurement of ⁷⁶Ge detectors R&D of active veto systems R&D on Ge detectors R&D of ⁴²Ar/⁴²K background mitigation 	30 150 30 140 30	10 50 10 60 10	10 50 10 20 10	10 50 10 60 10
		Construction/repair of premises				
		Materials: 1. Enriched ⁷⁶ Ge 2. Scintillating and clean materials 3. Chemicals for Ge detectors	150 45 6	50 15 2	50 15 2	50 15 2
Required resources	Standard hour	Resources of – Laboratory design bureau; – JINR Experimental Workshop; – Laboratory experimental facilities division; – accelerator; – computer. Operating costs.	300 600	100 200	100 200	100 200
Financing sources	Budgetary resources	Budget expenditures including foreign-currency resources.	581	207	167	207
	External resources	Contributions by collaborators. Grants. Contributions by sponsors. Contracts. Other financial resources, etc.	30	10	10	10

Expenditure items		Full cost	1 st	2 nd	3 rd
			year	year	year
	Direct expenses for the Project				
1.	Accelerator, reactor	h			
2.	Computers	h			
3.	Computer connection	6 k\$	2	2	2
4.	Design bureau	standard hour	100	100	100
5.	Experimental Workshop	standard hour	200	200	200
6.	Materials	201 k\$	67	67	67
7.	Equipment	380 k\$	140	100	140
8.	Construction/repair of premises	k\$			
9.	Payments for agreement-based	k\$			
	research				
10.	Travel allowance, including:	150 k\$			
	a) non-rouble zone countries		30	30	30
	b) rouble zone countries				
	c) protocol-based		20	20	20
	Total direct expenses	737	259	219	259

Publications and talks

- 1. «Upgrade for Phase II of the GERDA Experiment», Eur. Phys. J. C 78 (2018) 388.
- 2. «LArGe: active background suppression using argon scintillation for the Gerda 0vββ-experiment», Eur. Phys. J. C 75 (2015) 506.
- 3. «Mitigation of ⁴²Ar/⁴²K background for the GERDA Phase II experiment», Eur. Phys. J. C 78 (2018) 15.
- 4. «The GERDA experiment for the search of $0\nu\beta\beta$ decay in ⁷⁶Ge», Eur. Phys. J. C 73 (2013) 2330.
- 5. «Results on Neutrinoless Double-β Decay of ⁷⁶Ge from Phase I of the GERDA Experiment», Phys. Rev. Lett 111 (2013) 122503.
- 6. «Pulse shape discrimination for GERDA Phase I data», Eur. Phys. J. C 73 (2013) 2583.
- 7. «The background in the $0\nu\beta\beta$ experiment GERDA», Eur. Phys. J. C 74 (2014) 2764.
- 8. «Results on ββ decay with emission of two neutrinos or Majorons in ⁷⁶Ge from GERDA Phase I», Eur. Phys. J. C 75 (2015) 416.
- 9. «2νββ decay of ⁷⁶Ge into excited states with GERDA Phase I», J. Phys. G: Nucl. Part. Phys. 42 (2015) 115201.
- 10. «The performance of the Muon Veto of the GERDA experiment», EPJC 76 (2016) 298.
- 11. «Flux modulations seen by the muon veto of the GERDA experiment», Astroparticle Physics 84 (2016) 29.
- 12. «Limit on the radiative neutrinoless double electron capture of ³⁶Ar from GERDA Phase I», Eur. Phys. J. C 76 (2016) 652.
- 13. «Limits on uranium and thorium bulk content in GERDA Phase I detectors», Astroparticle Physics 91 (2017) 15.
- 14. «Background-free search for neutrinoless double- β decay of ⁷⁶Ge with GERDA», Nature 544 (2017) 47.
- 15. «The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)», AIP Conference Proceedings 1894 (2017) 020027.
- 16. «Improved Limit on Neutrinoless Double-β Decay of ⁷⁶Ge from GERDA Phase II», Phys. Rev. Lett. 120 (2018) 132503.
- 17. «Characterization of 30⁷⁶Ge enriched Broad Energy Ge detectors for GERDA Phase II», Eur. Phys. J. C. 79 11 (2019) 978.
- 18. «Probing Majorana neutrinos with double-β decay», Science 365 (2019) 1445.
- 19. «Modeling of GERDA Phase II data», Journal of High Energy Physics 03 (2020) 139.
- 20. «First Search for Bosonic Superweakly Interacting Massive Particles with Masses up to 1 MeV/c2 with GERDA», Phys. Rev. Lett. 125 (2020) 011801.
- 21. «Final Results of GERDA on the Search for Neutrinoless Double-β Decay», submitted to Physical Review Letters, arXiv: 2009.06079.

Publications and talks

- 22. «Status of the GERDA experiment: on the way to Phase II», K.Gusev at TAUP 2015, Torino, Italy
- 23. «Status of preparations for the Phase II of the GERDA experiment aimed for the $0\nu\beta\beta$ decay search», A.Lubashevskiy at PATRAS 2015, Zaragoza, Spain.
- 24. «First results from Phase II of the GERDA experiment», K.Gusev at INPC 2016, Adelaide, Australia.
- 25. «Neutrinoless double beta decay: First results of GERDA Phase II and the status of other experiments», A.Lubashevskiy at PASCOS 2016, Quy Nhon, Vietnam.
- 26. «Double Beta Decay Experiments», K.Gusev at ICSSNP 2016, Dubna, Russia.
- 27. «Double beta decay experiments and neutrino mass investigation: Past, Present and Future», A.Smolnikov at QUARKS 2016, Pushkin, Russia.
- 28. «From Baksan to worldwide experiments searching for neutrinoless double beta decay», A.Smolnikov at ICSSNP 2017, Nalchik, Russia.
- 29. «Neutrinoless double beta decay search with the "background free" GERDA experiment», A.Lubashevskiy at ICSSNP 2017, Nalchik, Russia.
- 30. «GERDA: first background free search for neutrinoless double beta decay», K.Gusev at ICNFP 2017, Crete, Greece.
- 31. «LEGEND: new opportunity to discover the neutrinoless double beta decay», K.Gusev at ICNFP 2017, Crete, Greece.
- 32. «Neutrinoless double beta decay: Experimental challenges», K.Gusev at NOW 2018, Brindisi, Italy.
- 33. «Fifty Years of Searching for Neutrinoless Double Beta Decay with Ge Detectors», A.Smolnikov at History of Neutrinos, Paris, France.
- 34. «New results of the search for neutrinoless double beta decay from GERDA Phase II», N.Rumyantseva at Nucleus 2018, Voronezh, Russia.
- 35. «GERDA searches for 0νββ and other ββ decay modes of ⁷⁶Ge», A.Smolnikov at MEDEX 19, Prague, Czech Republic.
- 36. «Status of the search for neutrinoless double-beta decay with GERDA», A.Lubashevskiy at WIN 2019, Bari, Italy.
- 37. «Upgrade of the GERDA Phase II experiment», E.Shevchik at Nucleus 2019, Dubna, Russia.
- 38. «Latest results from the first background free search for neutrinoless double beta decay GERDA Phase II», K.Gusev at INPC 2019, Glasgow, UK.
- 39. «Status of the GERDA Phase II experiment», N.Rumyantseva at ICNFP 2019, Crete, Greece.
- 40. «Results of the GERDA Phase II experiment», K.Gusev at ICHEP 2020, Prague (virtual conference).