



# Исследования реакторных антинейтрино в эксперименте vGeN

А.В.Лубашевский от коллаборации vGeN

(в рамках продления проекта GEMMA)





#### Цели проекта vGeN

Эксперимент vGeN — продолжение предыдущих проектов GEMMA. Целью vGeN является исследование свойств нейтрино с помощью германиевых детекторов расположенных вблизи энергетического реактора. В частности осуществляется поиск магнитного момента нейтрино, когерентного рассеяния нейтрино на ядрах германия, и других процессов.

**Магнитный Момент Нейтрино (ММН)** – это фундаментальный параметр, исследование которого может привести к результатам, выходящим за рамки Стандартной Модели. Минимально Расширенная Стандартная Модель предсказывает очень малое значение магнитного момента для массивных нейтрино ( $\mu_v$  <  $10^{-19}\mu_B$ ), которое не может быть измерено в современных экспериментах. Однако, в большом количестве расширений Стандартной Модели предсказывается, что значение ММН может быть на уровне  $10^{-(10+12)}$   $\mu_B$  для Майорановских нейтрино. Наблюдение значения ММН выше чем  $10^{-14}$   $\mu_B$  будет свидетельствовать об обнаружении физики за пределами Стандартной Модели и о Майорановской природе нейтрино.



Figure 1: Magnetic moment diagram for Dirac neutrinos.

#### В эксперименте **GEMMA-I** поставлено лучшее в мире лабораторное ограничение $\mu_v < 2.9 \cdot 10^{-11} \mu_B$

Figure 2: Magnetic moment diagram for Majorana neutrinos.

## Цели проекта vGeN

- Когерентное рассеяние нейтрино на ядрах вещества (КРН) это процесс, предсказанный в рамках Стандартной модели.
- Никогда не был обнаружен для реакторных нейтрино.
- Детектирование этого процесса является важным тестом СМ.
- Большой интерес к этому процессу вызван еще тем, что с помощью него можно производить поиск нестандартных взаимодействий нейтрино, стерильного нейтрино, исследовать ядерные форм факторы и производить другие исследования.



- $E_v < 50$  МэВ (области полной когерентности ~ 30 МэВ)
  - Сечение рассеяния увеличено на несколько порядков по сравнению с «обычным» рассеянием
  - Пропорционально квадрату числа нейтронов N<sup>2</sup>
  - Энергия отдачи очень мала меньше нескольких кэВ.

В настоящее время только в эксперименте COHERENT было заявлено об обнаружении КРН. Однако, эти результаты были получены с достаточно высокоэнергичными нейтрино, в области близкой к пределу когерентности. Проект vGeN нацелен на регистрацию этого процесса в области **полной когерентности**.









Коллаборация vGeN состоит из сотрудников ОИЯИ и ИТЭФ:

#### JINR (Dubna):

V.V.Belov, V.B.Brudanin, V.A.Evsenkin, S.A.Evseev, D.V.Filosofov, M.V.Fomina, L.Grubchin, U.B.Gurov, A.Kh.Inoyatov, S.L.Katulina, S.V.Kazarcev, S.P.Kiyanov, A.S.Kuznecov, A.V.Lubashevskiy, D.V.Medvedev, D.V.Ponomarev, D.S.Pushkov, A.V.Salamatin, K.V.Shakhov, Z.Kh.Khukhvatov, V.G.Sandukovsky, M.V.Shirchenko, E.A.Shevchik, S.V.Rozov, I.E.Rozova, V.P.Volnikn, I.V.Zhitnikov, E.A.Yakushev

#### ITEP (Moscow):

A. G. Beda, A. S. Starostin

#### Источник нейтрино - КАЭС



## Источник нейтрино



Экспериментальная установка строится в непосредственной близости от активной зоны реактора (~ 10 м), что дает поток нейтрино свыше > **5**·**10**<sup>13</sup> нейтрино/(сек·см<sup>2</sup>) – (**рекордный поток!).** Кроме того, расположение экспериментально зала позволяет иметь хорошую защиту от космического излучения **~ 50 м в.э**.

# HPGe detector for $\nu\text{GeN}$



Для детектирования сигнала от нейтрино используются специально разработанные с учетом требований низкофонности и низкопороговости HPGe детекторы производства CANBERRA (Mirion, Lingosheim). Используются детекторы с азотным и электронным охлаждением. Было изготовлено 4 детектора общей массой ~ 5.5 кг.

#### Схема защиты спектрометра



## Подъемный механизм @ КАЭС



Нами был изготовлен специальный подъемник для различения искомого сигнала от фонового и шумового предусмотрен подъемный механизм, позволяющий изменять расстояние до активной зоны реактора.

**10.869 м** - верхнее положение

Расстояние от детектора до центра активной зоны реактора:

**11.935 м** – нижнее положение

В ближайшее время планируется начать использование подъемного механизма, позволяющего изменять расстояние до активной зоны реактора.

## Упрощенная схема измерений



## Обработка данных

- Нами была создана специальная система для анализа данных получаемых на установке vGeN.
- Оптимизирована система восстановления сигналов для обеспечения наилучшего энергетического разрешения.
- Была разработана система подавления шумов. При этом используются различные формировки, производится сравнение двух параллельных каналов из предусилителя, и отбора сигналов по времени их регистрации







12.11.2020

HTC 2020-12

#### Тестирование детекторов

Тестирование и характеризация детекторов проводилось в отделе НЭОЯС и РХ и в подземной лаборатории LSM (Модан, Франция). Тестовые измерения показали, что достигнутое разрешение первого детектора с генератором импульсов составило **77.99(33) eV** (FWHM). Из измерений с генератором импульсов было показано возможность достижения порога измерений ниже 200 эВ. Фоновые измерения в LSM показали достаточную радиоактивную чистоту материалов детектора.



Measurements with pulse generator

#### Моделирование установки

Для правильной интерпретации полученных результатов проводится моделирование экспериментальной установки с помощью пакета Geant4.





#### Установка на КАЭС

Экспериментальная установка собирается, тестируется и обслуживается силами сотрудников ЛЯП. В конце 2019 года первый детектор был завезен на станцию и начата установка спектрометра vGeN.



12.11.2020

### Набор и анализ получаемых данных

В настоящее время идет набор и анализ получаемых данных с экспериментальной установки. Производятся операции по оптимизации набора и анализа данных. Наблюдаемые линии в спектре вызваны наработкой космогенных изотопов и уменьшаются с течением времени.



# Измерения на КАЭС

|   |             | КР - 45 суток СР - 32 суток<br>КР 36/ СР 18<br>КР - СР - КР | Липендии выданны:<br>бл1 -до 28.06.2025г, 6л2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 - до 30.11.2038, бл3 - до 01.10.2034г., бл4 - до |
|---|-------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|   | Эн.         | 2019 rea                                                    | 2020 rox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2021 roa                                           |
| - | Дата носа К | 1 2 3 4 5 6 7 8 9 10 11 12                                  | 1 2 3 4 5 6 7 8 9 10 11 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 2 3 4 5 6 7 8 9 10 11 12                         |
| 1 | Nil         | CP Phys.                                                    | 231 сут.<br>KP + ПСЭ 270 сут                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CP.                                                |
| t | KP 18152418 | 20.04 36csr   25.05 23.11                                   | 13.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.06 36419 31.07                                  |
| * | No2         | 12 03 45gy 15 04                                            | (5.09) 32cyrt 06.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|   | Ni3         | CP                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KP R+C9                                            |
| - | *****       | 0.12 21.09 32(5) 22.10                                      | and the second sec | (2003 54K) 1K05                                    |
|   | N24         | CP<br>48-07 28.02 84.11 10est 13.11                         | 11.97 455st 24.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |

В марте 2021 года планируется остановка реактора (~ 60 дней), что позволит нам провести сравнение данных при работающем и остановленном реакторе. До этого времени предлагается закончить все работы по оптимизации работы оборудования и установить неизменные условия измерений, что позволит дать ограничение на CEvNS и начать измерения данных для MMH.

## Ближайшие планы:

- Исследование фонов: измерения нейтронного фона с помощью
  He<sup>3</sup> и Nal сцинтиллятора и другие фоновые измерения
- Оптимизация защиты: установка двух дополнительных пластин мюонного вето
- Возможна установка дополнительного Nal вето вблизи детектора.
- Рассматриваются и другие варианты по дальнейшему улучшению чувствительности экспериментальной установки: улучшение разрешения/порога измерений (вибрационная платформа, дальнейшая оптимизация электроники), создание нового детектора с лучшими характеристиками.
- Дальнейшая оптимизация анализа данных
- Начать измерения в разных позициях подъемника (на разных расстояниях от реактора)

#### Заключение

- Начаты измерения на спектрометре vGeN на КАЭС с первым германиевым детектором.
- Предварительные результаты измерений показали, что достигнутый уровень фона позволяет производить поиск CEvNS на KAЭC.
- Идет набор данных. В марте 2021 планируется остановка реактора на 2 месяца, что позволит сравнить данные при включенном и выключенном реакторе. Новые результаты ожидаются в ближайшем времени.
- Планируется впервые обнаружить CEvNS от реакторных нейтрино и улучшить чувствительность к ММН на уровне (5-9)·10<sup>-12</sup> µ<sub>в</sub> после нескольких лет измерений.

#### Задействованный персонал:

| Name                                                                         | Category           | Responsibilities                                                | FTE |  |  |  |
|------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------|-----|--|--|--|
| V.V.Belov                                                                    | Junior researcher  | Muon veto, MC, data taking                                      | 0.2 |  |  |  |
| V.B.Brudanin                                                                 | Major researcher   | Administrative work, project management                         | 0.1 |  |  |  |
| V.A.Evsenkin                                                                 | Engineer           | Constructions, detector building                                | 0.5 |  |  |  |
| S.A.Evseev                                                                   | Engineer           | Constructions, detector building                                | 0.4 |  |  |  |
| D.V.Filosofov                                                                | Head of sector     | Calibration sources                                             | 0.1 |  |  |  |
| M.V.Fomina                                                                   | Junior researcher  | Muon veto, MC                                                   | 0.1 |  |  |  |
| L.Grubchin                                                                   | Leading researcher | Detector development                                            | 0.1 |  |  |  |
| U.B.Gurov                                                                    | Senior engineer    | Detector development                                            | 0.2 |  |  |  |
| A.Kh.Inoyatov                                                                | Head of sector     | Spectroscopy measurements                                       | 0.1 |  |  |  |
| S.L.Katulina                                                                 | Senior engineer    | Administrative work, materials preparations                     | 0.1 |  |  |  |
| S.V.Kazarcev                                                                 | Junior researcher  | Electronics, data taking                                        | 0.1 |  |  |  |
| S.P.Kiyanov                                                                  | Senior engineer    | Data taking at KNPP                                             | 0.3 |  |  |  |
| A.S.Kuznecov                                                                 | Engineer           | Data taking, MC                                                 | 0.1 |  |  |  |
| A.V.Lubashevskiy                                                             | Head of sector     | Data analysis, MC, commissioning and administrative work        | 0.5 |  |  |  |
| D.V.Medvedev                                                                 | Researcher         | Data analysis, MC                                               | 0.7 |  |  |  |
| D.V.Ponomarev                                                                | Engineer           | Constructions, detectors building, testing. Experiment running. | 0.7 |  |  |  |
| D.S.Pushkov                                                                  | Senior enginieer   | 3D modeling and design of experimental setup                    | 0.2 |  |  |  |
| A.V.Salamatin                                                                | Senior reseacher   | Electronics                                                     | 0.1 |  |  |  |
| K.V.Shakhov                                                                  | Engineer           | 3D printing, construction                                       | 0.1 |  |  |  |
| Z.Kh.Khukhvatov                                                              | Junior researcher  | MC                                                              | 0.2 |  |  |  |
| V.G. Sandukovsky                                                             | Head of sector     | Detector configuration, constructions                           | 0.5 |  |  |  |
| E.A.Shevchik                                                                 | Senior engineer    | Mu-veto, constructions                                          | 0.1 |  |  |  |
| M.V.Shirchenko                                                               | Senior researcher  | Data taking, analysis                                           | 0.1 |  |  |  |
| S.V.Rozov                                                                    | Engineer           | Detector building, testing, calibration, running.               | 0.3 |  |  |  |
| I.E.Rozova                                                                   | Engineer           | Data analysis, constructions                                    | 0.5 |  |  |  |
| V.P.Volnikn                                                                  | Engineer           | Computer support                                                | 0.1 |  |  |  |
| I.V.Zhitnikov                                                                | Junior researcher  | Experiment running, data analysis                               | 0.1 |  |  |  |
| E.A.Yakushev                                                                 | Head of department | Building, commissioning, running, data analysis                 | 0.2 |  |  |  |
| Total FTF (Fraincare), 2 F. Total FTF (Scientific staff), 2 2 Total FTF, 6 7 |                    |                                                                 |     |  |  |  |

Total FTE (Engineers): 3.5, Total FTE (Scientific staff): 3.2, Total FTE: 6.7

#### Предлагаемый план-график и необходимые ресурсы для осуществления проекта vGeN

| Наименование узлов и систем<br>установки, ресурсов, источников финансирования |                                                  |                                                                                                                                 | Стоимость узлов<br>(тыс.\$). установки.<br>Потребности в | Предложения Лабораторий по<br>распределению финансирования<br>и ресурсов |       |       |
|-------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|-------|-------|
|                                                                               |                                                  |                                                                                                                                 | ресурсах                                                 | 1 год                                                                    | 2 год | 3 год |
| ы<br>2<br>2                                                                   | 1.Криогенное и ваку<br>для детекторов. Н<br>дете | умное оборудования<br>овый германиевый<br>ктор.                                                                                 | 70.0                                                     | 70.0                                                                     |       | 200   |
| іые узл<br>довани                                                             | 2. Материалы для кал<br>защ                      | пибровок и пассивной<br>иты.                                                                                                    | 45.0                                                     | 35.0                                                                     | 10.0  |       |
| op/                                                                           | 3. Электр                                        | оника NIM                                                                                                                       | 40.0                                                     | 30.0                                                                     | 10.0  |       |
| 90<br>0                                                                       | 4. Электро                                       | оника VME                                                                                                                       | 40.0                                                     | 30.0                                                                     | 10.0  |       |
|                                                                               | Итого                                            |                                                                                                                                 | 395.0                                                    | 165.0                                                                    | 30.0  | 200.0 |
| Необходи<br>мые<br>ресурсы                                                    | Нормо-<br>часы                                   | ооэп ляп                                                                                                                        | 600                                                      | 200                                                                      | 200   | 200   |
| 3                                                                             | Бюджет                                           | Затраты из<br>бюджета                                                                                                           | 395.0                                                    | 165.0                                                                    | 30.0  | 200.0 |
| финансировани                                                                 | Внебюджетные<br>средства                         | Вклады<br>коллаборантов.<br>Средства по грантам.<br>Вклады спонсоров<br>Средства по<br>договорам.<br>Другие источники<br>и т.д. | 45.0                                                     | 20.0                                                                     | 15.0  | 10.0  |

#### Смета затрат по проекту «vGeN»

| Nº   | Наименование статей<br>затрат | Полная<br>стоимость | 1 год      | 2 год     | 3 год      |
|------|-------------------------------|---------------------|------------|-----------|------------|
| 1.   | Компьютерная связь            | 6.0 тыс. \$         | 2.0        | 2.0       | 2.0        |
| 2    | ООЭП ЛЯП                      | 600 нормо/час       | 200        | 200       | 200        |
| 3.   | Материалы                     | 45.0 тыс. \$        | 35.0       | 10.0      | 5.0        |
| 4.   | Оборудование                  | 350.0 тыс. \$       | 130.0      | 20.0      | 200.0      |
| 5.   | Оплата НИР, выполняемых       | 6.0 тыс. \$         | 2.0        | 2.0       | 2.0        |
|      | по договорам                  |                     |            |           |            |
| 6.   | Командировочные               | 60.0 тыс. \$        | 20.0       | 20.0      | 20.0       |
|      | расходы,                      |                     |            |           |            |
|      | в т.ч.                        |                     |            |           |            |
|      | а) в страны нерублевой        |                     | 5.0        | 5.0       | 5.0        |
|      | зоны                          |                     |            |           |            |
|      | б) в города стран рублевой    |                     | 15.0       | 15.0      | 15.0       |
|      | зоны                          |                     |            |           |            |
| Итог | о по прямым расходам          | 467 тыс.\$          | 189 тыс.\$ | 54 тыс.\$ | 224 тыс.\$ |

# Backup slides

# Сравнение мест для измерений

| Эксперимент    | Местоположение     | Поток нейтрино<br>[см² в сек] | Защита от<br>мюонов<br>[м в. э.] |
|----------------|--------------------|-------------------------------|----------------------------------|
| vGeN           | КАЭС, Россия       | 5×10 <sup>13</sup>            | ~50                              |
| CONUS          | Брукдорф, Германия | 2.4×10 <sup>13</sup>          | 10-45                            |
| TEXONO         | Kuo-Sheng, Тайвань | 6.4×10 <sup>12</sup>          | -                                |
| <b>RED-100</b> | КАЭС, Россия       | 1.7×10 <sup>13</sup>          | >50?                             |
| CONNIE         | Angra 2, Бразилия  | 6.8×10 <sup>12</sup>          | 0                                |
| RICOCHET       | ILL, Франция       | 2×10 <sup>12</sup>            | ~15                              |
| MINER          | Texas A&M, США     | 2×10 <sup>12</sup>            | ~5                               |
| NUCLEUS        | Chooz, Франция     | 2×10 <sup>12</sup>            | ~3                               |

vGeN – обладает наилучшим в мире расположением установки среди всех экспериментов направленных на поиск CEvNS. ЛЯП имеет богатый и успешный опыт работы на КАЭС (более 15 лет)