

Reconstruction of short-lived particles in SPD experiment (update)
V. Andreev

```
Ideal V }\mp@subsup{}{}{0}\mathrm{ finder (selection)
```


Selection criterion in KF Particle package:

1. select tracks (primary and secondary) on the base of chi2 of track and primary vertex (rec and sim)

$$
\chi_{\text {prim }}^{2}=\Delta \mathbf{r}^{T}\left(C_{t r a c k}+C_{P V}\right)^{-1} \Delta \mathbf{r}
$$

where Δr - distance between track and the primary vertex position, $C_{\text {track }}$ is covariance matrix of a track and C_{Pv} is a covariance matrix of primary vertex
2. consider only combination of 2 particles with different charge ($q 1 * q 2<0$) for 2 particles decay case
3. check the distance between 2 daughter particles
4. check L/dL - decay length normalized on the error
5. check $\chi_{\text {tono }}^{2}$ - of mother particle to primary vertex
6. check some kinematic variables (θ of mother particle, P_{T} mother or daughter particles)

Vertex detector (option)

1. different configuration of silicon vertex detector in SPDroot simulation
2. DSSD (c.t. $=300 \mathrm{mkm}, 5$ layers $)=>$ option $=0$;
3. DSSD (c.t. $=50 \mathrm{mkm}, 5$ layers) $=>$ option $=1$;
4. MAPS (c.t. $=50 \mathrm{mkm}, 5$ layers) $=>$ option $=2$;
5. MAPS (c.t. $=5 \mathrm{mkm}, 1,2,3$ layers $)+$ DSSD (c.t. $=300 \mathrm{mkm}, 4,5$ - layers) $=>$ option $=3$;
6. Errors

MAPS: $u=v=4 \mathrm{mkm}$
DSSD: $u(z)=23 \mathrm{mkm}, \mathrm{v}(\mathrm{x})=11 \mathrm{mkm}$

Vertex detector (x)

SpdKFSimpleRes.GetVertexRec().z()

SpdKFSimpleRes.GetVertexRec().z()

Ideal \mathbf{D}^{0} finder ($\mathbf{M}=1864,84 \mathrm{MeV} / \mathrm{c}^{2}$)

1. consider $D^{0} \rightarrow K^{-} \pi^{+}$decay (BR $\left.3.9 \%\right)=>\mathrm{ct}=122.9 \mu \mathrm{~m}, \mathrm{M}=1864,84 \mathrm{MeV} / \mathrm{c}^{2}$
2. simulate 100000 Minimum Bias (MB) events with Pythia6, $\sqrt{ } s=27 \mathrm{GeV}$
3. additionally simulate $20000 \mathrm{D}^{0}$ events, uniform θ and Φ (~ 15240 reconstructed, $\sim 76 \%$)
4. consider $K^{-} \boldsymbol{\pi}^{+}$ombination with different charge ($q 1 * q 2<0$) in each event

5. need to suppress MB background:
a) $\mathrm{S} / \mathrm{B} \sim 1=>\sim 10^{-5}$ times (with $\sim 50 \% \mathrm{D}^{0}$ reconstruction and selection efficiency)
b) $\mathrm{S} / \mathrm{B} \sim 0.1=>\sim 10^{-4}$ times (with $\sim 50 \% \mathrm{D}^{0}$ reconstruction and selection efficiency)

Invariant mass

100000 MB events $+100 \mathrm{D}^{0}$ events $\mathrm{S} / \mathrm{B} \sim 10^{-3} \quad$ - no selection $\mathrm{S} / \mathrm{B} \sim 5^{*} 10^{-4}$ - with selection

Selection efficiency ($\sim 50 \%$):
a) dist $<0.02 \mathrm{~cm}$
b) chi2 link D^{0} to $\mathrm{PV}<5$
c) $\Delta \theta<1.0$

S/B~0.19 inside $3^{*} \sigma$ around signal

Invariant mass

Ideal ${ }^{0}$ finder

Invariant mass

100000 MB events $+20 \mathrm{D}^{0}$ events S/B ~ 2* 10^{-4} - no selection $S / B \sim 10^{-4} \quad$ - with selection

Selection efficiency ($\sim 50 \%$):
a) dist $<0.02 \mathrm{~cm}$
b) chi2 link D^{0} to $\mathrm{PV}<5$
c) $\Delta \theta<1.0$

S/B~0.05 inside 3* σ around signal

100000 MB events $+50 \mathrm{D}^{0}$ events S/B $\sim 5^{*} 10^{-4}$ - no selection S/B $\sim 2.5^{*} 10^{-4}$ - with selection

Selection efficiency (~50\%):
a) dist $<0.02 \mathrm{~cm}$
b) chi2 link D^{0} to $\mathrm{PV}<5$
c) $\Delta \theta<1.0$

S/B ~ 0.10 inside $3^{*} \sigma$ around signal

Invariant mass

