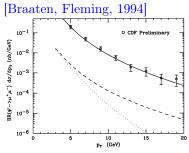
η_c -production at SPD NICA

M.A.Nefedov, V.A. Saleev, A.V. Karpishkov

28.10.2020

Outline


- ► Short theoretical introduction: NRQCD-factorization and Color-Evaporation model
- \blacktriangleright Measurement of η_c -production at LHCb, HQSS-puzzle
- ▶ Predictions for SPD-NICA

A bit of history

Historically, the first model of heavy-quarkonium production was the **color-singlet model**: The production of state X_Q $(J/\psi, \chi_{cJ}, ..., \Upsilon(nS), \chi_{bJ}, ...)$ is dominated by production of **color-singlet** $Q\bar{Q}$ -pair with L and S quantum numbers given by NR potential model for this state. Probability of hadronization is proportional to $|\Psi^{(k)}(0)|^2$, (k=0,1,...) from potential model.

This model has two problems:

- Leads to a wrong shape of p_T -spectrum at high energies (Tevatron, LHC) both at LO and NLO of CPM and in k_T -factorization, which **under-estimates** the cross-section for $p_T > 10$ GeV by factor of 30 (Tevatron $\psi(2S)$ puzzle).
- ► Is theoretically inconsistent at NLO for production of *P*-wave states: In QCD, non-cancelling IR-divergences arise at NLO.

Dotted line – LO CPM color-singlet contribution. Solid line – ${}^3S_1^{(8)}$.

NRQCD and Color-Evaporation model

To solve above-mentioned problems, two approaches have been proposed: NRQCD-factorization and Color-Evaporation Model. Both models are well-defined to all orders in α_s , but NRQCD-factorization is viewed as more "rigorous" approach by the community.

- ▶ In (Improved-)Color-Evaporation Model: all $Q\bar{Q}$ states with $M_X < M_{Q\bar{Q}} < 2M_{\text{(open flav. Q-meson)}}$ hadronize to quarkonium X with the same probability F_X , independent on $Q\bar{Q}$ -quantum numbers
- ▶ Optionally [Ma, Vogt, 2016] ICEM takes into account kinematic (soft-gluon recoil) corrections from the difference of masses $M_{Q\bar{Q}}$ and M_X using simple relation $p_T(X) = p_T(Q\bar{Q}) \times M_X/M_{Q\bar{Q}}$.
- ▶ ICEM can be viewed as NRQCD-factorization without velocity-scaling rules for probabilities F_X .

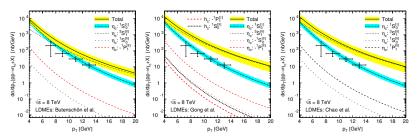
NRQCD and Color-Evaporation model

To solve above-mentioned problems, two approaches have been proposed: NRQCD-factorization and Color-Evaporation Model.

- ▶ NRQCD-factorization: Different L, S and color states of $Q\bar{Q}$ -pair hadronize to X with different "probability" long-distance matrix element (LDME): $\left\langle \mathcal{O}^{X} \left[^{2S+1}L_{J}^{(\text{color})}\right] \right\rangle$.
- LDME-s of states different from CSM-state are suppressed by powers of v^2 (~ 0.3 for J/ψ , ~ 0.1 for Υ) velocity-scaling rules for LDMEs. E.g. for J/ψ and $\psi(2S)$: CSM= $^3S_1^{(1)} = O(1)$ and $^3P_J^{(8)}$ and $^3S_1^{(8)}$, $^1S_0^{(8)}$, contribute up to $O(v^4)$.

Velocity-scaling rules and HQSS-relations

Velocity-scaling rules for LDMEs:


10100	10, 50,	a8	I GIOD	101 11	11110.							
	$^{1}S_{0}^{(1)}$	$^{3}S_{1}^{(1)}$	$^{-1}S_0^{(8)}$	$^{3}S_{1}^{(8)}$	$^{1}P_{1}^{(1)}$	$^{)} {}^{3}P_{0}^{(1)}$	$^{)} {}^{3}P_{1}^{(1)}$	$^{)} {}^{3}P_{2}^{(1)}$	$^{1}P_{1}^{(8)}$	$^{3}P_{0}^{(8)}$	$^{3}P_{1}^{(8)}$	$^{3}P_{2}^{(8)}$
η_c	1		v^4	v^3					v^4			
J/ψ		1	v^3	v^4	ì					v^4	v^4	v^4
h_c			v^2		v^2							
χ_{c0}				v^2	ì	v^2						
χ_{c1}				v^2	ı		v^2					
χ_{c2}				v^2				v^2				
, 0												

HQSS-relations between LDMEs of η_c and J/ψ :

$$\left\langle \mathcal{O}^{\eta_c} \left[{}^{1}S_0^{(1/8)} \right] \right\rangle = \frac{1}{3} \left\langle \mathcal{O}^{J/\psi} \left[{}^{3}S_1^{(1/8)} \right] \right\rangle + O(v^2),
\left\langle \mathcal{O}^{\eta_c} \left[{}^{3}S_1^{(8)} \right] \right\rangle = \left\langle \mathcal{O}^{J/\psi} \left[{}^{1}S_0^{(8)} \right] \right\rangle + O(v^2),
\left\langle \mathcal{O}^{\eta_c} \left[{}^{1}P_1^{(8)} \right] \right\rangle = 3 \left\langle \mathcal{O}^{J/\psi} \left[{}^{3}P_0^{(8)} \right] \right\rangle + O(v^2).$$

Test of HQSS-relations

[Butenschön, Kniehl, He, 2014] Experimental data from [LHCb, 2014]: $pp \to \eta_c(\to p\bar{p}) + X$ with $\sqrt{S} = 7$ and 8 TeV.

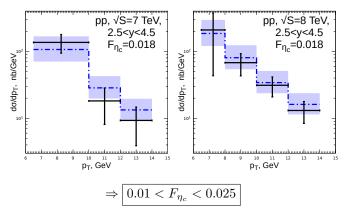
Conclusions:

- ► CS-model (${}^1S_0^{(1)}$) describes LHCb data! CO-contrs. lead to significant overshoot. \Rightarrow HQSS-relations fail!
- ▶ Feeddown from h_c is negligible

η_c at SPD-NICA?

If pure-CS picture of η_c -production is correct, then only gluon-induced process contributes at LO:

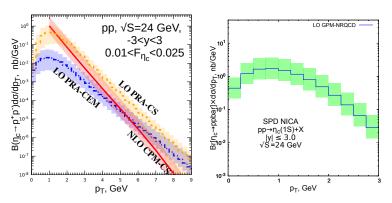
$$g + g \rightarrow c\bar{c} \left[{}^{1}S_{0}^{(1)} \right],$$


and it has no free-parameters: $\left\langle \mathcal{O}^{\eta_c} \left[{}^1S_0^{(1)} \right] \right\rangle \propto |\Psi(0)|^2.$

- ▶ LHCb has done measurement at high \sqrt{S} and forward rapidity. More measurements in other PS-regions needed to check CS hypothesis!
- ▶ LHCb used $\eta_c \to p\bar{p}$ -decay with $B = 1.45 \times 10^{-3}$. What about $\eta_c \to K\bar{K}\pi$ with B = 7.3%? At lower energy comb. background is lower, right? However neutral pion...

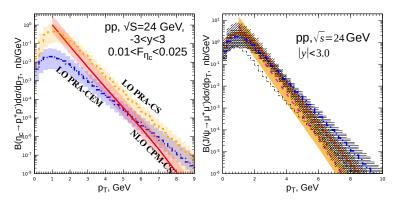
We decided to estimate η_c p_T -spectrum in p_T -collisions with $\sqrt{S} = 24$ GeV in ICEM and NRQCD (CS-model).

Description of LHCb data in ICEM+LO PRA


We use LO of Parton Reggeization Approach $(R_{+}(\mathbf{q}_{T1}) + R_{-}(\mathbf{q}_{T2}) \rightarrow c + \bar{c})$ to compute $c + \bar{c}$ -production cross-section and tune F_{η_c} :

For comparison, $F_{J/\psi} \simeq 0.02$.

Results for SPD-NICA


Predictions in NLO CPM CSM[Kniehl, Butenshön], LO PRA ICEM and LO PRA CSM shown in the left plot. Right plot – LO GPM CSM (with $\langle k_T \rangle = 1$ GeV). Cross-section× $B(\eta_c \to p\bar{p})$:

LO PRA CSM: $\sigma \times B(\eta_c \to p\bar{p}) = 0.61^{+0.76}_{-0.43} \text{ nb.}$

Comparison with J/ψ

Predictions in NLO CPM CSM[Kniehl, Butenshön], LO PRA ICEM and LO PRA CSM shown in the left plot. Cross-section× $B(\eta_c \to p\bar{p})$:

Cross section is ~ 0.1 compared with the $J/\psi \times B(J/\psi \to \mu^+\mu^-)$.

Outlook

- Any measurement of η_c production, even with large errors, is useful for development of heavy-quarkonium production theory
- ▶ If CS-model is valid $\Rightarrow \eta_c$ is the golden probe for proton structure. Couples to gluons, TMD-factorization is valid. One can study spin-asymmetries etc.
- ▶ $d\sigma/dp_T \times B(\eta_c \to p\bar{p}) \sim 1 \text{ nb/GeV}$ is obtained at $\sqrt{S} = 24 \text{ GeV}$.
- ► Any hope to see this?

Thank you for your attention!