
Study of Lambda polarization at the MPD

Elizaveta Nazarova¹, Alexander Zinchenko¹, Oleg Teryaev¹, Raimbek Akhat^{1,2}, Mircea Baznat^{1,3}

MPD Polarization Meeting «Vorticity and Polarization in Heavy-Ion Collisions»

- ¹ Joint Institute of Nuclear Research, Dubna, Russia
- ²The Institute of Nuclear Physics, Almaty, Kazakhstan
- ³ Institute of Applied Physics, Chisinau, Moldova

Outline

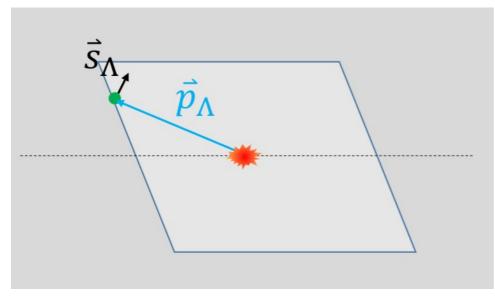
Introduction

- Lambda polarization
- Motivation
- MPD detector

Analysis method

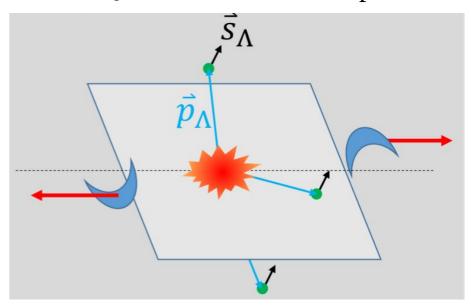
- Inclusive polarization
- Global polarization

Results


- Feasibility test of polarization extraction
- Conclusion

$\Lambda(\bar{\Lambda})$ hyperon polarization

• Inclusive polarization^{3,4}


- w.r.t scattering (production)plane
- Measured in pp and pA collisions
- In HIC can be diluted due to the rescattering in the QCD medium

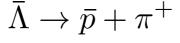
Spanned by beam direction and \vec{p}_{Λ}

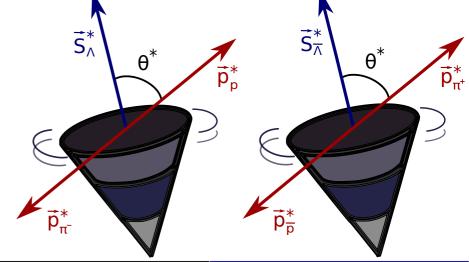
- ¹ Z. Liang, X. Wang, PRL 94, 102301 (2005)
- ²L. Adamczyk et al., Nature 548, 62 (2017)
- ³ A. Lesnik et al., Phys. Rev. Lett. 35, 770 (1975)
- ⁴G. Bunce et al., PRL 36, 1113 (1976)

- Global polarization^{1,2}
- w.r.t reaction plane
- Emerges in HIC due to the system angular momentum
- Sensitive to parity-odd characteristics of QCD medium and QCD anomalous transport

Spanned by beam direction and \vec{b}

) hyperon polarization


- Inclusive polarization^{3,4}
- w.r.t scattering (production) plane
- Measured in pp and pA collisions
- > In HIC can be diluted due to the rescattering in the QCD medium


- Global polarization^{1,2}
- » w.r.t reaction plane
- Emerges in HIC due to the system angular momentum
- Sensitive to parity-odd characteristics of QCD medium and QCD anomalous transport

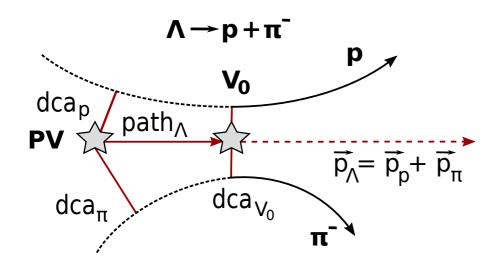
Can be measured through the weak decay: $\Lambda \to p + \pi^-$

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = 1 + \alpha_{\Lambda}P_{\Lambda}\cos\theta^*$$

* indicates the scattering plane $\alpha_{\Lambda} = -\alpha_{\bar{\Lambda}} \simeq 0.642$ (decay asymmetry)

Elizaveta Nazarova

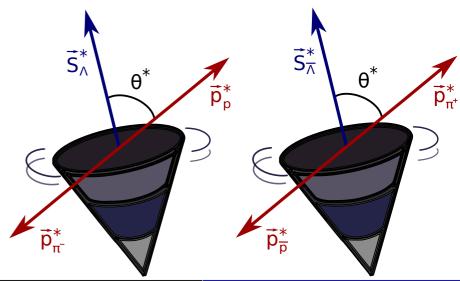
¹ Z. Liang, X. Wang, PRL 94, 102301 (2005)


²L. Adamczyk et al., Nature 548, 62 (2017)

³ A. Lesnik et al., Phys. Rev. Lett. 35, 770 (1975)

⁴G. Bunce et al., PRL 36, 1113 (1976)

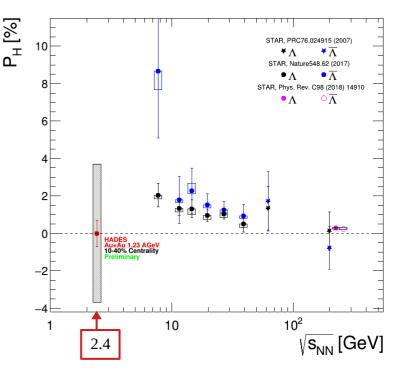
$\Lambda(\bar{\Lambda})$ hyperon polarization


- PV primary vertex
- \mathbf{V}_0 vertex of hyperon decay
- dca distance of closest approach
- path decay length
- In the case of global polarization one needs to calculate event plane and account for its resolution (R^1_{EP}):

$$\overline{P}_{\Lambda/\bar{\Lambda}} = \frac{8}{\pi \alpha} \frac{1}{R_{\rm EP}^1} \left\langle \sin(\Psi_{EP}^1 - \phi_p^*) \right\rangle$$

• ϕ_p^* is the azimuthal angle of p

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = 1 + \alpha_{\Lambda}P_{\Lambda}\cos\theta^*$$

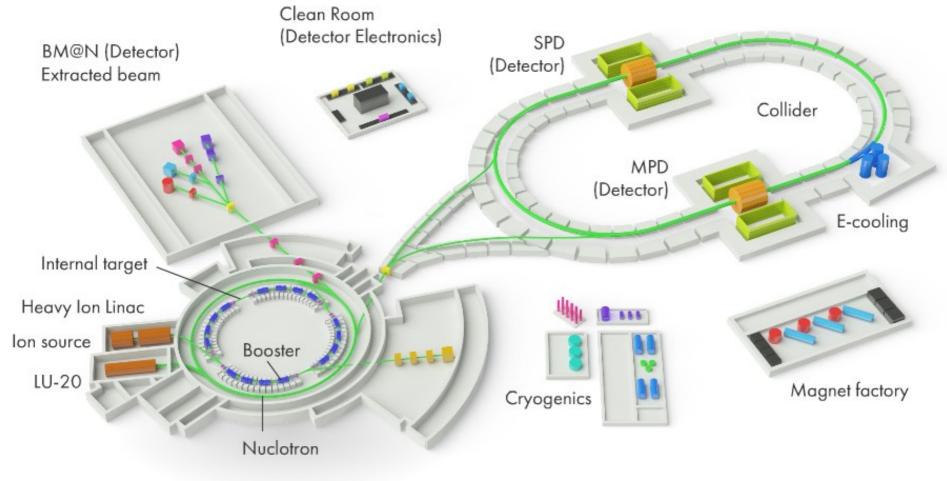

- ullet $heta^*$ angle between the decay particle and $ec{n}=ec{p}_{
 m beam} imesec{p}_{\Lambda}$
- P_{Λ} inclusive polarization (w.r.t. production plane of Λ)

Motivation

- Predicted¹ and observed² global polarization signals rise as the collision energy is reduced:
 - NICA energy range will provide new insight
 - > Possible drop-off seen at $\sqrt{s_{NN}}=2.4$ in HADES experiment³
- New value of decay asymmetry α_{Λ} found in BES-III experiment⁴
 - Effect could be studied at NICA
- $\Lambda(\bar{\Lambda})$ -splitting of global polarization, connection to the radial flow of $\Lambda(\bar{\Lambda})$

Possible drop-off at low energies?³

¹O. Rogachevsky, A. Sorin, O. Teryaev, Phys.Rev. C 82, 054910 (2010)


² J. Adam et al. (STAR Collaboration), Phys. Rev. C 98, 014910 (2018)

³F. Kornas for the HADES Collaboration, SQM 2019, Bari, Italy (11.06.19)

⁴ Ablikim M, et al., Nature Phys. 15:631 (2019)

NICA complex

- Beams: Luminosity:
 - \rightarrow p (d) \rightarrow L = 10³² cm⁻²s⁻¹
 - \rightarrow Au \rightarrow L = 10²⁷ cm⁻²s⁻¹

MPD detector

Multi-Purpose Detector (MPD)

energy and system size scan from 4 to 11 GeV(HI beams) to measure a variety of signals

- 2π acceptance in azimuth
- 3-D tracking (TPC)
- Powerful PID (TPC, TOF, ECAL):
 - $\rightarrow \pi/\mathrm{K}$ up to 1.5 GeV/c
 - K/p up to 3 GeV/c
 - γ , e: 0.1 < p < 3 GeV/c
- High event rate
 - \rightarrow Up to $\sim 6 \text{ kHz}$

- Stage I:
 - Property Property
- Stage II:
 - IT (ITS) + EndCap (CPC, Straw, TOF, ECAL)

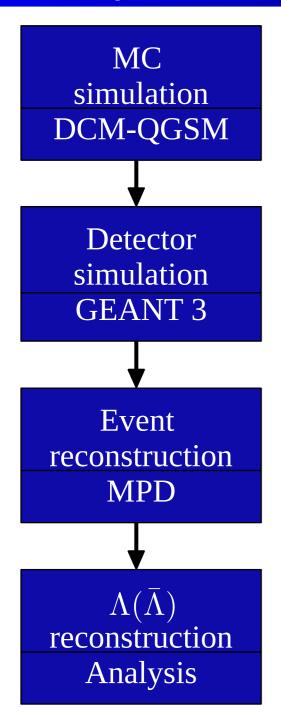
Analysis method

- Inclusive polarization
- Data: MC simulation using DCM-QGSM generator¹
 - Au-Au, $\sqrt{s_{NN}} = 9$ GeV, ~100000 events, b=0 fm
 - \triangleright Inclusive Λ polarization (transverse to the scattering plane)
 - DeGrand-Markkanen-Miettinen approach²
 - ightharpoonup No $ar{\Lambda}$ polarization
- Track selection criteria:
 - > Number of TPC hits: $N_{\rm hits} > 10$
 - $|\eta| < 1.3$

$$P = -\left(\frac{12p_T}{\Delta x_0 M^2} \frac{1 - \xi(x)}{(1 + 3\xi(x))}\right)^2$$

$$\xi(x) = \frac{1 - x}{3} + 0.1x, \ x = p_\Lambda/p_{\text{beam}}$$

$$M^2 = \left[\frac{m_D^2 + p_{TD}^2}{1 - \xi(x)} + \frac{m_s^2 + p_{Ts}^2}{\xi(x)} - (m_\Lambda^2 + p_T^2)\right]$$

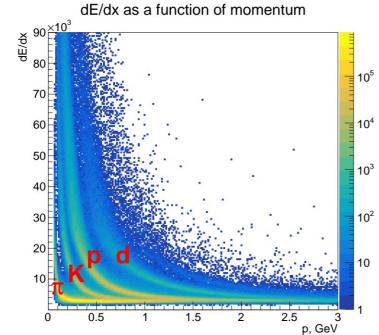

9/21

¹ V.D. Toneev, K.K. Gudima, Nucl. Phys. A 400, 173 (1983)

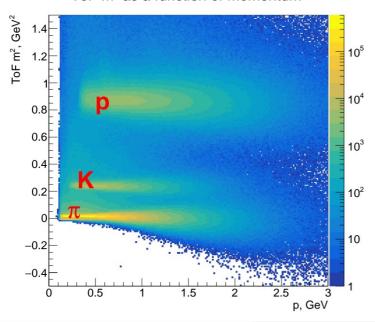
²T.A. Degrand, J. Markkanen, H.I. Miettinen, Phys. Rev. D: Part. Fields 32, 2445 (1985)

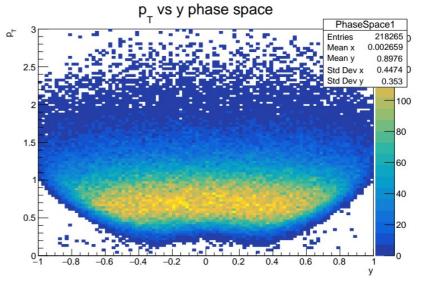
Analysis method

• Realistic Monte-Carlo simulation using DCM-QGSM generator (inclusive Λ polarization)

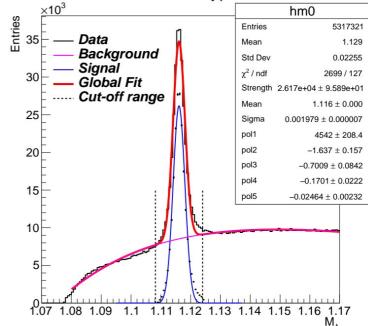

Simulation of polarization effects in the detector via GEANT 3 (anisotropic decay of Λ hyperons)
 — can be switched on/off to study the effect

Event reconstruction using realistic PID within mpdroot framework


• $\Lambda(\bar{\Lambda})$ reconstruction through the weak decay channel $\Lambda \to p + \pi^-$



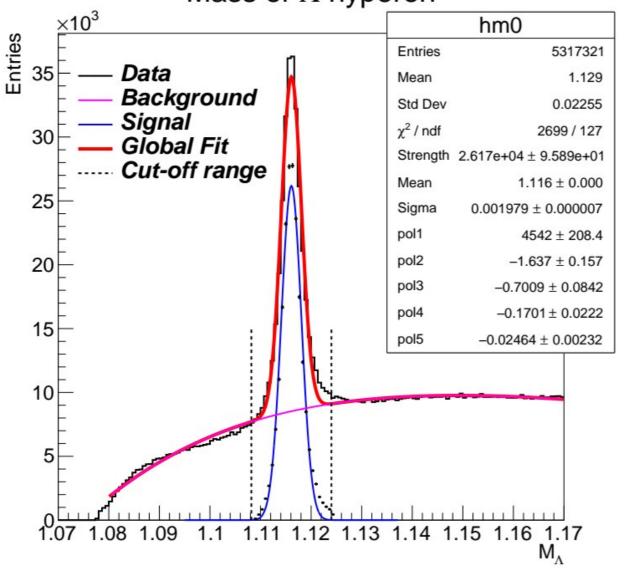
MPD PID for the analysis dE/dx as a function of momentum

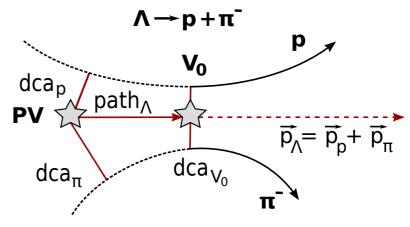

ToF m² as a function of momentum

Phase space for Λ hyperon

Mass of Λ hyperon

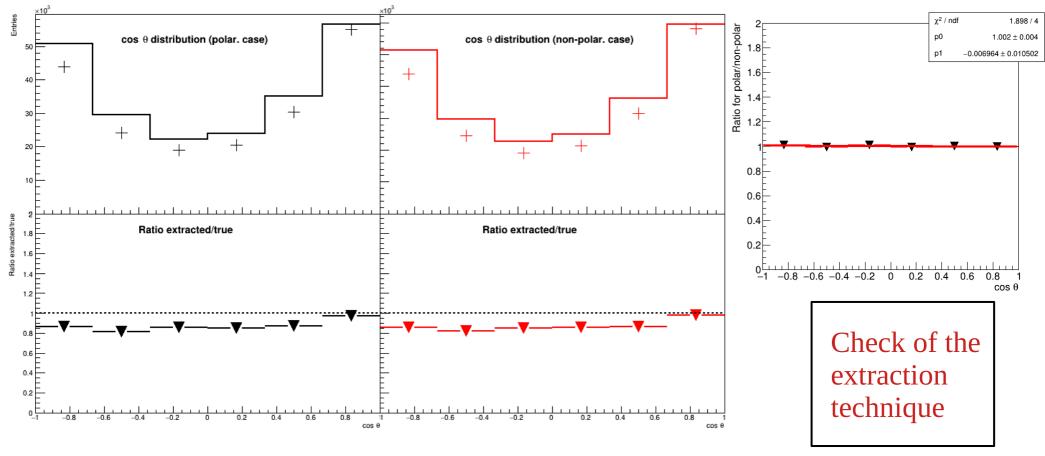
17.11.2020


$\Lambda \to p + \pi^-$


Invariant mass distribution of Λ hyperon

12/21

Mass of Λ hyperon

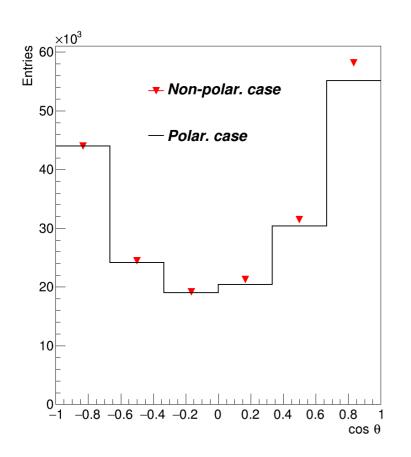


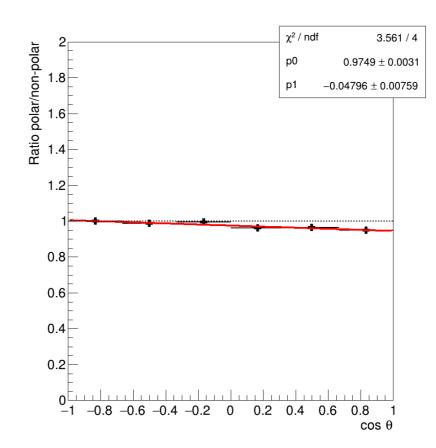
Fitting function:

- Gauss for signal
- Legendre polynomials
 (L_n) for Background
- > Cut-off: <M $_{\Lambda}$ > \pm 4σ
- DCA and trackseparation cuts

$$f(x) = [0] \exp\left(\frac{(-0.5(x - [1]))^2}{[2]^2}\right) + [3](L_0 + [4]L_1 + [5]L_2 + [6]L_3 + [7]L_4)$$

Comparison of extracted angular distributions (from invariant mass) with the true distributions (for «polarized» and «non-polarized» case)


- → shows detector acceptance effects
- + Extracted (polarized case) +
- Extracted (non-polarized case)

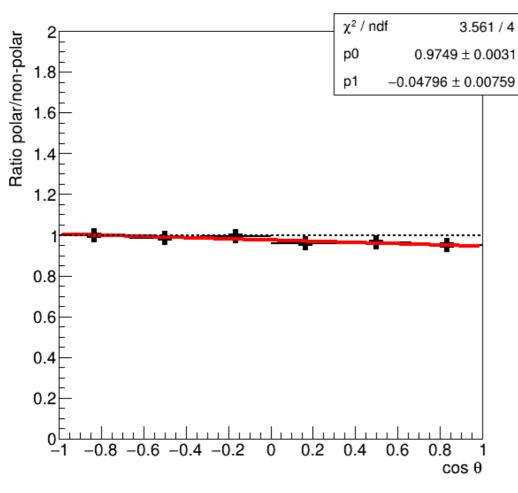

17.11.2020

— True (polarized case)

— True (non-polarized case)

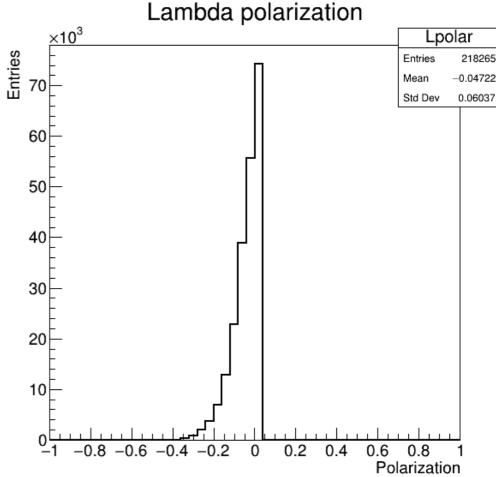
Accounting for detector acceptance

Net effect of polarization


Dividing extracted angular distributions obtained from polarized/non-polarized case (with or w/o anisotropic decay)

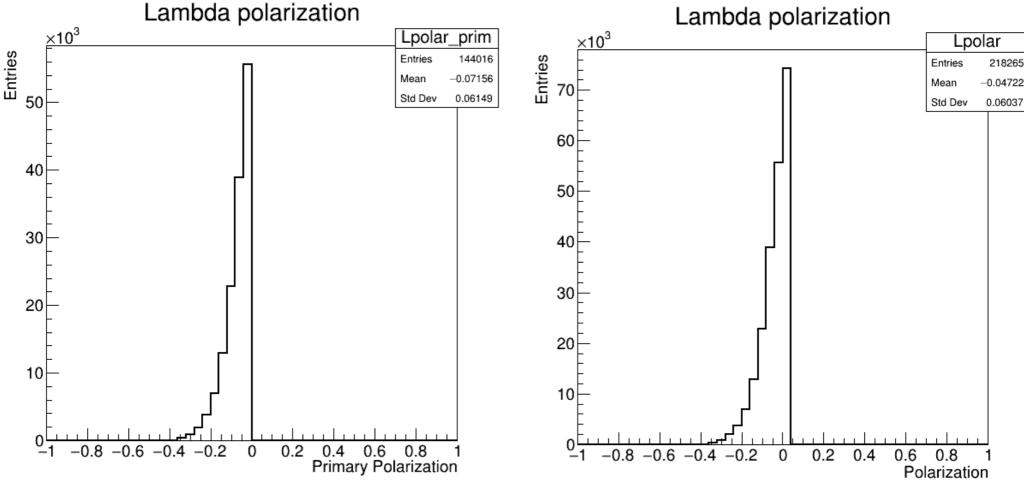
Accounts for the detector acceptance \rightarrow shows net effect due to polarization of Λ hyperons

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = 1 + \alpha_{\Lambda}P_{\Lambda}\cos\theta^*$$



15/21

 p_1 (slope parameter) \rightarrow extracted polarization value:

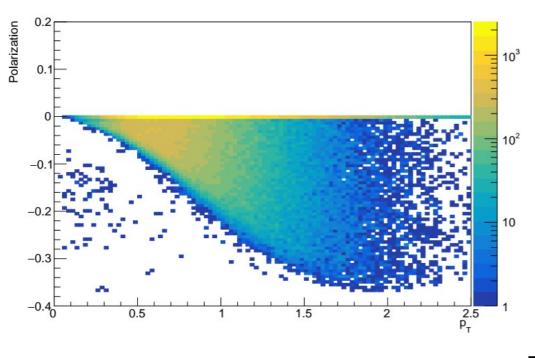

$$p_1 = -0.04796 \pm 0.00759$$

<P> (mean polarization) → true mean polarization (full Λ):

$$> <$$
P $> = -0.0472 \pm 0.00013$

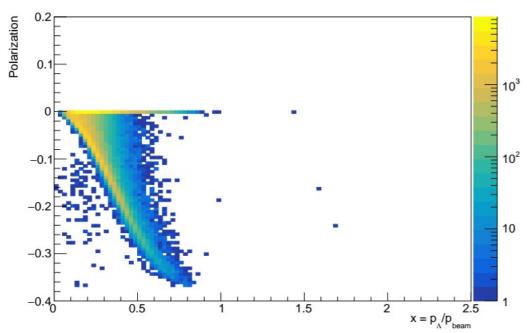
<P> (mean polarization) → true mean polarization is smeared towards 0 due

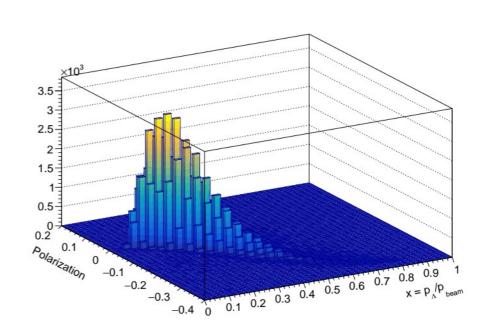
to non-polarized secondary Λ :


$$>$$
 = -0.0471 \pm 0.00013 (full)

$$>$$
 = -0.0714 ± 0.00016 (only primary Λ)

Major contributions from decays:


$$\Sigma^* \to \Lambda \pi \quad \Xi \to \Lambda \pi$$
$$\Sigma^0 \to \Lambda \gamma$$



Polarization dependence on p_T (top) and $x = p_{\Lambda}/p_{beam}$ (bottom).

- > Large fraction of non-polarized secondary Λ
- $^{\triangleright}$ Reaches maximum at intermediate values of $p_{_{\rm T}}$ and x
- > Warrants a study in different regions of $p_{_{\rm T}}(x)$

Conclusions

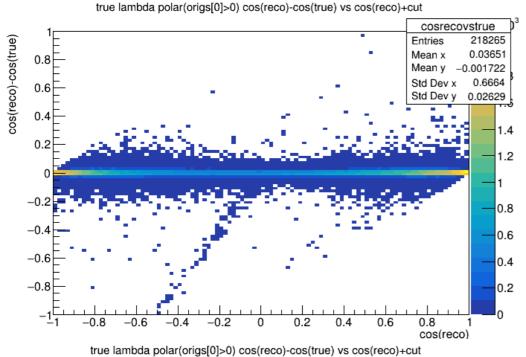
- Feasibility test of polarization extraction within the framework of the MPD experiment
 - \succ Good sensitivity of the detector to inclusive Λ polarization
 - \triangleright Reasonable extraction of Λ -hyperons via the weak decay
 - \gt Upper limit on the value of inclusive Λ polarization
 - \triangleright Need to account for secondary Λ -hyperons

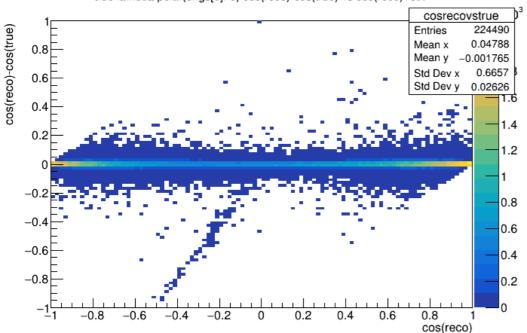
Outlook:

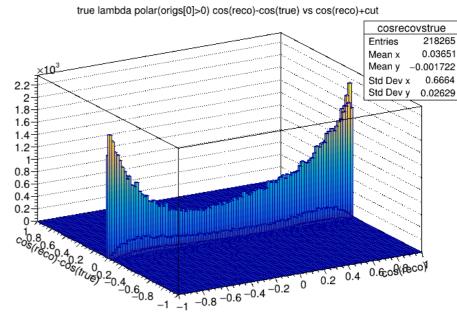
- > Study the technique in different regions of $p_{_{\mathrm{T}}}(x)$
- Perform feasibility test on MC simulation of global polarization
- > Estimate the sensitivity of the detector towards global polarization of Λ and anti- Λ hyperons
- Include polarization effects for other hyperons and account for rescattering

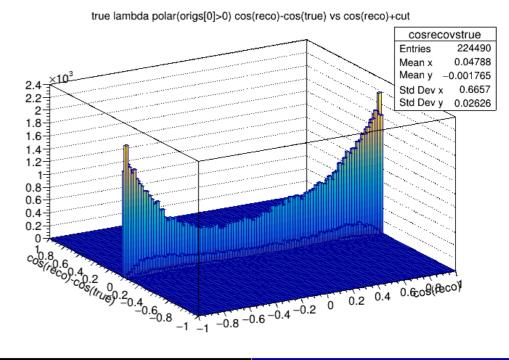
Outlook

- Global polarization
- Data: MC simulation using PHSD generator¹
 - $^{\triangleright}$ Au-Au, $\sqrt{s_{NN}}=7.7; 9$ GeV, $\sim 1.5 \mathrm{M}$ MB events
 - ightharpoonup Global $\Lambda(\bar{\Lambda})$ polarization
 - Becattini approach
- Track selection criteria:
 - > Number of TPC hits: $N_{\rm hits} > 10$
 - $|\eta| < 1.3$


The End




Thank you for your attention!


Back Up

