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Introduction and Motivation Covariant Density Functional theory

Nuclear Force: Meson Exchange Diagram

Nuclear Force: meson exchange diagram Yukawa (1935)
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Mean field (MF) approach: nucleon moving in the MF generated by others
— Being consistent with principle of density functional theory

Local MF
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ρ̂: local density

ρ̂ex: non-local density

Complicated nuclear in-medium effects: non-perturbative nuclear force?
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Introduction and Motivation Covariant Density Functional theory

Covariant Density Functional (CDF) theory

Medium effect is important, while not easy to handle microscopically.
— Borrow the concept of density functional

CDF theory w/o Fock terms: relativistic mean field (RMF) theory
Walecka(1974), Serot(1986), Reihard(1989), Ring(1996), Bender(2003), Meng(2006)

+ Natural treatment of spin-orbit coupling: Covariant framework

+ Limited by Hartree approach, important ingredients, e.g., tensor force, are missing.

CDF theory with Fock terms: relativistic Hartree-Fock (RHF) theory
Bouyssy (1987), Bernardos (1993), Shi (1995), Marcos (2004), Long (2006-2010).

+ Maintain the advantages of RMF theory, and include the tensor force naturally.

+ Non-local Fock terms are not easy to handle.
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Introduction and Motivation Challenges in Nuclear Physics

New Challenges and Opportunities

Nuclides: On earth (∼300),

Synthesized (∼3k), Predicted (7k∼10k)

Novel Phenomena and New Physics:
+ Superheavy nuclei: magic structures

+ Unstable nuclei: novel phenomena like halos

+ Nuclear astrophysics: equation of state

Challenges and New Standard
+ Limitation of the theories

+ Reliability and accuracy

Covariant Density Functional theory
+ Foundation: meson exchange diagram of nuclear force

+ Reliability: relativity and spirit of density functional theory
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Introduction and Motivation Challenges in Nuclear Physics

Magicity in neutron-rich mid-mass nuclei
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Ozawa (2000); Sorlin (2008); Hoffman (2008); Steppenbeck (2013, 2015); Wienholtz (2013).

Mechanism in determining magic structures: tensor force?
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Introduction and Motivation New Magicity and Bubbles in Ca and Si isotopes

New Magicity: N = 32 & 34
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52Ca and 54Ca are the newly found doubly magic nuclei in Ca isotopes.

RHFB+PKA1 can well reproduce the magicity at N = 32 & 34, which shows
the reliability of the model.

— Li, Margueron, LONG, Giai, PLB 753, 97 (2016) —
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Introduction and Motivation New Magicity and Bubbles in Ca and Si isotopes

Physics related to new magicity
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N = 32: isovector ρ-T & π-PV couplings are the key physics.

N = 34: isovector ρ-T & π-PV couplings are not so significant any more.

It remains some mystery on the physics that triggers the N = 34 shell.
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Introduction and Motivation New Magicity and Bubbles in Ca and Si isotopes

New drip-line magic nucleus: 48Si

Table 1: Energy gap corresponding to N = 32 & 34 in the Ni, Ca and Si isotopes. Results are
provided by the calculations with RHFB-PKA1, RHFB-PKO3 and RHB-DD-ME2 models.

Force ∆E(i, i′) N Ni Ca Si

PKA1
(ν2p1/2, ν2p3/2) 32 1.51 2.72 0.81
(ν1f5/2, ν2p1/2) 34 1.04 2.60 4.3

PKO3
(ν2p1/2, ν2p3/2) 32 1.22 1.69 0.68
(ν1f5/2, ν2p1/2) 34 −1.72 0.77 2.72

DD-ME2
(ν2p1/2, ν2p3/2) 32 1.58 1.76 0.92
(ν1f5/2, ν2p1/2) 34 −1.23 1.21 3.18

For 52,54Ca, only PKA1 shows distinct shells N = 32 & 34, whereas for 60Ni
and 46Si all the models present similar values of ∆ν2p.

For 48Si: all the models shows distinct shell N = 34, and therefore 48Si can
be referred as the new magic drip-line nucleus.
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Introduction and Motivation New Magicity and Bubbles in Ca and Si isotopes

Bubble structure predicted in 34Si & 34Ca
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Proton/neuron semi-bubbles occur in mirror systems 34Si/34Ca, since N/Z =
14 shells prevent valence protons or neutrons to occupy 2s1/2 orbit.

—J. J. Li, W. H. Long, J. L. Song, and Q. Zhao, Phys. Rev. C 93, 054312 (2016)

Experiments in GANIL shows that 34Si is a doubly magic nucleus with proton
bubble, and magic shell Z = 14 prevents protons to occupy 2s1/2 orbit.

—A proton density bubble in the doubly magic 34Si nucleus, Nat. Phys. 13, 152-156 (2017).

Does the proton bubble structure still remain in 48Si?
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Introduction and Motivation New Magicity and Bubbles in Ca and Si isotopes

Studying Object: 48Si
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Covariant density functional theory with Fock terms
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Covariant density functional theory with Fock terms Relativstic Hartree-Fock (RHF) theory

RHF Hamiltonian A. Bouyssy (1987)

Effective Hamiltonian for nuclei: φ = σ-S; ω-V, A-V, ρ-V; ρ-VT, ρ-T; π-PV

H =

∫
dx ψ̄ (−iγ�∇ + M )ψ +

1
2

∫
dxdx ′ψ̄(x)ψ̄(x ′)ΓφDφψ(x ′)ψ(x)

Types of the interaction: Γφ(x, x′)

Γσ-S ≡− gσ(x)gσ(x′), ΓA-V ≡
e2

4
[γµ (1− τ3)]x [γµ (1− τ3)]x′ , (1)

Γω-V ≡ (gωγµ)x (gωγµ)x′ , Γπ-PV ≡
−1
m2

π

(fπ~τγ5γµ∂
µ)x � (fπ~τγ5γν∂

ν)x′ , (2)

Γρ-V ≡ (gργµ~τ )x � (gργµ~τ )x′ , Γρ-T ≡
1

4M 2

(
fρσνk~τ∂

k
)

x
�
(

fρσνl~τ∂l

)
x′
, (3)

Γρ-VT ≡
1

2M

(
fρσkν~τ∂k

)
x
� (gργν~τ )x′ + (gργν~τ )x �

1
2M

(
fρσkν~τ∂k

)
x′

(4)

Yukawa propagator Dφ (x, x ′) neglecting retardation effects

Dφ (x, x ′) =
1

4π
e−mφ|x−x′|

|x − x ′|
, DA (x, x ′) =

1
4π

1
|x − x ′|

(5)
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Covariant density functional theory with Fock terms Relativstic Hartree-Fock (RHF) theory

RHF energy density functional (EDF) A. Bouyssy(1987)

Solutions of Dirac Eq.:
{
εk > 0, ck, c

†
k (Fermi sea); εl < 0, cl, c

†
l (Dirac sea)

}
Quantizing nucleon spinor:

ψ =
∑

k

ψk(x)e−iεktck +
∑

l

ψl(x)e−iεltd†l ,

Ground state with no-sea approximation

|Φ0〉 =

A∏
i=1

c†i |0〉 ,

RHF EDF: expectation of H referring to |Φ0〉
E = 〈Φ0|H |Φ0〉 = 〈Φ0|T |Φ0〉 +

∑
φ

〈Φ0|Vφ |Φ0〉

T and Vφ are the kinetic energy and potential
energy terms, respectively.

Vφ =
1
2

∫
dxdx ′

∑
αβ;α′β′

c†αc†βcβ′cα′

× ψ̄α(x)ψ̄β(x ′)ΓφDφψβ′(x ′)ψα′(x),

O

M

−M

Solutions of Dirac Eq.

Continuum

Continuum

Hartree

Fock
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Covariant density functional theory with Fock terms Relativstic Hartree-Fock (RHF) theory

Spherical RHF equation W.H. Long (2010)

Variation of RHF energy functional E : integro-differential Dirac Eq.∫
dr ′h(r , r ′)ψα(r ′) =εaψα(r), ψα(r) =

1
r

 iGaY la
jama

(r̂)

−FaY l′a
jama

(r̂)

 (6)

where Y l
jm =

∑
µσ

C jm

lµ1
2σ

Ylµχ1
2σ

, single-particle Hamiltonian h = hkin + hD + hE:

hkin(r , r ′) = [α�p + βM ] δ(r − r ′), (7a)

hD(r , r ′) = [ΣT (r)γ5 + Σ0(r) + βΣS(r)] δ(r − r ′), (7b)

hE(r , r ′) =

(
YG(r , r ′) YF (r , r ′)

XG(r , r ′) XF (r , r ′)

)
(7c)

Local mean fields ΣS, Σ0, and ΣT: functionals of local densities

ΣS =gσσ, ΣT =
fρ

2M

(
ρVT + ρT

)
τ3, Σ0 =gωω + gρ

(
ρV + ρTV

)
τ3 + e

1− τ3

2
A + ΣR

Hartree mean fields: σ, ω, ρV, A, ρTV and ρVT, ρT; rearrangement term ΣR"
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Covariant density functional theory with Fock terms Relativstic Hartree-Fock (RHF) theory

Exchange (Fock) Potentials W.H. Long (2010)

Non-local MFs: functionals of the non-local densities

X (φ)
Ga

(r, r ′) =
∑

b

T φ
ab ĵ2

b gφ(r)gφ(r ′)Fb(r)Gb(r ′)RXG
ab (mφ; r, r ′),

X (φ)
Fa

(r, r ′) =
∑

b

T φ
ab ĵ2

b gφ(r)gφ(r ′)Fb(r)Fb(r ′)RXF
ab (mφ; r, r ′),

Y (φ)
Ga

(r, r ′) =
∑

b

T φ
ab ĵ2

b gφ(r)gφ(r ′)Gb(r)Gb(r ′)RYG
ab (mφ; r, r ′),

Y (φ)
Fa

(r, r ′) =
∑

b

T φ
ab ĵ2

b gφ(r)gφ(r ′)Gb(r)Fb(r ′)RYF
ab (mφ; r, r ′),

T φ
ab: δτaτb

(isoscalar) and 2− δτaτb
(isovector).

The underlined terms can be taken as the non-local density component.

σ-scalar coupling: RYG = RXF = −RYF = −RXG = R(σ)

R
(σ)
ab (mσ; r, r ′) =

1
4π

′∑
L

C L0
ja

1
2jb−1

2
C L0

ja
1
2jb−1

2
RLL(mσ; r, r ′). (8)

The prime in Eq. (8) requires L + la + lb be even.
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Covariant density functional theory with Fock terms Relativistic Hartree-Fock-Bogoliubov (RHFB) theory

Unstable nuclei: continuum effects

Unstable exotic nuclei reveal lots of new physics: weakly bound mechanism,
continuum, halo, etc.

Stable Nucleus

p n

Exotic nucleus

p n

Bogoliubov scheme: unified treatment of pairing and mean field effects
— J. Dobaczewski. NPA 422, 103 (1984); J. Meng, NPA 635, 3 (1998).

Bogoliubov scheme also has the advantages in exploring superheavy nuclei.
— J.J. Li, W.H. LONG, J. Margueron, N. Van Giai, PLB 732, 169 (2014).
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Covariant density functional theory with Fock terms Relativistic Hartree-Fock-Bogoliubov (RHFB) theory

RHFB theory W.H. Long (2010)

Bogoliubov transformation: particle
{

cα, c†α
}

quasi-particle
{
βα, β

†
α

}
(

cα

c†α

)
=W

(
βα

β†α

)
=

(
ψU ψ∗V

ψV ψ∗U

)(
βα

β†α

)
,

βα = ψ†U cα + ψ†V c†α

β†α = ψT
V cα + ψT

U c†α
(9)

where ψU and ψV quasi-particle spinors, andW†W = 1.

RHFB Equation: chemical potential λ for preserving the particle number∫
dr ′
(

h(r , r ′) ∆(r , r ′)

−∆(r , r ′) h(r , r ′)

)(
ψU (r ′)

ψV (r ′)

)
=

(
λ + E 0

0 λ− E

)(
ψU (r)

ψV (r)

)
(10)

where h is RHF single-particle Hamiltonian and pairing potential ∆ reads,

∆α(r , r ′) =− 1
2

∑
β

V pp
αβ (r , r ′)κβ(r , r ′), κα(r , r ′) =ψ∗Vα(r)ψUα(r ′) (11)

In practice, such integral-differential equation is more convenient to be solved
with the help of Dirac Woods-Saxon Basis.

—S.-G. Zhou, J. Meng, P. Ring, PRC 68, 034323 (2003).
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New Physics in determining the magicity

OUTLINE

1 Introduction and Motivation
Covariant Density Functional theory
Challenges in Nuclear Physics
New Magicity and Bubbles in Ca and Si isotopes

2 Covariant density functional theory with Fock terms
Relativstic Hartree-Fock (RHF) theory
Relativistic Hartree-Fock-Bogoliubov (RHFB) theory

3 New Physics in determining the magicity of 48 Si
Bubble and magic shells
Self-consistent tensor force effects in magicity
Neutron and/or proton crossing-shell excitations

4 Conclusions and Perspectives
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New Physics in determining the magicity Bubble and magic shells

Pairing gaps along isotonic chain of N = 34

The prediction is consistent with other model calculations, like shell model.

— D. Steppenbeck, S. Takeuchi, N. Aoi, P. Doornenbal, M. Matsushita, et al., PRL 114, 252501 (2015).

— Y. Utsuno, T. Otsuka, Y. Tsunoda, N. Shimizu, M. Honma, et al., JPS Conf. Proc. 6, 010007 (2015).
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New Physics in determining the magicity Bubble and magic shells

Magicity and Bubbles
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New Physics in determining the magicity Bubble and magic shells

Shells enhanced by bubble structure
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48Si∗∗ 48Siπ∗ 48Si (super bubble candidate)
Bubbles: SO splitting ∆ν2p is quenched distinctly, leading to enhanced neutron
shell N = 34. Similarly, the pseudo-spin splitting of ∆π1p̃ = Eπ2s1/2

− E1d3/2
is

also compressed much to give the proton shell Z = 14.
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New Physics in determining the magicity Bubble and magic shells

From 52Ca to 54Ca: Polarization determining the shell
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In 52Ca central-bumped density profiles enhance the ν2p splittings, whereas
in 54Ca dramatic central-depressed ones reduce ∆

ν2p
SO distinctly.

52Ca + 2n 54Ca: distinct 2n-polarization effects on the core 52Ca,
which are not found by other CDFs (do not support 52Ca as magic nucleus).
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New Physics in determining the magicity Self-consistent tensor force effects in magicity

Dropping tensor force terms in Fock diagram
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Similar systematics is found as the calculations with full EDF.

Bubble structure, instead of tensor force, is the key physics in determining
the magicity.
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New Physics in determining the magicity Self-consistent tensor force effects in magicity

Tensor effects in ground states
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The proton and neutron bubbles remain as well even after removing the
tensor force component in Fock terms.

Nuclear tensor force tends to quench the proton shell Z = 14 while enlarge
the neutron one N = 34 with a few percent.
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New Physics in determining the magicity Neutron and/or proton crossing-shell excitations

Crossing-shell excitations of 48Si
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Neutron (proton) crossing-shell excitations reduce the shell itself distinctly.

Neutron and proton crossing-shell excitation energies are soundable.
48Ca 4.42 MeV 48Caν∗ 208Pb 4.89 MeV 208Pbν∗

Tensor force plays opposite roles in neutron and proton excitations.

Tensoreffects
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New Physics in determining the magicity Neutron and/or proton crossing-shell excitations

Crossing-shell excitations of 48Si
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Neutron and proton crossing-shell excitation energies are soundable.
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Tensor force plays opposite roles in neutron and proton excitations.
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Bubble structure in excited states
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Proton bubble is sensitive to proton crossing-shell excitation.
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Conclusions and Perspectives
Starting from the existing magicities, namely Z = 14 in 34Si and N = 34 in
54Ca, new doubly magic drip line nucleus 48Si is predicted by the relativistic
energy density functionals.

Magicities N = 32, 34 and Z = 14, as well as the relevant physics, are
discussed by using RHFB-PKA1 model.
+ Magicity N = 32 can be well reproduced by PKA1, in which the isovector π-PV and ρ-T

couplings are crucial and the tensor force components are also certainly significant.

+ Magicity N = 34, arising just after N = 32, results from the quenched SO splitting of ν2p
orbits by the neutron semi-bubble in 54Ca, in fact, the 2n polarization effects.

+ 34Si is identified as doubly magic proton bubble nuclide by experiments, which also indi-
cates the existence of proton shell Z = 14.

+ Both neutron shell N = 34 and proton one Z = 14 become more distinct with the occur-
rence of dual bubble structures in 48Si, which certainly weaken the coupling with central
distributed orbits, like s and p orbits.

Perspective: 2n polarization effects and the nature of nuclear force.

Thank you for your attention!
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Group Photo

Thank you for your attention!
31 / 32



Conclusions and Perspectives

Similar mechanism in Superheavy magicity
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