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& Mean field (MF) approach: nucleon moving in the MF generated by others
— Being consistent with principle of density functional theory

p: local density

Pex. NoN-local density
non-local MF

& Complicated nuclear in-medium effects: non-perturbative nuclear force?
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& Medium effect is important, while not easy to handle microscopically.
— Borrow the concept of density functional

& CDF theory w/o Fock terms: relativistic mean field (RMF) theory
@ Walecka(1974), Serot(1986), Reihard(1989), Ring(1996), Bender(2003), Meng(2006)

== Natural treatment of spin-orbit coupling: Covariant framework
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Covariant Density Functional (CDF) theory

& Medium effect is important, while not easy to handle microscopically.
— Borrow the concept of density functional

& CDF theory w/o Fock terms: relativistic mean field (RMF) theory
@ Walecka(1974), Serot(1986), Reihard(1989), Ring(1996), Bender(2003), Meng(2006)

== Natural treatment of spin-orbit coupling: Covariant framework
= Limited by Hartree approach, important ingredients, e.g., tensor force, are missing.

@ CDF theory with Fock terms: relativistic Hartree-Fock (RHF) theory
@ Bouyssy (1987), Bernardos (1993), Shi (1995), Marcos (2004), Long (2006-2010).

== Maintain the advantages of RMF theory, and include the tensor force naturally.
== Non-local Fock terms are not easy to handle.

A ) A A J

Hartree terms Fock terms Local MF Non-local MF
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Introduction and Motivation Challenges in Nuclear Physics

Magicity in neutron-rich mid-mass nuclei
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[ Ozawa (2000); Sorlin (2008); Hoffman (2008); Steppenbeck (2013, 2015); Wienholtz (2013).
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Magicity in neutron-rich mid-mass nuclei
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Mechanism in determining magic structures: tensor force? |
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Introduction and Motivation New Magicity and Bubbles in Ca and Si isotopes

New Magicity: N =32 & 34
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— Li, Margueron, LONG, Giai, PLB 753, 97 (2016) —
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New Magicity: N =32 & 34
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@ °°Ca and *Ca are the newly found doubly magic nuclei in Ca isotopes.

@ RHFB+PKA1 can well reproduce the magicity at NV = 32 & 34, which shows
the reliability of the model.
— Li, Margueron, LONG, Giai, PLB 753, 97 (2016) —
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Introduction and Motivation New Magicity and Bubbles in Ca and Si isotopes

Physics related to new magicity
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@ N = 32: isovector p-T & m-PV couplings are the key physics.
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@ N = 32: isovector p-T & m-PV couplings are the key physics.

@ N = 34: isovector p-T & 7-PV couplings are not so significant any more.
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@ N = 32: isovector p-T & m-PV couplings are the key physics.
@ N = 34: isovector p-T & 7-PV couplings are not so significant any more.

It remains some mystery on the physics that triggers the N = 34 shell. |
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Introduction and Motivation New Magicity and Bubbles in Ca and Si isotopes

New drip-line magic nucleus: #8Si

Table 1: Energy gap corresponding to N = 32 & 34 in the Ni, Ca and Si isotopes. Results are
provided by the calculations with RHFB-PKA1, RHFB-PKO3 and RHB-DD-ME2 models.

Force AE(i, 1) N Ni Ca Si
PKA1 (1/2]91/2, V2p3/2) 32 1.51 2.72 0.81
(I/lfé/z, V2p1/2) 34 1.04 2.60 4.3
(W1 v2p2) 34 172 077 272
(v2p1pv2ps) 32 158 176 0.92
DD-ME2
(W1fsv2p12) 34 —123 121 3.8

@ For °>°*Ca, only PKA1 shows distinct shells N = 32 & 34, whereas for “°Ni
and *°Si all the models present similar values of A,

@ For “8Si: all the models shows distinct shell N = 34, and therefore *8Si can
be referred as the new magic drip-line nucleus.
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Introduction and Motivation New Magicity and Bubbles in Ca and Si isotopes

Bubble structure predicted in 34Si & 3*Ca
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& Proton/neuron semi-bubbles occur in mirror systems **Si/**Ca, since N/Z =
14 shells prevent valence protons or neutrons to occupy 2s; , orbit.
—J. J. Li, W. H. Long, J. L. Song, and Q. Zhao, Phys. Rev. C 93, 054312 (2016)
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& Proton/neuron semi-bubbles occur in mirror systems *!Si/**Ca, since N/Z =
14 shells prevent valence protons or neutrons to occupy 2s; , orbit.
—J. J. Li, W. H. Long, J. L. Song, and Q. Zhao, Phys. Rev. C 93, 054312 (2016)

@ Experiments in GANIL shows that **Si is a doubly magic nucleus with proton
bubble, and magic shell Z = 14 prevents protons to occupy 2s, , orbit.
—A proton density bubble in the doubly magic 3*Si nucleus, Nat. Phys. 13, 152-156 (2017).
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& Proton/neuron semi-bubbles occur in mirror systems *!Si/**Ca, since N/Z =
14 shells prevent valence protons or neutrons to occupy 2s; , orbit.
—J. J. Li, W. H. Long, J. L. Song, and Q. Zhao, Phys. Rev. C 93, 054312 (2016)

@ Experiments in GANIL shows that **Si is a doubly magic nucleus with proton
bubble, and magic shell Z = 14 prevents protons to occupy 2s, , orbit.
—A proton density bubble in the doubly magic 3*Si nucleus, Nat. Phys. 13, 152-156 (2017).

Does the proton bubble structure still remain in *3Si? |
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Covariant density functional theory with Fock terms

9 Covariant density functional theory with Fock terms
@ Relativstic Hartree-Fock (RHF) theory
@ Relativistic Hartree-Fock-Bogoliubov (RHFB) theory
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Covariant density functional theory with Fock terms Relativstic Hartree-Fock (RHF) theory

RHF Hamiltonian A. Bouyssy (1987)

@ Effective Hamiltonian for nuclei: o = o-S; w-V, A-V, p-V; p-VT, p-T; m-PV

H = / dx o (—iv.V + M) + % / dxdx'p(x)1)(x' )Ty D*(x)ah(x)

& Types of the interaction: ' (x, x')
2

Ls = - &(x)g (), Lav =7 (L= A =mlly. (1)
Pov= (@A &) Tory = o P00 (795700 (2

Cov = (@) (87 T)er T = s (Fiowrdt) (Fo"'701) . (3)

Covr =57 (F0770k) (8l + (87 gy (0 70) ()

& Yukawa propagator D, (x, x’) neglecting retardation effects
Dy (. %) :417r e|xm¢|xx’x ‘ ’ Da (%, x) :417r |x —1 X'| )
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Covariant density functional theory with Fock terms Relativstic Hartree-Fock (RHF) theory

RHF energy density functional (EDF) A Bouyssy(1987)

@ Solutions of Dirac Eq.: {5k > 0, ¢, c). (Fermi sea); ¢; < 0, ¢, ¢} (Dirac sea)}

& Quantizing nucleon spinor:
=) Yr(x)e Ko+ Py(x)e ],
k l

Ground state with no-sea approximation

A
Do) =] [ ¢l 10).
=1

RHF EDF: expectation of H referring to |®g)

E = (@] H|®g) = (Bo| T Do) + > (@o] Vi ) © "

¢
T and V, are the kinetic energy and potential

energy terms, respectively.

Solutions of Dirac Eq.

—-M
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Covariant density functional theory with Fock terms Relativstic Hartree-Fock (RHF) theory

Spherical RHF equation W.H. Long (2010)

& Variation of RHF energy functional E: integro-differential Dirac Eq.

1 [ G, (1)
/ AP R(r, PY(F) —catba(F), walF) (6)

I -
o ayj;lma<r>

where ) = 3" cm Yjx),» single-particle Hamiltonian /o = R + hP + h*:
iley

lu%a
(7 7)) = [a.p + M) §(r — 1), (7a)
hP(r, 1) =[S(r)ys + So(r) + BEs(r)] 6(r — 1), (7b)
Yo(r,r') Ye(r, r
HE(r, 1) = olr 1) Yelr, 1) (7¢)
Xg(r,r") Xp(r,r)
& Local mean fields s, >y, and >¢: functionals of local densities
— _L \%\ T _ \% TV 1 —73
2s =£,0, ZT—ZM(p +p)7'3, Eo—gwargp(p + p )73+e A+ 2R

Hartree mean fields: o, w, p", A, p'V and p¥!, p'; rearrangement term > z.
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Covariant density functional theory with Fock terms Relativstic Hartree-Fock (RHF) theory

Exchange (Fock) Potentials W.H. Long (2010)

& Non-local MFs: functionals of the non-local densities

Z o T 8o(1) 8o Fp(r) Gy(r') 7 (my; T, 1),

Z I 8(T)8o(T ) E( 1) Fy((r) R (i 7 ),

Z w1 8o(1)8o(1) Golr) Gy B (s, ),

Z oy T 86181 Gyl 1) Fy( )R g (s 7.,
9;;. Srary (|soscalar) and 2 — d,,,, (isovector).

& The underlined terms can be taken as the non-local density component.

@ o-scalar coupling: RYe = X = RV = _RpXa = Zlo) |
, 1 ¢ :
%éb)(ma; r,r)=-—Y CH. CH.  |Ry(myrr). (8)

47 s Jaz]pb—3 Jazlpb—3

The prime in EqQ. (8) requires L + [, + [, be even.
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Covariant density functional theory with Fock terms Relativistic Hartree-Fock-Bogoliubov (RHFB) theory

Unstable nuclei: continuum effects

& Unstable exotic nuclei reveal lots of new physics: weakly bound mechanism,
continuum, halo, etc.

/////

\ O—C O—C // neutron proton

7n P\::/n

Ao eanee

Stable Nucleus Exotic nucleus

& Bogoliubov scheme: unified treatment of pairing and mean field effects
— J. Dobaczewski. NPA 422,103 (1984); J. Meng, NPA 635, 3 (1998).

& Bogoliubov scheme also has the advantages in exploring superheavy nuclei.
— J.J. Li, W.H. LONG, J. Margueron, N. Van Giai, PLB 732, 169 (2014).
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Covariant density functional theory with Fock terms Relativistic Hartree-Fock-Bogoliubov (RHFB) theory

RHFB theory W.H. Long (2010)

& Bogoliubov transformation: particle {c,,c,} ===» quasi-particle {3,, 3}

Ca 0% (0 Ca
W 5 _ wU ¢v B | 5 wU w (9)
cl G v ¥y ) \Bh Bl = vyc. + wucf
where 1y and vy quasi-particle spinors, and WY = 1.
@ RHFB Equation: chemical potential \ for preserving the particle number
hr,r') A(r,r)\ (du(r) A+E 0 Yuy(r)
/dr’ — (10)
—A(r, 1) h(r,r') )] \¢v(r) 0 A—E) \Wv(r)
where h is RHF single-particle Hamiltonian and pairing potential A reads,

= — —Z VIP (r, ) ma(r, 1), kalr, ¥) =u3, (Mg, (r) - (1)

& In practice, such integral-differential equation is more convenient to be solved
with the help of Dirac Woods-Saxon Basis.
—S.-G. Zhou, J. Meng, P. Ring, PRC 68, 034323 (2003).
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New Physics in determining the magicity

e New Physics in determining the magicity of *¢ Si
@ Bubble and magic shells
@ Self-consistent tensor force effects in magicity
@ Neutron and/or proton crossing-shell excitations
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New Physics in determining the magicity Bubble and magic shells

Pairing gaps along isotonic chain of N =34
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New Physics in determining the magicity Bubble and magic shells

Pairing gaps along isotonic chain of N =34
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The prediction is consistent with other model calculations, like shell model. |

— D. Steppenbeck, S. Takeuchi, N. Aoi, P. Doornenbal, M. Matsushita, et al., PRL 114, 252501 (2015).
— Y. Utsuno, T. Otsuka, Y. Tsunoda, N. Shimizu, M. Honma, et al., JPS Conf. Proc. 6, 010007 (2015).
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New Physics in determining the magicity Bubble and magic shells

Magicity and Bubbles
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New Physics in determining the magicity Bubble and magic shells

Shells enhanced by bubble structure
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Bubbles: SO splitting A, is quenched distinctly, leading to enhanced neutron
shell N = 34. Similarly, the pseudo-spin splitting of A = E;os, /2 — FEig, .
also compressed much to give the proton shell Z = 14.
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New Physics in determining the magicity Bubble and magic shells

Shells enhanced by bubble structure
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New Physics in determining the magicity Bubble and magic shells

From °2Ca to °*Ca: Polarization determining the shell
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& In °>Ca central-bumped density profiles enhance the v2p splittings, whereas
in %*Ca dramatic central-depressed ones reduce Ag distinctly.

24/32



Bubble and magic shells

>
5=
Q
>
(]
S
()
{e
=

ining

determ

From °2Ca to °*Ca

ics in

New Phys

the shell

ining

determi

lon

i

QY]
A

Polar

cccsccccse 54Ca

r (fm)

r (fm)

& In °>Ca central-bumped density profiles enhance the v2p splittings, whereas

distinctly

tral-depressed ones reduce ALy

IC Cen

°4Ca dramatsi

N

24/32



-2

4

-6

E (MeV)

-8

-10
-18

-20

E (MeV)

New Physics in determining the magicity
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---- SCas2n

Polarization effects
on core *?Ca by 2n

r (fm)

& In °>Ca central-bumped density profiles enhance the v2p splittings, whereas
in %*Ca dramatic central-depressed ones reduce Ag distinctly.

@ °°Ca + 2n ===p >%Ca: distinct 2n-polarization effects on the core °*Ca,
which are not found by other CDFs (do not support °>Ca as magic nucleus).

24/32



New Physics in determining the magicity Self-consistent tensor force effects in magicity

Dropping tensor force terms in Fock diagram

2 I - T * PKA1-EDF
dropping Tensor force

“Si BT ®Si” r (fm)

& Similar systematics is found as the calculations with full EDF.

& Bubble structure, instead of tensor force, is the key physics in determining
the magicity.
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New Physics in determining the magicity

Self-consistent tensor force effects in magicity

Tensor effects in ground states
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& The proton and neutron bubbles remain as
tensor force component in Fock terms.
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well even after removing the

& Nuclear tensor force tends to quench the proton shell Z = 14 while enlarge
the neutron one N = 34 with a few percent.
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New Physics in determining the magicity Neutron and/or proton crossing-shell excitations

Crossing-shell excitations of 48Si
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& Neutron (proton) crossing-shell excitations reduce the shell itself distinctly.
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New Physics in determining the magicity Neutron and/or proton crossing-shell excitations

Crossing-shell excitations of 48Si
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& Neutron (proton) crossing-shell excitations reduce the shell itself distinctly.

& Neutron and proton crossing-shell excitation energies are soundabile.
1804 4.42 MeV > 48 g+ 208ppy 4.89 MeV > 208 ppyv+
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New Physics in determining the magicity Neutron and/or proton crossing-shell excitations

Crossing-shell excitations of 48Si
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& Neutron (proton) crossing-shell excitations reduce the shell itself distinctly.

& Neutron and proton crossing-shell excitation energies are soundabile.
1804 4.42 MeV > 48 g+ 208ppy 4.89 MeV > 208 ppyv+

& Tensor force plays opposite roles in neutron and proton excitations.
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New Physics in determining the magicity Neutron and/or proton crossing-shell excitations

Bubble structure in excited states
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Proton bubble is sensitive to proton crossing-shell excitation. |
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@ Conclusions and Perspectives
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Conclusions and Perspectives

@ Starting from the existing magicities, namely Z = 14 in **Si and N = 34 in
°>4Ca, new doubly magic drip line nucleus *®Si is predicted by the relativistic
energy density functionals.

& Magicities N = 32,34 and Z = 14, as well as the relevant physics, are

discussed by using RHFB-PKA1 model.
= Magicity N = 32 can be well reproduced by PKA1, in which the isovector 7-PV and p-T
couplings are crucial and the tensor force components are also certainly significant.

= Magicity N = 34, arising just after N = 32, results from the quenched SO splitting of v2p
orbits by the neutron semi-bubble in °**Ca, in fact, the 2n polarization effects.

= 31Gj is identified as doubly magic proton bubble nuclide by experiments, which also indi-
cates the existence of proton shell Z = 14.

1= Both neutron shell N = 34 and proton one Z = 14 become more distinct with the occur-
rence of dual bubble structures in *8Si, which certainly weaken the coupling with central
distributed orbits, like s and p orbits.

@ Perspective: 2n polarization effects and the nature of nuclear force.
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distributed orbits, like s and p orbits.

@ Perspective: 2n polarization effects and the nature of nuclear force.

Thank you for your attention!
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Group Photo

Thank you for your attention!
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Similar mechanism in Superheavy magicity
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Similar mechanism in Superheavy magicity
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