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Light Front Hamiltonian Approach

• Light Front (LF) quantization, i.e. quantization in coordinates:

x± =
x0 ± x3

√
2

, x⊥, ”time” x+ = 0, (1)

has the application not only for high energy physics but also as an
approach to nonperturbative calculations in quantum field theory
like QCD.
This approach encounter difficulties related to singularities of the
LF as a quantization plane. These difficulties are related to the so
called ”zero mode” problem (p− = 0) which can be responsible for
difficulties with the description of vacuum effects and confinement.
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Light Front Hamiltonian Approach

• We considered two possibilities for the construction of LF
Hamiltonian:
(1) The comparison of perturbation theory generated by the
regularized canonical LF Hamiltonian and usual covariant
perturbation theory in Lorentz coordinates, then the construction
of renormalized LF Hamiltonian perturbatively equivalent to that
in usual quantization.
(2) The investigation of the limit transition to LF quantization
starting from Hamiltonians on the spacelike hyperplanes
approaching to the LF. This allows to treat the singularity of the
LF nonperturbatively and formulate more simple models like quark
model or its generalization.
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Light Front Hamiltonian Approach

• Perturbative construction of LF Hamiltonian can be done with
the extra fields like that in Pauli-Villars regularization. This allows
to escape the differences in calculation of diagrams on the LF and
in Lorentz coordinates. We have done this for nongauge theories
and for Yang-Mills and QCD.

• On the second approach, with the limit transition to the LF
Hamiltonian, we propose quark-antiquark model taking into
account only zero mode of transverse gluon field and reducing the
Fock space to only quark and antiquark. We have obtained the
spectral equation for quark-antiquark bound state, which is UV
finite, and calculated the meson mass spectrum which can be
compared with experimental meson spectrum.
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Light Front Hamiltonian Approach

Further we will consider only this approach.
• Main advantage of LF quantization is a possibility to define
physical vacuum as the state with the minimal eigenvalue of the
momentum operator P− ≥ 0 (playing the role of the space
component of the momentum),

P−|0〉 = 0. (2)

One can define the ”physical” Fock space on this vacuum. As an
example, for scalar field in Heisenberg picture we can write the
Fourier decomposition on the LF:

ϕ(x) =
1

(2π)3/2

∫

|p−|>ε

dp−dp⊥
√

2|p−|

(

a(p−, p⊥; x+)e−ip−x−−ip⊥x⊥

+ H.c.
)

.(3)

Then the action takes the form: S =

∫

d4x (∂+ϕ∂−ϕ −H) =

=

∫

dx+

∫ ∞

ε
dp−

∫

dp⊥
(

ia+(p−, p⊥; x+)∂+a(p−, p⊥; x+) −H
)

.(4)
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Light Front Hamiltonian Approach

It follows from the canonical form of this action that a(p−, p⊥; 0)
and a+(p′

−, p′
⊥; 0) satisfy the commutation relation of creation and

annihilation operators:

[a(p−, p⊥; 0), a+(p′
−, p′

⊥; 0)] = δ(p− − p′
−)δ(p⊥ − p′

⊥). (5)

For momentum operators we get:

P− =
P0 − P3√

2
=

∫ ∞

ε
dp−

∫

dp⊥p−a+(p−, p⊥; x+)a(p−, p⊥; x+), (6)

a(p−, p⊥; x+)|0〉 = 0, P−|0〉 = 0, (7)

P+ =
P0 + P3√

2
=

∫

dp⊥

∫ ∞

ε
dp−

p2
⊥ + m2

2p−
a+(p)a(p)+U(ϕ). (8)
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Light Front Hamiltonian Approach

In this Fock space one can formulate the mass spectrum problem:

P+|p−, p⊥〉 =
m2 + p2

⊥

2p−
|p−, p⊥〉. (9)

• To take into account zero mode p− = 0 we choose the
regularization |x−| ≤ L plus periodic boundary conditions for fields
in x−. This discretizes the p− = pn = πn/L and separates zero
mode, which now can approximately describe the vicinity of
p− = 0. LF canonical formalism leads in this case to constraints
relating zero and nonzero modes. However these constraints are
nonlinear in fields and very complicated. Moreover the difficulty
arises with their unique definition after quantization. So further we
propose the other way of taking into account zero mode,
considering the limit transition to the light front Hamiltonian from
Hamiltonians on space-like hyperplanes approaching to the light
front.
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Light Front Hamiltonian Approach

We introduce instead of LF the near LF coordinates yµ

(”η-coordinates”):

y0 = x+ +
η2

2
x−, y3 = x−, y⊥ = x⊥,

x3

x0 x+

y0x−

y3
η2

2

and corresponding momenta:

q0 = p+, q3 = p− − η2

2
p+, q⊥ = p⊥,

where η > 0 is small parameter.
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Light Front Hamiltonian Approach

Our quark-antiquark model is based on SU(Nc) QCD in
η-coordinates. We take A3(y) = 0 as the analog of the LF gauge
A− = 0. To descretize the momentum Q3 we take |y3| ≤ L plus
corresponding periodic boundary conditions, so that q3 = πn/L,
n ∈ Z . Now we have two parameters, L and η. We perform the
limit transition to the LF in two steps. At first step we fix
parameter L and consider limit transition to the LF (η → 0) for
that part of the Hamiltonian in η-coordinates which contains
nonzero modes, while for the part of this Hamiltonian, containing
only zero modes, we fix the value of η = η0 > 0. Further at the
first step we introduce effective mass squared operator M2

eff (η0) as
a sum of contributions from both these separated parts of the
Hamiltonian and write spectral equation for the eigenvalues of this
operator. The second step is to perform L → ∞, η0 → 0 limit in
such a way that the spectrum remains UV finite.
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Light Front Hamiltonian Approach

We denote by H(0) the part of the Hamiltonian containing only
zero modes and by H(∅) the LF limit of the part of the Hamiltonian
containing nonzero modes. We use the expressions for M2 in LF
and η0-coordinates:

M2 = 2P+P− − P2
⊥ in LF coordinates,

M2 = 2Q0Q3 + η2
0Q

2
0 − P2

⊥ in η0-coordinates.

Then the expression for the effective mass squared operator takes
the form:

M2
eff = η2

0H
2
(0) + 2P−H(∅),

where we take Q3 = 0, Q0 = H(0) and the total P⊥ = 0.
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Light Front Hamiltonian Approach

• We introduce UV regularization using transverse space lattice. In
this regularization the Hamiltonian corresponding to only zero
mode has the following form:

H(0) =
∑

x⊥

(

g2

4L η2
0

πa
kπa

k +
4L

g2a2
Re Tr

(

I − U12

)

)

, (10)

where U12(x) = U+
1 (x − ae2)U

+
2 (x)U1(x)U2(x − ae1);

N × N unitary matrices U1(x), U2(x) are lattice link variables and
πa

k(x) are corresponding momenta:

[πa
k(x),Uk ′(x ′)] = −δkk ′δx⊥x⊥′

λa

2
Uk(x) ,

[πa
k(x), πb

k ′(x ′)] = i δkk ′δx⊥x⊥′ f abcπc
k(x) .

The part of the lattice Hamiltonian containing nonzero modes can
be obtained as the result of the limit transition to the LF.
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Light Front Hamiltonian Approach

This part depends on fermion field χ(x) on the LF coupled to
Uk(x):

χi
r (x) =

1

a
√

2L

∑

n>0

(

b i
nr (x

⊥) e−ipnx
−

+ d i+

nr (x⊥) e ipnx−

)

, (11)

H(∅) =
∑

x⊥

{

∫ L

−L

dx−

[

a2Tr
(

F 2
+−

)

−

− i

8

(

χ+(x−aek′)σk′ U−1
k′ (x)−χ+(x+aek′)Uk′(x+aek′)σk′ + 2mqaχ+

)

·

·∂−1
−

(

Uk(x)σkχ(x−aek)−σkU−1
k (x+aek)χ(x+aek)+2mqaχ

)]

+

+

(

g2 (N − 1/N)

16La2

∑

m>0

1

pm

)(

∑

n 6=m

χ+
n χn

pm−n
+

(

∑

n>m

+
∑

n<−m

)

χ+
n χn

pn

)}

+

+const,
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Light Front Hamiltonian Approach

where F+− = −g
2 ∂−1

−

(

χ+λaχλa

2

)

due to gauge constraint.

We take the states with quark and antiquark, connected by a gluon
zero mode ”string”, predominantly along the shortest path in the
transverse plane:

{

∑

x⊥

b†(x⊥, p− = πm/L)US
x ,x+∆xd

†(x⊥+∆x , p− = (n−m)π/L) |0〉
}

.

Here US
x ,x ′ denotes chains of matrices U

†
k and Uk (k = 1, 2), that

connect points x and x ′ of 2-dimensional transverse space along
the path S; the b† and d† are creation operators of quark and
antiquark respectively.
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Light Front Hamiltonian Approach

Next assumption is related to the form of four-fermion operator in
the Hamiltonian. This operator is the result of the solution of the
gauge constraint on the LF:

∑

x⊥

∫

dx−dx
′−

(

χ†(x−, x⊥)
λa

2
χ(x−, x⊥)

)

|x− − x
′−|·

·
(

χ†(x
′−, x⊥)

λa

2
χ(x

′−, x⊥)

)

.

In QCD(1+1) at N → ∞ (’t Hooft model) such a term leads to
quark confinement on the LF due to the nonlocal factor
|x− − x

′−|. However in (3+1)-dimensions the action of this
operator on our quark-antiquark states gives zero except for the
state in which quark and antiquark are not separated in x⊥. This
occurs due to the locality of this operator in x⊥ and the truncation
of Fock space by only one quark and only one antiquark. So the
local in x⊥ four-fermion operator can not act nontrivially on states
with quark and antiquark separated in x⊥.
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Light Front Hamiltonian Approach

To overcome this difficulty we propose the nonlocal in x⊥

modification of this four-fermion operator such that its action on
our states becomes nonzero also for separated in x⊥ quark and
antiquark. We introduce the nonlocality in gauge invariant way:

a2

L2
had

∑

x⊥,∆x ,b

∫

dx−dx
′−

(

χ†(x−, x⊥)US
x ,x ′

λb

2
US

x ′,xχ(x−, x⊥)

)

·

·|x−−x
′−|
(

χ†(x
′−, x⊥ + ∆x)US′

x+∆x ,x ′

λb

2
US′

x ′,x+∆xχ(x
′−, x⊥ + ∆x)

)

,

where S and S ′ are the shortest paths leading to the point x ′ from
points x and x + ∆x respectively, and the point x ′ itself lies on the
line connecting the points x and x + ∆x . The factor a2/L2

had

corresponds to averaging over paths inside of the domain
|∆x | ≤ Lhad (the Lhad is a scale of order Λ−1

QCD). On the
Lagrangian level, this modification corresponds to introducing a
nonlocal interaction of the field A+ with the fermion current.
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Light Front Hamiltonian Approach

We construct the expression for the M2
eff operator reduced to our

restricted state space. This allows to write the equation for the
quark-antiquark bound state mass spectrum wave function f (r , l):

m2
efff (r , l) =

[

(

g2

8Lη0a

(

N − 1

N

)

)2

r2+

(

pn

pl

+
pn

pn−l

)

(

−∇2 + m2
q

)

]

·

·f (r , l) +
g2pn

2L2
had

1

L

(

N − 1

N

)

n−1/2
∑

k=1/2,k 6=l

f (r , l) − f (r , k)

(pl − pk)2
,

where meff is the bound state mass, ∇2 is the lattice analog of
Laplace operator in transverse coordinates, r is the distance
between quark and antiquark, mq is the quark mass,
p− = pn = πn/L is the momentum of the state.
We introduce dimensionless variables

µ = meffLhad, ρ =
r

Lhad
, mq = mqLhad, ξ =

pl

pn

, α =
Lη0a

L2
had

,

where the ξ is the relative momentum of the quark.
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Light Front Hamiltonian Approach

In the regularization removal limit L → ∞, η0 → 0, a → 0 we
obtain UV finite result if we take the parameter α = Lη0a/L

2
had

finite, for example, of order one. In this limit the spectral equation
takes the form:

µ2f (ρ, ξ) =

[

(

g2

8α2

(

N − 1

N

)

)2

ρ2 +

(

1

ξ
+

1

1 − ξ

)

(

−∇2 + m2
q

)

]

·

·f (ρ, ξ) +
g2

2π

(

N − 1

N

)

P

∫ 1

0
dξ′

f (ρ, ξ) − f (ρ, ξ′)

(ξ − ξ′)2
,

where f (ρ, ξ) is the wave function of a quark-antiquark bound
state, and the Cauchy principal value is assumed for the integral.
In this limit the variable ξ becomes continuous and takes values in
the interval 0 ≤ ξ ≤ 1. The first term in the equation, proportional
to ρ2, is due to zero mode contribution and the last one has the
form of the ’t Hooft equation in 2-dimensional QCD. The
eigenvalues and wave functions of our spectral equation cannot be
described analytically, but they can be obtained numerically.
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Light Front Hamiltonian Approach

Qualitatively, the spectrum resembles the spectrum of the
harmonic oscillator in three dimensions. A notable feature of our
model is the possibility of degenerate equidistant energy levels that
correspond to linear Regge trajectories. This is an important result
because a significant degeneration is in fact observed in the
experimental meson spectrum.

1 3 5 7 9 11 13 15 17 19

ne.v.

λ

Figure 1: The spectrum of equation for a certan choice of parameters.
Here the horizontal axis represents the number ne.v. of eigenvalue.


