

11th APCTP-BLTP JINR-PINP NRC KI-SPbSU Joint Workshop "Modern problems in nuclear and elementary particle physics"

Search for ${ }^{10} \mathrm{~N}$ Resonances with ${ }^{9} \mathrm{C}+\mathrm{p}$ Resonant Scattering

W. Kim

RI Beams with Polarized Proton Target

I. Proton elastic scattering and spin-orbit potential
II. Knock-out reaction and spin-orbit splitting
III. Proton resonant scattering and single-particle levels
IV. Proton target

Magic Numbers Changing in Unstable Nuclei

Disappearance of conventional magic numbers
Appearance of NEW magic numbers

- Spin-orbit coupling
- So strong that can jump across major shell gap

Magic numbers explained by very strong spin-orbit coupling

Role of spin-dependent int. in unstable nuclei is the key!!

I. Proton Elastic Scattering and Spin-Orbit Potential

- Vector analyzing powers have been measured for the proton elastic scattering from ${ }^{6,8} \mathrm{He}$ at $71 \mathrm{MeV} / \mathrm{A}$.
- Measured analyzing powers are incompatible
 with any theoretical predictions.
- Modification of spin-orbit coupling in scattering involving n-rich nucleus: spin-orbit potentials for ${ }^{6,8} \mathrm{He}$ are shallow and extended compared with systematics of stable nuclei.
- Proper description of $p-{ }^{4} \mathrm{He}$ scattering should be important for reproduction of $p-{ }^{6} \mathrm{He}$ scattering.
- We plan to measure the A_{y} for $p-{ }^{6} \mathrm{He}$ elastic scattering at 200 $\mathrm{MeV} / \mathrm{A}$ where reaction mechanism is well understood.

p- ${ }^{6} \mathrm{He}, \mathrm{p}-{ }^{8} \mathrm{He}$ Elastic Scattering

- Analyzing power measurement for $p-6,8 \mathrm{He}$
- Question:

What is characteristics of spin-orbit potentials?

$$
\begin{gathered}
N / Z=2 \\
\alpha+2 n
\end{gathered}
$$

$$
\begin{gathered}
N / Z=3 \\
\alpha+4 n
\end{gathered}
$$

Characteristics of $\mathrm{V}_{\text {LS }}(r)$

- Modification of spin-orbit potential in n-rich nuclei
- Shape and magnitude
- R.M.S. radius
- Peak amplitude

Spin-orbit potential in n-rich helium isotopes: shallow and extended
(\leftarrow effect of diffused density distribution?)

Mass number A

Calculations of ${ }^{6} \mathrm{He}+\mathrm{p}$ elastic-scattering cross-sections using folding approach and high-energy approximation for the optical potential

K.V. Lukyanov ${ }^{1}$, V.K. Lukyanov ${ }^{1}$, E.V. Zemlyanaya ${ }^{1}$, A.N. Antonov ${ }^{2}$, and M.K. Gaidarov 2,3,a
${ }^{1}$ Joint Institute for Nulcear Research, Dubna 141980, Russia
Abstract. Calculations of microscopic optical potentials (OPs) are performed to analyze ${ }^{6} \mathrm{He}+\mathrm{p}$ elasticscattering data at a few tens of $\mathrm{MeV} /$ nucleon ($\mathrm{MeV} / \mathrm{N}$). The role of the spin-orbit terms and of the non-linearity in the calculations of the OPs, as well as effects of their renormalization are studied.

Elastic ${ }^{6} \mathrm{He}+\mathrm{p}$ scattering crosssections for $\mathrm{E}=25.2 \mathrm{MeV} / \mathrm{N}$ calculated by using the LSSM density for ${ }^{6} \mathrm{He}$.

Eur. Phys. J. A 33, 389 (2007)
DOI 10.1140/epja/i2007-10458-6

Experimental Data

S. Sakaguchi, et al. PHYS. Rev. C, 84, 024604 (2011)

Calculations of A_{y} for proton elastic scattering from ${ }^{4} \mathrm{He}$ and ${ }^{6} \mathrm{He}$ at 71, 100 , and $200 \mathrm{MeV} / \mathrm{A}$ by the multiple scattering theory with COSMA density. A_{y} provides new information which can not be seen in $\mathrm{d} \sigma / \mathrm{d} \Omega$.

III. Proton Resonant Scattering and Single-Particle Levels

- Proton resonant scattering from ${ }^{9} \mathrm{C}$ at
(p,p) resonance elastic 5.6 MeV/A will be measured with a spin-polarized proton target for RI-beam exp.
- Overlapping resonances will be resolved with the analyzing power data which is completely new information.
- Low-lying level structure of ${ }^{10} \mathrm{~N}$ (mass, E_{R}, Γ, J^{π}) will be revealed.
- ${ }^{10} \mathrm{~N}$ levels \rightarrow mirror levels in ${ }^{10} \mathrm{Li} \rightarrow n-{ }^{-} \mathrm{Li}$ potential
\rightarrow three-body model for borromean nucleus ${ }^{11} \mathrm{Li}$.
Pioneer experiment: First measurement of polarization observable in scattering exp. with low-energy RI-beam \Rightarrow New possibilities

Resonant proton scattering

- Roles of spin asymmetry
- J^{π} determination
- Projectile w/ non-zero spin
- Sensitive to configuration mixing
- Information for extremely wide resonances
- Feasibility demonstration
$-{ }^{13} \mathrm{~N}+\vec{p}$ scattering
- Monte-Carlo simulation
$P_{p}=20 \%, 10 \mathrm{mg} / \mathrm{cm}^{2}$,
$10^{5} \mathrm{pps}, 3$ days, pure $d_{5 / 2}$

T. Teranishi, S. Sakaguchi, T. Uesaka, et al., AIP Conf. Proc. 1525, 522 (2013)

Resonant elastic scattering
RIKEN, T. Teranishi (Kyuhsu), E. Milman (KNU)

$$
{ }^{9} \mathrm{C}+\vec{p} \rightarrow{ }^{10} \mathrm{~N} \rightarrow{ }^{9} \mathrm{C}+p
$$

with a low-energy ${ }^{9} \mathrm{C}$ beam at $5.6 \mathrm{MeV} / \mathrm{u}$ and a spin-polarized proton target.

Combined information on excitation function
 $(\mathrm{d} \sigma / \mathrm{d} \Omega(E))$ and analyzing power $\left(A_{y}(E)\right)$
\rightarrow Search for broad ${ }^{10} \mathrm{~N}$ resonances
${ }^{10} \mathrm{~N}\left(={ }^{9} \mathrm{C}+p\right) \leftarrow$ mirror $\rightarrow{ }^{10} \mathrm{Li}\left(={ }^{9} \mathrm{Li}+\mathrm{n}\right)$: binary subsystem of borromean nucleus ${ }^{11} \mathrm{Li}\left(={ }^{9} \mathrm{Li}+n+n\right)$
\rightarrow Understanding of ${ }^{\mathbf{9}} \mathbf{L i}+$ n potential for 3-body model

Borromean ring Polarization observable as additional information is useful for:

Limited information on 10Li

$$
J \pi(9 \mathrm{Li})=3 / 2^{-}
$$

${ }^{9} \mathrm{Li}+\mathrm{n}(\mathrm{s} 1 / 2)$ à $\mathrm{J} \pi=1^{-}$or 2^{-}
${ }^{9} \mathrm{Li}+\mathrm{n}(\mathrm{p} 1 / 2)$ à $\mathrm{J}^{\pi}=1^{+}$or 2^{+}

Four low-lying components $J \pi=2^{-}, 1^{-}, 1^{+} \& 2^{+}$, but only two observed. No clear $J \pi$ assignment.

Yu. Aksyutina et al., PLB666(2008)430

${ }^{9} \mathrm{C}+\mathrm{p}$ as a new approach

p+ ${ }^{9} \mathrm{C}$					
N 10	11	N 12	N 1.96	${ }_{99.632}^{N}$	N 15
$\begin{gathered} C \uparrow 9 \\ G .12655 \end{gathered}$		${ }_{-1}^{C}$	$\text { Mirror nuclei: Isoba } 14$		
$\mathrm{B}_{0.775} 8$	$\begin{array}{\|l\|} \hline \mathrm{B} \\ \hline 8.5-19 \\ \hline \end{array}$	$\mathrm{B} \quad 10$	$\frac{\text { ric anale }}{80.1}$	g state	${ }^{3} 1313$
Be 78	${ }_{6}^{\text {Be }} \mathrm{Pe-175}$	$\mathrm{Be}_{109}{ }^{9}$	1.510	Be 11	Be 12 Q. 1212
Li. 6	$\mathrm{Li}_{92.41} 7$	$\mathrm{Li}_{6.8388} 8$	$\begin{aligned} & \mathrm{Li} 9 \\ & 6.17835 \end{aligned}$	$\Delta \text { Li } 10$	$\mathrm{Li}_{\underline{\mathrm{Li}} .11}^{6.0655}$
n+9 ${ }^{\text {Li }}$ Impossi					

${ }^{10} \mathrm{~N}\left({ }^{9} \mathrm{C}+\mathrm{p}\right)$ Resonances

Almost unknown experimentally.
Only one observation with small statistics. No J^{π} assignment.

A. Lepine-Szily et al., PRC(65)054318.

The observed state may not be the s-wave g.s but a p-wave excited state.

Theoretical prediction of $2^{-}(\mathrm{s}), 1^{+}(\mathrm{p}) \& 2^{+}(\mathrm{p})$:
S. Aoyama, K. Kato, K. Ikeda, PLB414(1997)13.

Outline of Experiment

- Resonant elastic scattering ${ }^{9} \mathrm{C}+p \rightarrow{ }^{10} \mathrm{~N} \rightarrow{ }^{9} \mathrm{C}+p$ with a low-energy ${ }^{9} \mathrm{C}$ beam at $5.6 \mathrm{MeV} / \mathrm{u}$ and a spin-polarized proton target.
- Measurement of excitation function and analyzing power
- Investigation of low-lying resonances of ${ }^{10} \mathrm{~N}$
\varnothing Mass of ${ }^{10} \mathrm{~N}$
\varnothing Information on n-9Li

Do we need analyzing power $\left(A_{y}\right)$?

$$
A_{y}=\frac{1}{P_{y}} \frac{Y_{L}-Y_{R}}{Y_{L}+Y_{R}}
$$

Polarized target $->A_{y}$ measurement

- Clearer $J \pi$ assignment
- Effective to solve broad resonances

R-matrix calculations

Is A_{y} really necessary?

$$
\begin{array}{ll}
\text { One p-wave } 2^{+} \text {resonance } & \rightarrow A_{y} \sim \mathbf{0 . 6} \\
\text { Two p-wave resonances }\left(2^{+} \& 1^{+}\right) & \rightarrow A_{y} \sim \mathbf{1 . 0} \text { (almost doubled) } \\
& \text { due to constructive contributions from } 2^{+} \& 1^{+}
\end{array}
$$

Yes, necessary.

Thick Target Method in Inverse Kinematics Method

- Energy loss of beam in target
\Rightarrow Excitation function with single incident energy
- A resonance can be observed as an interference pattern of potential \& resonance scattering.

Test Experiment (September, 2015)

Goals:

- Production of low-E ${ }^{9} \mathrm{C}$ beam at RIPS, RIKEN
- Use CH_{2} degrader to improve beam intensity
- Measure excitation function with CH_{2} target (50X50mm)
- pol. p target for low-E experiment is under development

Experimental Setup (RIPS)

${ }^{9} \mathrm{C}(4.17 \mathrm{MeV} / \mathrm{u})$

- Improve transmission from F1 to F2
- Suppress multiple scattering effects in the thick degrader
- Smaller angular spread reduces positional spread at downstream

${ }^{12} \mathrm{C}(70 \mathrm{MeV} / \mathrm{u})$

Pr. Target $3.5-4 \mathrm{~mm}$ Be

- Use lighter material for degraders such as CH_{2}

Result of Beam Production

- Purity of ${ }^{9} \mathrm{C}$ beam is 15%
- ${ }^{9}$ C Intensity at F3 was 25 kps
- Beam intensity 1.8 times higher with CH_{2} degrader at F2
- Compared with standard Al degrader

9C beam energy on target

Experimental Setup

Recoil Particle Identification

Background Reduction

- Reactions of beam particles with C in the target
- C target data was taken for B.G. subtraction
- Beta-delayed events
- Beta decay of stopped 9C in the target: 9C -> 9B* $+\beta^{+}$
- 9B* -> 8Be + $\mathrm{p}, 9 \mathrm{~B}^{*}$-> $5 \mathrm{Li}+\alpha$
- B.G. spectrum was evaluated by selecting events with different timing
- Inelastic scattering events
$-{ }^{9} \mathrm{C}+p \rightarrow{ }^{8} \mathrm{~B}+2 p$
- Thin CH_{2} target run
- Heavy ions / protons ware detected at $0 / 22.5$ deg.

- Analysis of inelastic data is still in progress

The Spectra on Tel. 1 (left) and Tel. 2 (right) after Efficiency Corrections

R-matrix Fit Parameters (Preliminary)

The excitation function measured by Tel. 1 (left) and Tel.2(right) with R-matrix calculations.

IV. Proton Target

Polarization enhancement and development of enlarged polarized proton target

- Enlarged the Target Size Target diameter:
- Was 14 mm
- Loss of statistics

- Modifying the LGR size

LGR diameter: from 16 mm to 28 mm

- $B_{1}: 2.5$ times weaker
- $P_{M W}: 6$ times needed

Copper plate thickness: from $4.4 \mu \mathrm{~m}$ to $18^{\sim} 35 \mu \mathrm{~m}$

- Increase in field amplitude?

- Enhancing polarization with the new laser
\square Optimum λ : 589 nm
- Higher power: 10 W (50 times higher)

Towards low-E exp. with polarized protons

- Polarized target requirements:

- Cooling gas -> Vacuum environment
- Target thickness: $1 \mathrm{~mm}->0.1 \mathrm{~mm}$
- Need to change the molecular axis by rotating it 90 deg to make the crystal less fragile

- Estimated polarization is $\sim 13 \%$
- Intercepting laser from SSD
- Thin foil?
- Veto during laser irradiation?
- Laser injection from 0 deg.?

Summary

- Proton resonant scattering from ${ }^{9} \mathrm{C}$ at $5.6 \mathrm{MeV} / \mathrm{u}$ with a spin-polarized proton target was proposed
- Low-lying level structure of ${ }^{10} \mathrm{~N}$ (mass, E_{R}, Γ, J^{π}) will be revealed by analyzing power and excitation function
- Test experiment with unpolarized target was performed
- Low energy $4 \mathrm{MeV} / \mathrm{u}$ 9C beam was produced at RIPS
- Use of CH2 degrader increases beam intensity by factor of 1.8 (compare to standard Al degrader)
- Data analysis is still in progress

Collaboration

九州大学 KYUSHU UNIVERSITY	Kyushu University	S．Sakaguchi R．Kaku Y．Norimatsu	NS	CNS，Univ．of Tokyo	
	T．Teranishi			K．Abe	N．Kitamura
	Y．Akiyama			S．Hayakawa	Y．Sakaguchi
	T．Fukuta			N．Imai	H．Yamaguchi
	D．Sakae			D．Kahl	

RIKEN Nishina Center

T．Uesaka
H．Ueno
T．Kaneko
K．Yamada
D．Kim
D．Beaumel

Kyungpook National Univ．
E．Milman
W．Kim
S．Chebotaryov

Ewha women Univ．
D．H．Kim

Oak Ridge National Laboratory

A．Galindo－Uribarri
E．Romero－Romero
JAEA JAEA
S．Hwang

Backups

Beta-delayed events

Beta decay of stopped 9C in the target:

$$
\begin{gathered}
9 B^{*}->5 \mathrm{Li}+\alpha
\end{gathered} \begin{gathered}
9 \mathrm{C}->9 \mathrm{~B}^{*}+\beta^{+} \\
\\
\\
\alpha+\alpha+\mathrm{p}
\end{gathered}
$$

E1-T sec 2,cut 1Tel1

Delayed proton B.G. was successfully extracted

Beta-delayed proton spectrum was evaluated by selecting events with different timing

Beta-delayed proton spectra were evaluated for C and CH 2 targets.

C background

Reactions of beam particles with C in the target
C target data was taken for B.G. subtraction

Angular spread due to multiple scattering

Angular spread
Radiation length

$$
X_{0}=\frac{716.4 A}{(Z(Z)+1) \ln (287 / \sqrt{Z})}
$$

Use lighter material for degraders such as CH_{2} or Be
LISE++ simulation

Smaller angular spread reduces positional spread at downstream

${ }^{9} \mathrm{C}$ beam intensity at F3 (LISE++ sim.)

~40k pps w/ Al-wedge at F3

~80k pps w/ CH_{2}-wedge at F3

Gain factor of two is expected with CH 2 degrader.

Solid Polarized Proton Target Using Optical Pumping

1. Optical pumping excitation, electron population
2. Polarization transfer
3. Decay to ground state
4. Due to dipole interaction, polarization diffuses to the protons within the molecules

$$
\left|\frac{\left\langle T_{3}\right| \mathcal{H}_{S O}\left|S_{1}\right\rangle}{E_{T_{3}}-E_{S_{1}}}\right|^{2}
$$

Due to spin orbit coupling:
singlet \rightarrow triplet

Solid pentacene target excitation model

Solid Polarized Proton Target for RI Experiments

Solid polarized proton target @RIKEN/CNS

T. Wakui et al., NIM A 550 (2005) 521.
T. Uesaka et al., NIM A 526 (2004) 186.

