

11th APCTP-BLTP JINR-PINP NRC KI-SPbSU Joint Workshop "Modern problems in nuclear and elementary particle physics"

July 25, 2017

Search for ¹⁰N Resonances with ⁹C + p Resonant Scattering

W. Kim

RI Beams with Polarized Proton Target

I. Proton elastic scattering and spin-orbit potential

II. Knock-out reaction and spin-orbit splitting

III. Proton resonant scattering and single-particle levels

IV. Proton target

Magic Numbers Changing in Unstable Nuclei

Disappearance of conventional magic numbers Appearance of NEW magic numbers

Role of spin-dependent int. in unstable nuclei is the key!!

I. Proton Elastic Scattering and Spin-Orbit Potential

- Vector analyzing powers have been measured for the proton elastic scattering from ^{6,8}He at 71 MeV/A.
- T. Uesaka, H. Sakai, PRC(R) 82 (2010) (p,p) elastic

Measured analyzing powers are incompatible with any theoretical predictions.

- Modification of spin-orbit coupling in scattering involving n-rich nucleus: spin-orbit potentials for ^{6,8}He are <u>shallow and extended</u> compared with systematics of stable nuclei.
- Proper description of *p*-⁴He scattering should be important for reproduction of *p*-⁶He scattering.
- We plan to measure the A_y for p-⁶He elastic scattering at 200 MeV/A where reaction mechanism is well understood.

p-⁶He, p-⁸He Elastic Scattering

- Analyzing power measurement for *p*-^{6,8}He
 - Question:

What is characteristics of spin-orbit potentials?

Characteristics of V_{LS}(r)

- Modification of spin-orbit potential in n-rich nuclei
 - Shape and magnitude
 - R.M.S. radius
 - Peak amplitude

Spin-orbit potential in n-rich helium isotopes: shallow and extended

(← effect of diffused density distribution?)

Calculations of ⁶He+p elastic-scattering cross-sections using folding approach and high-energy approximation for the optical potential

K.V. Lukyanov¹, V.K. Lukyanov¹, E.V. Zemlyanaya¹, A.N. Antonov², and M.K. Gaidarov^{2,3,a}

¹ Joint Institute for Nulcear Research, Dubna 141980, Russia

Abstract. Calculations of microscopic optical potentials (OPs) are performed to analyze ⁶He+p elasticscattering data at a few tens of MeV/nucleon (MeV/N). The role of the spin-orbit terms and of the non-linearity in the calculations of the OPs, as well as effects of their renormalization are studied.

Elastic ⁶He+p scattering crosssections for E = 25.2 MeV/Ncalculated by using the LSSM density for ⁶He.

Eur. Phys. J. A 33, 389 (2007) DOI 10.1140/epja/i2007-10458-6

Experimental Data

Calculations of A_y for proton elastic scattering from ⁴He and ⁶He at 71, 100, and 200 MeV/A by the multiple scattering theory with COSMA density. A_y provides new information which can not be seen in d σ /d Ω .

III. Proton Resonant Scattering and Single-Particle Levels

- Proton resonant scattering from ⁹C at 5.6 MeV/A will be measured with a spin-polarized proton target for RI-beam exp.
- (p,p) resonance elastic

- Overlapping resonances will be resolved with the analyzing power data which is completely new information.
- Low-lying level structure of ¹⁰N (mass, E_R , Γ , J^{π}) will be revealed.
- ¹⁰N levels \rightarrow mirror levels in ¹⁰Li \rightarrow *n*-⁹Li potential \rightarrow three-body model for borromean nucleus ¹¹Li.

Pioneer experiment: First measurement of polarization observable in scattering exp. with low-energy RI-beam \Rightarrow New possibilities

Resonant proton scattering

- Roles of spin asymmetry
 - $-J^{\pi}$ determination
 - Projectile w/ non-zero spin
 - Sensitive to configuration mixing
 - Information for extremely wide resonances
- Feasibility demonstration
 - ¹³N+ \vec{p} scattering
 - Monte-Carlo simulation

 $P_p = 20\%$, 10 mg/cm², 10⁵ pps, 3 days, pure $d_{5/2}$

T. Teranishi, S. Sakaguchi, T. Uesaka, et al., AIP Conf. Proc. 1525, 522 (2013)

Borromean Nucleus

Resonant elastic scattering

 ${}^{9}C + \overrightarrow{p} \rightarrow {}^{10}N \rightarrow {}^{9}C + p$ with a low-energy ${}^{9}C$ beam at 5.6 MeV/u

and a spin-polarized proton target.

Combined information on excitation function $(d\sigma/d\Omega (E))$ and analyzing power $(A_y(E))$

→ Search for broad ¹⁰N resonances

¹⁰N (=⁹C+*p*) \leftarrow mirror \rightarrow ¹⁰Li (=⁹Li+*n*): binary subsystem of borromean nucleus ¹¹Li (= ⁹Li+*n*+*n*)

→ Understanding of ⁹Li+n potential for 3-body model Polarization observable as additional information is useful for:

- resolving wide resonances overlapping each other
- J^{π} assignment especially when the beam nucleus has non-zero spin

The present situation (very broad ${}^{9}C+p$ resonances & $I({}^{9}C) = 3/2$) will be a good place for testing the new experimental technique.

RIKEN, T. Teranishi (Kyuhsu), E. Milman (KNU)

Borromean ring

Limited information on ¹⁰Li

 J^{π} (⁹Li) = 3/2⁻ ⁹Li+n (s1/2) à J^{π} = 1⁻ or 2⁻ ⁹Li+n (p1/2) à J^{π} = 1⁺ or 2⁺

Four low-lying components $J^{\pi} = 2^{-}, 1^{-}, 1^{+} \& 2^{+},$ but only two observed. **No clear** J^{π} assignment.

⁹C+p as a new approach

¹⁰N (⁹C+p) Resonances

Search for very broad ¹⁰N resonances in ⁹C+p scattering

Outline of Experiment

- Resonant elastic scattering ⁹C + p → ¹⁰N → ⁹C + p with a low-energy ⁹C beam at 5.6 MeV/u and a spin-polarized proton target.
- Measurement of excitation function and analyzing power
- Investigation of low-lying resonances of ¹⁰N
 Ø Mass of ¹⁰N
 Ø Information on n-⁹Li

Do we need analyzing power (A_v) ?

• Clearer J^{π} assignment

Effective to solve broad resonances

R-matrix calculations

Is A_v really necessary?

One p-wave 2+ resonance $\rightarrow A_y \sim 0.6$ Two p-wave resonances (2+ & 1+) $\rightarrow A_y \sim 1.0$ (almost doubled)due to constructive contributions from 2+ & 1+

Yes, necessary.

Thick Target Method in Inverse Kinematics Method

- Energy loss of beam in target
 - \Rightarrow Excitation function with single incident energy
- A resonance can be observed as an interference pattern of potential & resonance scattering.

Test Experiment (September, 2015)

Goals:

Production of low-E ⁹C beam at RIPS, RIKEN
 – Use CH₂ degrader to improve beam intensity

- Measure excitation function with CH₂ target (50X50mm)
 - pol. p target for low-E experiment is under development

Experimental Setup (RIPS)

Pr. Target 3.5 -4 mm Be

• Improve transmission from F1 to F2

- Suppress multiple scattering effects in the thick degrader
 - Smaller angular spread reduces positional spread at downstream

 Use lighter material for degraders such as CH₂

Result of Beam Production

- Purity of ⁹C beam is 15%
- ⁹C Intensity at F3 was 25 kps
- Beam intensity **1.8 times** higher with CH₂ degrader at F2
 - Compared with standard Al degrader

Experimental Setup

Recoil Particle Identification

Background Reduction

- Reactions of beam particles with C in the target
 - C target data was taken for B.G. subtraction
- Beta-delayed events
- Beta decay of stopped 9C in the target: 9C -> 9B* + β +
 - 9B* -> 8Be + p , 9B* -> 5Li + α
 - B.G. spectrum was evaluated by selecting events with different timing

22.5

deg.

р

р

- Thin CH₂ target run
 - Heavy ions / protons ware detected at 0 / 22.5 deg.
 - Analysis of inelastic data is still in progress

The Spectra on Tel.1 (left) and Tel.2 (right) after Efficiency Corrections

R-matrix Fit Parameters (Preliminary)

and Tel.2(right) with R- matrix calculations.

IV. Proton Target

Polarization enhancement and development of enlarged polarized proton target

Towards low-E exp. with polarized protons

• Polarized target requirements:

- Cooling gas -> Vacuum environment
- Target thickness: 1mm -> 0.1 mm
- Need to change the molecular axis by rotating it 90 deg to make the crystal less fragile

- Estimated polarization is ~13%

Intercepting laser from SSD

- Thin foil?
- Veto during laser irradiation?
- Laser injection from 0 deg.?

Summary

- Proton resonant scattering from ⁹C at 5.6 MeV/u with a spin-polarized proton target was proposed
- Low-lying level structure of ¹⁰N (mass, E_R , Γ , J^{π}) will be revealed by analyzing power and excitation function

- Test experiment with unpolarized target was performed
 - Low energy 4 MeV/u 9C beam was produced at RIPS
 - Use of CH2 degrader increases beam intensity by factor of 1.8 (compare to standard Al degrader)
 - Data analysis is still in progress

Collaboration

Kyushu University T. Teranishi Y. Akiyama T. Fukuta

D. Sakae

S. Sakaguchi R. Kaku Y. Norimatsu

	<u>CNS, Univ. of Tokyo</u>
NS	K. Abe
	S. Hayakawa
	N. Imai
	D. Kahl

N. Kitamura Y. Sakaguchi H. Yamaguchi

RIKEN Nishina Center

T. UesakaY. IchikawaH. UenoK. TateishiT. KanekoM. SasanoK. YamadaD. KimD. Beaumel

Kyungpook National Univ.

E. Milman

W. Kim

S. Chebotaryov

<u>Ewha women Univ.</u> D.H. Kim

Oak Ridge National Laboratory A. Galindo-Uribarri E. Romero-Romero (JAEA) S. Hwang

Backups

Beta-delayed events

Beta-delayed proton spectrum was evaluated

Beta decay of stopped 9C in the target:

by selecting events with different timing $9C \rightarrow 9B^* + \beta^+$ $9B^* -> 5Li + \alpha$ 9B* -> 8Be + p Beta-delayed proton spectra were evaluated for C and CH2 targets. $\alpha + \alpha + p$ E1-T sec 2,cut 1Tel1 proton_sec2_cut1_time_Tel1 _ന150 15102 Entries CM Tel1 (9C on CH2) Mean x 5.30 cm_delayed_9C_CH2_Tel1 Timing(PPAC_A to SSD)[ns] 8.09 18279 Mean v Entries Std Dev x 2.95 Mean 1.686 0.683 Std Dev **Beta-delayed** events Std Dev y 1500 Signal + B.G. 9C+p / 12C events 1000 Signal 500 0₀ 2 3 5 4 6 E_cm[MeV] 150 18 0 2 6 10 12 14 16 20 8 SSD E1 [MeV]

Delayed proton B.G. was successfully extracted

C background

Reactions of beam particles with C in the target C target data was taken for B.G. subtraction

Angular spread due to multiple scattering

Angular spread

$$\theta_0 = \frac{13.6}{\beta c p} z \sqrt{x/X_0} \left[1 + 0.038 \ln(x/X_0) \right]$$

$$X_0 = \frac{716.4A}{Z(Z) + 1) \ln(287/\sqrt{Z})}$$

1.

Use lighter material for degraders such as CH₂ or Be

LISE++ simulation

Smaller angular spread reduces positional spread at downstream

⁹C beam intensity at F3 (LISE++ sim.)

Gain factor of two is expected with CH2 degrader.

Research Development Procedures: Solid Polarized Proton Target Using Optical Pumping

1. Optical pumping excitation, electron population

- 2. Polarization transfer
- 3. Decay to ground state

 Due to dipole interaction, polarization diffuses to the protons within the molecules

 $\left|\frac{\langle T_3 | \mathcal{H}_{SO} | S_1 \rangle}{E_{T_3} - E_{S_1}}\right|^2$ Due to spin orbit coupling: singlet \rightarrow triplet

Solid pentacene target excitation model

Solid Polarized Proton Target for RI Experiments

Solid polarized proton target @RIKEN/CNS

T. Wakui et al., NIM A 550 (2005) 521. T. Uesaka et al., NIM A 526 (2004) 186.