
JOINT INSTITUTE FOR NUCLEAR RESEARCH

E.A. Kolganova

July 24  – 28, 2017, St.Peterburg, Russia

11th APCTP-BLTP JINR-PINP NRC KI-SPbSU Joint Workshop 
"Modern problems in nuclear and elementary particle physics"

Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna



Armenia, July 11, 2015                                                                                     

Elena Kolganova  (JINR, 

Dubna)

2

Thomas and Efimov effects

1. L.H. Thomas (1935) Phys. Rev.47, 903 (1935).

a) 2-particle potentials are short-range

b) Each of them supports only a single bound state even with an 

arbitrarily weak binding energy

Nevertheless, the three-body ground state energy can go to (-) 

when the range of the two-body forces approaches zero! 

(Just this surprising phenomenon is called the Thomas effect.)

I.e., such a three-body system should collapse!  The 3-body 

Hamiltonian with zero-range interaction is not semibounded from 

below.

2. V. Efimov (1970) Phys. Lett.33, 563 (1970).

When one weakens the two-body potentials (supporting a single 

bound state) the number of 3-body bound states can increase to 

infinity! And this happens at the moment when the two-body bound 

states disappear.

 Efimov states  the states which appear under weakening and 

disappear under strengthening of the two-body potentials.

- Quite strange and “non-standard” behavior



The simplest situation for which Efimov states occurs
correspond to three identical boson interacting via
resonant short-range interaction.

Beyond the range of the interaction 𝑟0 the relative motion
of two particles is almost free. The wave function Ψ ( 𝑟) in
the asymptotically free region has a phase shift 𝛿ℓ with
respect to the non-interacting wave function. The partial-
wave expansion of Ψ ( 𝑟)

Ψ ( 𝑟) =  ℓ=0
∞ 𝑓ℓ(𝑟)

𝑟
𝑃ℓ (cos 𝜃)

where

𝑓ℓ 𝑟 =  
𝑐𝑜𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 for 𝑟 ≲ 𝑟0 (interaction region)

∝ sin 𝑘𝑟 − ℓ
𝜋

2
+ 𝛿ℓ for 𝑟 ≫ 𝑟0 (free region)

𝑘 is relative wave number between two particles, 𝑃ℓ - Legendre polynomials.



Efimov physics arises when the two-body interaction is
near resonant in the s-wave partial wave (ℓ = 0), which

means that the phase shift 𝛿0 of the s-wave is closed to
𝜋

2
.

At low scattering energy a phase shift can be written as
𝛿0 ∼ −arctg 𝑘𝑎 for 𝑘 ≪ 𝑟0

−1

where 𝑎 is the scattering length, so 𝑎 ≫ 𝑟0 in order to 
have resonant interaction.

Zero-range theory: assume, that short-range region can be
neglected and only asymptotically free region (that is
parametrized by scattering length) is relevant.
̶  zero-range pseudopotential [Fermi, Ricerca Scientifica, 7 (1936) 13-52]

with regularization by a cut-off in p-space or Lee-Huang-Yang pseudopoten.

̶ Bethe-Peierls boundary condition

−
1

𝑟Ψ

𝜕

𝜕𝑟
𝑟Ψ

𝑟→0

1

𝑎
[Bethe,Peierls, Proc. Royal Soc. London, (1935) 146-156] 



All these methods correctly reproduce the form of the two-
body w.f. In the region 𝑟0 ≤ 𝑟 ≤ 𝑘−1

The simplification which is used in the zero-range method
keeps the same form of w.f. down to 𝑟 = 0, although this
is unphysical for 𝑟 ≲ 𝑟0.

Ψ ( 𝑟) ∝
1

𝑟
−

1

𝑎



Such zero-range method can be applied to three-boson
system, described by Jacobi coordinates after elimination
the center of mass motion

Each Jacobi coordinate sets related to each other by rotation matrix

 𝑥𝑖𝑗 =  𝑟𝑗 −  𝑟𝑖  𝑦𝑖𝑗,𝑘 =
2

3
( 𝑟𝑘 −

 𝑟𝑖 −  𝑟𝑗

2
)

 𝑥23 = −
1

2
 𝑥12 +

3

2
 𝑦12,3

 𝑦23,1 = −
3

2
 𝑥12 −

1

2
 𝑦12,3

 𝑥31 = −
1

2
 𝑥12 −

3

2
 𝑦12,3

 𝑦31,2 =
3

2
 𝑥12 −

1

2
 𝑦12,3



Choosing one set for Jacobi coordinates, the three-body w.f.

satisfies free Schrӧdinger equation at total energy 𝐸 = ℏ2

𝑚
𝑘2

with boudary condition for pair

−𝛻𝑥12
2 − 𝛻𝑦12,3

2 − 𝑘2 Ψ = 0

With the Bethe-Peierls boundary conditions for all pair of

bosons −
1

𝑟Ψ

𝜕

𝜕𝑟
𝑟Ψ

𝑟→0

1

𝑎
. The w.f. Ψ could be decompose

to Faddeev components:

Ψ = 𝐹(  𝑥12,  𝑦12,3) +𝐹(  𝑥23,  𝑦23,1) + 𝐹(  𝑥31,  𝑦31,2)
which is satisfies the equations

−𝛻𝑥
2 − 𝛻𝑦

2 − 𝑘2 𝐹  𝑥,  𝑦 = 0

[
𝜕

𝜕𝑥
𝑥𝐹  𝑥,  𝑦 ]𝑥→0 + 𝐹 3

2  𝑦,−
1
2  𝑦 + 𝐹 − 3

2  𝑦, −
1
2  𝑦

= [−
𝑥

𝑎
(𝐹  𝑥,  𝑦 + 𝐹 3

2  𝑦, −
1
2  𝑦 + 𝐹 − 3

2  𝑦, −
1
2  𝑦 )]𝑥→0

(1)

(2)



The Efimov effect for bosons occurs in the partial wave
channel with total angular momentum 𝐿 = 0. In this channel
𝐹 is independent of the direction of  𝑥 and  𝑦 and can be
written as

with boudary condition for 𝑥 → 0

𝜒0 is finite for 𝑥 → 0 and 𝜒0 𝑥, 𝑦
𝑦→0

0, inserting (3) into (1) & (2)

−
𝜕2

𝜕𝑥2
−

𝜕2

𝜕𝑦2
− 𝑘2 𝜒0(𝑥, 𝑦) = 0

[
𝜕

𝜕𝑥
𝜒0 𝑥, 𝑦 ]𝑥→0 + 2

1

3
4
𝑦

𝜒0
3
2 𝑦,

1
2𝑦 = −

1

𝑎
𝜒0 0, 𝑦

𝐹  𝑥,  𝑦 =
𝜒0(𝑥, 𝑦)

𝑥𝑦
(3)



Rewrite these equations in polar (hyperspherical) coordinates

with boudary condition for 𝛼 → 0

[
𝜕

𝜕𝛼
𝜒0 𝑅, 𝛼 ]𝛼→0 +

8

3
𝜒0 𝑅, 𝜋3 = −

𝑅

𝑎
𝜒0 𝑅, 0

(4)

R = 𝑥2 + 𝑦2 ≡ 2
3(𝑥12

2 + 𝑥23
2 + 𝑥31

2 )

𝑥 = 𝑅 sin 𝛼

𝑦 = 𝑅 cos 𝛼

(5)

The problem then become separable in 𝑅 and 𝛼 for the case 𝑎 → ±∞
Thus one can find solution of eq. (4) in the form

𝜒0 𝑅, 𝛼 = 𝑓(𝑅)𝜙(𝛼) −
𝑑2

𝑑𝛼2
𝜙 𝛼 = 𝑠𝑛

2𝜙(𝛼)

with boudary condition at 𝛼 = 0 and 𝛼 =  𝜋 2

−
𝜕2

𝜕𝑅2
−
1

𝑅

𝜕

𝜕𝑅
−

1

𝑅2
𝜕2

𝜕𝛼2
− 𝑘2 𝜒0(𝑅, 𝛼) = 0



This gives the solution

where 𝑠𝑛 is solution of the equation

−𝑠𝑛 cos 𝑠𝑛
𝜋
2
+

8

3
sin 𝑠𝑛

𝜋
6
= 0 (6)

𝜙𝑛(𝛼) = sin 𝑠𝑛(
𝜋
2 − 𝛼)

(7)

Each n solution constitutes a channel for hyperradial motion, for each
solution 𝜙𝑛 there is a corresponding hyperradial function 𝑓𝑛(𝑅) such
that 𝑓𝑛(𝑅) 𝜙𝑛(α) is a solution of equation (4):

with hyperspherical potential

−
𝜕2

𝜕𝑅2
−
1

𝑅

𝜕

𝜕𝑅
+
𝑠𝑛
𝑅2

− 𝑘2 𝑓𝑛(𝑅) = 0

which can be written as one-dimensional Schrӧdinger equation

−
𝜕2

𝜕𝑅2
+ 𝑉𝑛(𝑅) − 𝑘2 𝑅𝑓𝑛(𝑅) = 0

𝑉𝑛 𝑅 =
𝑠𝑛
2 − 1

4

𝑅2



All solutions of the eq. (6) are real, except one 𝑠0 = ±1.0062378𝑖
which is purely imaginary, as a result, the effective potential is
attractive for the channel 𝑛 = 0. This is in contrast with non-interacting
three-body problem, where the boundary condition (5) replaced by
𝜒0 𝑅, 𝛼

𝑥→0
0, leading to eigenvalues 𝑠𝑛 =2(n+1) that are all real, and

so repulsive effective potential for all 𝑛 (a generalized centrifugal
barrier).

which is the basis for the Efimov Physics.

In the interacting problem at 𝑎 → ±∞ limit the channel 𝑛 = 0 leads
to an effective three-body attraction

𝑉𝑛 𝑅 = −
|𝑠𝑛|

2 + 1
4

𝑅2

One of the fundamentally new findings of V.Efimov is that the three-
body problem with the boundary conditions not only yield just one
bound state, but infinitely many bound states.



The equation is invariant under scaling transformation 𝑅 → 𝜆𝑅 and still
invariant under a discrete set of scale transformations 𝑅 → 𝜆0

𝑛𝑅, with

scaling factors that are integral powers of 𝜆0 = 𝑒  𝜋 |𝑠0| ≈ 22.7. Thus, if
boundary condition gives a solution at some energy 𝐸 < 0, it also gives
solutions with energies 𝐸/𝜆0

2𝑛 < 0.
Therefore, an infinite number of bound states forming a geometric
series of energies accumulating at zero energy with scaling factor
𝜆0
2 ≈ 515.035.



• Even though the pair-wise interactions are a short-
range, the three particles feel the long-range
attraction.

• Intuitively it can be explain by the fact that an
effective interaction is mediated between two
particles by the third particle moving back and forth
between the two.

• It is thus possible for the three particles to feel their
influence at distances much larger than the range of
interactions, typically up to distances on the order of
the scattering length.
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Ultracold Quantum Gases



Efimov scenario

A trimer appears from three-
body scattering threshold at
 1 𝑎− , has a binding wave

number 𝑘∗ at unitarity, and
disappears below the
particle−dimer sctattering
threshold at  1 𝑎∗



Experimental observations



Experimental observations

B. Huang, L. A. Sidorenkov, R. Grimm, and
J. M. Hutson, “Observation of the Second
Triatomic Resonance in Efimov’s Scenario” 
Phys. Rev. Lett., 112 (2014) 190401.

R. Pires, J. Ulmanis, S. Häfner, M. Repp,
A. Arias, E. D. Kuhnle, and M. Weidemüller,
“Observation of Efimov Resonances in a 
Mixture with Extreme Mass Imbalance” 
Phys. Rev. Lett.,112 (2014) 250404.

S.-K. Tung, K. Jim´enez-Garc´ıa, J. Johansen,
C. V. Parker, and C. Chin, “Geometric Scaling
of Efimov States in a 6Li- 133Cs Mixture” 
Phys.Rev. Lett., 113 (2014) 240402.



Three-Body Efimov States4He3
Measurements:

Kunitski M. et al. // Science 348 (2015) 551.

*

1| | 0.98 0.2mKES dE   

Calculations:

*

1| | 0.972mKES dE  
o

1.3035mK 100.23Ad scl   

Motovilov A.K., Sofianos S.A, K. E.A. // 
Chem.Phys.Lett 275 (1997) 168.
Motovilov A.K., Sandhas W., Sofianos S.A, K. E.A. // 
Eur. Phys. J. D 13 (2001) 33.

*

1126.507mK 2.276mKGS ESE E   

A Dependence of the binding energies of the ground
(GS) and first excited (1ST) states of the He trimer on the
scattering length calculated by scaling He-He potential.

B and C Structure of the excited and ground states of 4He3

Brühl R. et al. // Phys. Rev. Lett. 95 (2005), 06002.



Observations in Nuclear Physics
All known multicomponent systems in nuclear physics related to 
Efimov physics involve two neutrons as two of the three particles: 
• the interaction between two neutrons is resonant - the basic requirement 

• they can form a spin singlet state – no centrifugal repulsion

• no electrical charge – no competition Coulomb repulsion vs Efimov attraction

The simplest case is the triton

P. F. Bedaque, G. Rupak, H. W. Grießhammer,
and H.-W. Hammer, Low energy expansion in
the three body system to all orders and the
triton channel, Nuclear Physics A, 714, 589 –
610, 2003

R. W. Hackenburg, Neutron-proton effective
range parameters and zero-energy shape 
dependence, Phys. Rev. C, 73 (2006) 044002

the binding of the triton is consistent with the Efimov scenario.

E.A. K. Ultracold Scattering and Universal 
Correlations, Few-Body Systems 55 (2014), 
957–960

E.A.K. and A.K. Motovilov, On the mechanism 
of formation of the Efimov states in the 
helium 4He trimer, Phys. Atom. Nucl. 62, No. 
7 (1999), 1179–1192

A. Kievsky and M. Gattobigio, Universal nature 
and finite-range corrections in elastic atom-
dimer scattering below the dimer breakup 
threshold, Phys.Rev. A, 87 (2013) 052719



Schematic picture of the conjecture that the Hoyle state of 12C is bound
by the Efimov attraction. Here, the Hoyle state appears as a resonant
state supported by the sum of two potentials as a function of the hyper-
radius between the three alpha particles.

H. Suno, Y. Suzuki, and P. Descouvemont, Phys. Rev. C, 91 (2015) 014004.

R. Higa, H.-W. Hammer, and U. van Kolck, Nuclear Physics A, 809 (2008) 171 – 188



Table of nuclides, as a function of the number of protons and
number of neutrons, showing stable elements (grey) and observed
light halo nuclei: one-proton halo (orange), one-neutron halo (blue),
two-neutron halo (green), and four-neutron halo (purple).

P. Naidon, Sh. Endo, Rep.Prog.Phys. 80 (5) (2017) 056001;



The recent experimental observations with ultra-cold
atoms and theoretical developments have opened a rich
variety of systems related to Efimov physics.

Nowdays, Efimov physics is studied in a much broader
sense: N-body systems, condensed matter, mixed-
dimensions.

Reviews:
P. Naidon, Sh. Endo, Reports on Progress in Physics 80 (5) (2017) 056001;
F. Ferlaino, R. Grimm, Physics, 3, 9 (2010);
H.-W. Hammer, L. Platter, Ann. Rev. Nucl. Part. Sc. 60 (2010) 207-236;
E.A. K., A.K. Motovilov, W. Sandhas, Phys.Part.Nucl. 40 (2009), 206-235;
E. Braaten, H.-W. Hammer, Physics Reports 428 (5-6) (2006) 259-392;


