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Thomas and Efimov effects

1. L.H. Thomas (1935) Phys. Rev.47, 903 (1935).

a) 2-particle potentials are short-range

b) Each of them supports only a single bound state even with an
arbitrarily weak binding energy
Nevertheless, the three-body ground state energy can go to (-o)
when the range of the two-body forces approaches zero!
(Just this surprising phenomenon is called the Thomas effect.)
l.e., such athree-body system should collapse! = The 3-body
Hamiltonian with zero-range interaction is not semibounded from
below.

2. V. Efimov (1970) Phys. Lett.33, 563 (1970).

When one weakens the two-body potentials (supporting a single
bound state) the number of 3-body bound states can increase to
infinity! And this happens at the moment when the two-body bound
states disappeatr.

= Efimov states < the states which appear under weakening and
disappear under strengthening of the two-body potentials.
- Quite strange and “non-standard” behavior



The simplest situation for which Efimov states occurs
correspond to three identical boson interacting via
resonant short-range interaction.

Beyond the range of the interaction 1, the relative motion
of two particles is almost free. The wave function ¥ (7) in
the asymptotically free region has a phase shift §, with
respect to the non-interacting wave function. The partial-
wave expansion of ¥ (7)

Y (7) = 2520 252 Py (cos 0)

T
where g

fo(r) =1

complicated forr < r, (interaction region)

T
o« sin (kr —{=+ 5{}) forr > ry (freeregion)

L 2

k is relative wave number between two particles, P, - Legendre polynomials.



Efimov physics arises when the two-body interaction is
near resonant in the s-wave partial wave (£ = 0), which

means that the phase shift 0, of the s-wave is closed to %

At low scattering energy a phase shift can be written as
8y ~ —arctg(ka) fork <« r5?!

where a is the scattering length, so |a| > 1, in order to
have resonant interaction.

Zero-range theory: assume, that short-range region can be
neglected and only asymptotically free region (that is

parametrized by scattering length) is relevant.
— zero-range pseudopotential [Fermi, Ricerca Scientifica, 7 (1936) 13-52]
with regularization by a cut-off in p-space or Lee-Huang-Yang pseudopoten.

— Bethe-Peierls boundary condition

1 9 1
—— — (r'W¥) — = [Bethe,Peierls, Proc. Royal Soc. London, (1935) 146-156]
r¥ or r-0 a



All these methods correctly reproduce the form of the two-
body w.f. Intheregionry <r <k~?

¥ (7) « %—1

a

The simplification which is used in the zero-range method
keeps the same form of w.f. down to r = 0, although this
is unphysical for r < ry.



Such zero-range method can be applied to three-boson
system, described by Jacobi coordinates after elimination
the center of mass motion

- - - = 2 = rl o 77.')]
Xij = 1 — T Yijk = ﬁ(rk_ 2 )
Each Jacobi coordinate sets related to each other by rotation matrix
- 1 - \/§ - - 1 - \/§ -
X23 = 75 %12 + — Y123 X31 = 75 %12 T 5 V123
V3, 1, V3, 1,

231 — — 7 X12 — 3 )V12, 2= "5 X112 — 7 ,
y > 2)’ 3 V31,2 5 X12 2)’123



Choosing one set for Jacobi coordinates, the three-body w.f.
satisfies free Schrodinger equation at total energy E = %kz

(-72, -7, —k?})w=0

X12 V12,3

With the Bethe-Peierls boundary conditions for all pair of

bosons — — 2 (r¥) — 2. The w.f. W could be decompose
r¥ or r-0 a

to Faddeev components:
Y= F(5C)12»)712,3) +F(3—523»5’)23,1) + F(f31:)731,2)
which is satisfies the equations

(-2 —V2 —k?)F(X,3) =0 (1)
with bouglary condition for pair
== (a;F(aa )]k + F (25, -25) + F (25, -%5)
= [=Z(F@ED +F (95, —57) + F (=55, =39 Do



The Efimov effect for bosons occurs in the partial wave
channel with total angular momentum L = 0. In this channel
F is independent of the direction of X and y and can be
written as

_Xo (x,¥) (3)

==

Xo is finite for x —» 0 and Xo(x'J’)yT’O 0, inserting (3) into (1) & (2)

F(X,)

0% 0%
(‘ﬁ  Av2 kz)XO(XJ’) =0

with boudary condition for x = 0

0 1 1
V3., 1.\ —
[ax (XO(x'y))]x—)O T 2\/§ XO (7}’»5}’) — _EXO(O;:V)
T




Rewrite these equations in polar (hyperspherical) coordinates

X =Rsina
. _ 2,2 2 2
Yy =R cosa R—\/x2+y2=\/§(x12+x23+x31)

JR?2 ROR RZ?0a?

with boudary condition for a = 0

2 2
(—a——li— 10 —k2>)(O(R,a)=O (4)

0 8 R
5 CoRo)lano + = 200(RE) = =2 06(RO) (O

The problem then become separable in R and «a for the case a —» +
Thus one can find solution of eq. (4) in the form

d2
Xo(R, @) = f(R)(a) -—¢(@) = s2¢(@)

with boudary conditionat « = 0and a = m /2



This gives the solution

Pn(a) = Sin(sn(% — (X))
where s, is solution of the equation

—Sp cos(sp%) + isin(Sn%) =0 (6)

V3

Each n solution constitutes a channel for hyperradial motion, for each
solution ¢,, there is a corresponding hyperradial function f,(R) such

that f,,(R) ¢,, () is a solution of equation (4):

7 10 5 ) pm=o
OR2 ROR R? Jn(R) =

which can be written as one-dimensional Schrodinger equation

62
<_W +Va(R) — kz) \/Efn(R) =0 2

with hyperspherical potential R?




All solutions of the eq. (6) are real, except one s; = +£1.0062378i
which is purely imaginary, as a result, the effective potential is
attractive for the channel n = 0. This is in contrast with non-interacting
three-body problem, where the boundary condition (5) replaced by
Yo(R,a) 2 0, leading to eigenvalues s,, =2(n+1) that are all real, and

so repulsive effective potential for all n (a generalized centrifugal
barrier).

In the interacting problem at a = +oo limit the channel n = 0 leads
to an effective three-body attraction

1
S| + 7
RZ

Vn(R) - =

which is the basis for the Efimov Physics.

One of the fundamentally new findings of V.Efimov is that the three-
body problem with the boundary conditions not only yield just one
bound state, but infinitely many bound states.



The equation is invariant under scaling transformation R = AR and still
invariant under a discrete set of scale transformations R — AR, with

scaling factors that are integral powers of 1, = e™/ 15l =~ 22.7. Thus, if
boundary condition gives a solution at some energy E < 0, it also gives

solutions with energies E/A4™ < 0.
Therefore, an infinite number of bound states forming a geometric

series of energies accumulating at zero energy with scaling factor
A5 ~ 515.035.
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 Even though the pair-wise interactions are a short-
range, the three particles feel the long-range
attraction.

* Intuitively it can be explain by the fact that an
effective interaction is mediated between two
particles by the third particle moving back and forth
between the two.

* It is thus possible for the three particles to feel their
influence at distances much larger than the range of
interactions, typically up to distances on the order of
the scattering length.



Ultracold Quantum Gases
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Vitaly Efimov in front of the
experimental setup (group of Prof.
Grimm, Uni Innsbruck), on which the
“Efimov” effect was observed 35 years
after the theoretical prediction

Wave number k

A trimer appears from three-
body scattering threshold at
1/a_, has a binding wave
number k, at unitarity, and
disappears below the
particle-dimer sctattering
threshold at 1/a,

Efimov scenario
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Experimental observations

Evidence for Efimov quantum states in an ultracold
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Recombination rate coeeficient [1 0720 gmbg? ]

Experimental observations

B. Huang, L. A. Sidorenkov, R. Grimm, and
J. M. Hutson, “Observation of the Second
Triatomic Resonance in Efimov’s Scenario”
Phys. Rev. Lett., 112 (2014) 190401.
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x21.001.3) R. Pires, J. Ulmanis, S. Hafner, M. Repp,

A. Arias, E. D. Kuhnle, and M. Weidemdiller,
“Observation of Efimov Resonances in a
J | Mixture with Extreme Mass Imbalance”
ﬁ Phys. Rev. Lett.,112 (2014) 250404.
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Three-Body Efimov States

Measurements:
|Ezs — &, |=0.98+0.2mK

Kunitski M. et al. // Science 348 (2015) 551.
Briihl R. et al. // Phys. Rev. Lett. 95 (2005), 06002.

Calculations:
| E;ES — &4 |= 0.972mK
Eqy = —1.3035mK ISC =100.23 A

E. =-126.507mK E., = —2.276mK

Motovilov A.K., Sofianos S.A, K. E.A. //
Chem.Phys.Lett 275 (1997) 168.

Motovilov A.K., Sandhas W., Sofianos S.A, K. E.A. //
Eur. Phys. J. D 13 (2001) 33.

A Dependence of the binding energies of the ground
(GS) and first excited (1ST) states of the He trimer on the
scattering length calculated by scaling He-He potential.

B and C Structure of the excited and ground states of “He,



Observations in Nuclear Physics

All known multicomponent systems in nuclear physics related to

Efimov physics involve two neutrons as two of the three particles:
e the interaction between two neutrons is resonant - the basic requirement
e they can form a spin singlet state — no centrifugal repulsion

* no electrical charge — no competition Coulomb repulsion vs Efimov attraction

The simplest case is the triton
the binding of the triton is consistent with the Efimov scenario.

E.A.K. and A.K. Motovilov, On the mechanism

P. F. Bedaque, G. Rupak, H. W. GrieBhammer,
of formation of the Efimov states in the d P

helium 4He tri Phvs. At Nucl. 62 N and H.-W. Hammer, Low energy expansion in
enum e trimet, Thys. Atom. WUCL 5%, WO the three body system to all orders and the

7(1999), 1179-1192 triton channel, Nuclear Physics A, 714, 589 —
A. Kievsky and M. Gattobigio, Universal nature 610. 2003

and finite-range corrections in elastic atom-

dimer scattering below the dimer breakup R. W. Hackenburg, Neutron-proton effective
threshold, Phys.Rev. A, 87 (2013) 052719 range parameters and zero-energy shape
E.A. K. Ultracold Scattering and Universal dependence, Phys. Rev. C, 73 (2006) 044002
Correlations, Few-Body Systems 55 (2014),

957-960
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Schematic picture of the conjecture that the Hoyle state of '2C is bound
by the Efimov attraction. Here, the Hoyle state appears as a resonant
state supported by the sum of two potentials as a function of the hyper-
radius between the three alpha particles.

R. Higa, H.-W. Hammer, and U. van Kolck, Nuclear Physics A, 809 (2008) 171 — 188
H. Suno, Y. Suzuki, and P. Descouvemont, Phys. Rev. C, 91 (2015) 014004.



P. Naidon, Sh. Endo, Rep.Prog.Phys. 80 (5) (2017) 056001,
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Summary

¢ The recent experimental observations with ultra-cold
atoms and theoretical developments have opened a rich
variety of systems related to Efimov physics.

¢ Nowdays, Efimov physics is studied in a much broader
sense: N-body systems, condensed matter, mixed-

dimensions.
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Thank you for your attention!



