

Yubing Dong (董宇兵)

Collaborators: Fei Huang, Qifang Lv, Pengnian Shen, Zhongye Zhang

07.23-29,2017 St. Petersburg, Russia

Content

- $1\,{\scriptstyle \smallsetminus}\,$ Observation of d*
- 2. Possible interpretations
- 3、 d* Structures in a chiral

constituent quark model

4. Summary

1. Observation of d*(2380)

Experiments at the Jülich Cooler Synchrotron (COSY) have found compelling evidence for a new state in the two-baryon system, with a mass of 2380 MeV, width of 80 MeV and quantum numbers $I(J^{P}) = O(3^{+})_{\circ}$ 3

Fusion 2π production

 ${f pd}
ightarrow {f p_{spectator}} d\pi^{f 0}\pi^{f 0}$

Possible understandings

WASA-at-COSY: PRL106(2011)242302

Signals in other reactions @ COSY

d* Strong decays

P.R.L.103(2009)162001 d*(2380) size $r \approx \frac{\hbar c}{\sqrt{2m\epsilon}}$ d* Binding energy ~ 80 MeV d* rms is about 0.5fm ($m = m_{A} = 1.232 GeV$) Probably a compact structure Heinz Clement, Progress in Particle and Nuclear Physics, 93 (2017), 195-142

2. Possible interpretations **#**

24/7/17

Before the discovery of d*

• A pioneer discussion from symmetry: J.Dyson, PRL 13, 815 (1964)

Two baryon systemsAnti-symmetric representations:SU(6) classification :Non-strange states

(I, J) = (3,0)(2,1)(1,0)(1,2)(0,1)(0,3) 6 states

Casmir operator reduced

a mass formula

$$M = A + B' (T(T+1)) + B'' (J(J+1))$$

If B' = B'' = B, the obtained deuteron mass 1876MeV, and then, obtain A,

Choose B = 50MeV, then, M_{d*} = 2376MeV

• Chiral SU(3) Quark Model

X.Q.Yuan, Z.Y.Zhang, Y.W.Yu, P.N.Shen, PRC 60, 045203 (1999)

$\Delta \Delta$ + CC structures

- ✓ Parameters: from NN phase shifts, YN cross sections, deuteron binding & radius
- $\sqrt{}$ dynamical calculation for its binding d*($\Delta\Delta$ + CC (IS=03))
- ✓ predict: d* binding
 BE ≅ 40-80 MeV [SU(3)]
 (Present data: 84 MeV)
- Conclusions: CC channel is important, suppress the binding about 20MeV.
 - •WFs and decays not calculated.

TABLE III. Deltaron binding energy B(MeV) with different parameters. $B = -(E_{\text{deltaron}} - 2M_{\Delta})$.

	(ΔI)	$\Delta + CC$	(L = 0 + L =	2)
$B(OGE + \pi, \sigma)$	79.7	97.1	97.9	113.4
B[OGE+SU(3)]	37.3	64.2	52.4	79.2
$b_N(\text{fm})$	0.505	0.60	0.505	0.00
$m_{\sigma}(\text{MeV})$	625	625	550	550

- Binding energy: 40 ~ 80 MeV
- CC: 10 ~ 20 MeV increase in binding energy

Understanding d* after the discovery

6q dominant (quark-level)
* Argument

M.Bashkanov, S.J.Brodsky H.Clement, PLB727,438(2013)

* $\Delta \Delta + CC$ Interpretations

a, arXiv: 1408.0458 [nucl-th] (CPC 39 (2015) 071001]

- b, SCIENCE CHINA 59 (2016) 622002
- c, PRC 91 (2015) 064002
- d, arXiv: 1603.08748 [hep-ph], PRC 94, 014003 (2016)

Binding energy, wave functions, decays

Bashkanov, Brodsky, H.Clement Phys.Lett.B727(2013)438

We conclude from such observations that d^* must be of an unconventional origin, possibly indicating a genuine six-quark nature. With the predominant decay of d^* being $d^* \to \Delta\Delta$ ($BR(d^* \to \Delta\Delta)/BR(d^* \to pn) = 9:1$), one could naively expect d^* to be a so-called a "deltaron" denoting a deuteron-like bound state of two According to M. Harvey [66] Δ s. However, the narrow width of d^* contradicts this simple assumption. A deltaron would need to have 90 MeV binding energy, i.e. 45 MeV per Δ , which would lead to a reduction of width from $\Gamma_{\Delta\Delta} = 230$ MeV to $\Gamma_{\Delta\Delta} = 160$ MeV, using the known momentum dependence of the width of the Δ resonance. This is more than twice what is observed.

 $\Delta\Delta$ width: $\Gamma_{\Delta\Delta}=230MeV$

Here $\Delta\Delta$ means the asymptotic $\Delta\Delta$ configuration and 6Q is the genuine "hidden color" six-quark configuration. The first solution denotes a S^6 quark structure (all six quarks in the S-shell).

Binding about 90MeV $\Gamma_{\Delta\Delta} = 160 MeV$

The observed d* must be of an unconventional origin, probably 6q structure.

d* narrow width

• QCD Sum rule (6q) H.X.Chen, PRC 91, 025204 (2015) $M = 2.4 \pm 0.2 \text{ GeV}$

3、d* structures in chiral constituent quark model

q-q Interactions

$$\mathbf{V_{ij}} = \mathbf{V_{ij}^{conf}} + \mathbf{V_{ij}^{OGE}} \!+\! \mathbf{V_{ij}^{ch}} \!+\! \mathbf{V_{ij}^{chv}}$$

$$\mathbf{V_{ij}^{ch}} = \sum_{\mathbf{a}} (\mathbf{V_{ij}^{s(\mathbf{a})}} + \mathbf{V_{ij}^{ps(\mathbf{a})}})$$
 Scalar
Pseduoscelar

Interactive Lagrangian

Pseduoscalar

vector

$$\mathcal{L}_{I} = -g_{ch}\bar{\Psi}(\sum_{a=0}^{8}\sigma_{a}\lambda_{a} + i\sum_{a=0}^{8}\pi_{a}\lambda_{a}\gamma_{5})\Psi$$

$b_{\rm u}, m_{\sigma}$ are determined by fitting to the experimental data for NN systems

		SU(3)	Ext. SU(3) (f/g=0)	Ext. SU(3) (f/g=2/3)
Deuter ener	on Binding gy(MeV)	2.09	2.24	2.20
Fraction of Wave	NN (L=0)	93.68	94.66	94.71
Function (%) NN (L=2) 6.32	5.34	5.29		

 $b_u = 0.5 fm$ $m_\sigma = 595 \text{ MeV}$ $m_\sigma = 535 \sim 547 \text{ MeV}$ NN Phase shifts: Good 17

• **Q**, RGM method for WFs:
$$I(J^P) = 0(3^+)$$

 $\Psi_{6q} = \mathcal{A} [\phi_{\Delta}(\xi_1, \xi_2) \phi_{\Delta}(\xi_4, \xi_5) \eta_{\Delta\Delta}(r) + \phi_{C}(\xi_1, \xi_2) \phi_{C}(\xi_4, \xi_5) \eta_{CC}(r)]_{S=3, I=0, C=(00)} \cdot \Delta : (0s)^3 [3]_{orb}, S = 3/2, I = 3/2, C = (00),$
 $C : (0s)^3 [3]_{orb}, S = 3/2, I = 1/2, C = (11),$

- Anti-symmetrized operator
- ϕ :
- Internal cluster WF
- Relative WF from RGM with interactions

b, Hadronization

Due to the exchange operator, functions are not orthogonal

= 0(3)

Relative Wave function (or Channel Wave function)

 $\chi_{\Delta\Delta}(r) \equiv \langle \phi_{\Delta}(\xi_{1}, \xi_{2}) \phi_{\Delta}(\xi_{4}, \xi_{5}) | \Psi_{6q} \rangle, \quad \text{Contains (1), (2),(4) terms}$ $\chi_{CC}(r) \equiv \langle \phi_{C}(\xi_{1}, \xi_{2}) \phi_{C}(\xi_{4}, \xi_{5}) | \Psi_{6q} \rangle, \quad \text{Contains (3), (2),(4) terms}$

 $\Psi_{d^*} = |\Delta\Delta\rangle \chi_{\Delta\Delta}(r) + |CC\rangle \chi_{CC}(r)$ Quark exchange effect is included 19

24/7/17

Interaction
$$\mathcal{H}_{qq\pi} = g_{qq\pi}\vec{\sigma}\cdot\vec{k}_{\pi}\tau\cdot\phi\frac{1}{(2\pi)^{3/2}\sqrt{2\omega_{\pi}}},$$

Simon Capstick, PRD46,2864

 $N\pi$ Coupling & form factor Γ

$$\Gamma_{\Delta \to \pi N} = \frac{4}{3\pi} k_{\pi}^3 (g_{qq\pi} I_o)^2 \frac{\omega_N}{M_{\Delta}},$$

Calculated widths: prc91,064002; 94,014003

	Theor.(MeV)	Expt.(MeV)
$d^* \to d\pi^+\pi^-$	16.8	16.7
$d^* \to d\pi^0 \pi^0$	9.2	10.2
$d^* \to pn\pi^+\pi^-$	20.6	21.8
$d^* \to p n \pi^0 \pi^0$	9.6	8.7
$d^* \to p p \pi^0 \pi^-$	3.5	4.4
$d^* \to nn\pi^0\pi^+$	3.5	4.4
$d^* \to pn$	8.7	8.7
Total	71.9	74.9

 $b_{c} = 0.45 \, fm$,

*Isospin breaking

$$\frac{\Gamma(d^* \to d\pi^+ \pi^-)}{\Gamma(d^* \to d\pi^0 \pi^0)} \sim 1.8 \quad (1.6, 2.0) \checkmark$$

$$\frac{\Gamma(d^* \to pn\pi^+\pi^-)}{\Gamma(d^* \to pn\pi^0\pi^0)} \sim 2.2 \quad (2.5, 2.5)$$

24/7/17

Discussions:

*FSI is about 26~30%

*Total width is good

*Partial widths are good

*If only ($\Delta\Delta$) is considered, the widths are not good

$M_{d*}(\mathrm{MeV})$	(100%)∆∆ 2374	Expt 2375	
Decay channel	$\Gamma(MeV)$	$\Gamma(\text{MeV})$	
$d^* \rightarrow d\pi^0 \pi^0$	17.0	10.2	
$d^* \rightarrow d\pi^+\pi^-$	30.8	16.7	
Total	132.8	74.9	

 $\chi_{cc} = N e^{-r^2/2b_c^2}$

The narrow width is due to large component CC d(2380) single- π decay: d * (2380) - - > πNN PLB769, (2017) 223-226

This channel might provide a test for different interpretations. Experiment gives 9% up-limit; the result of three-body ($\Delta \pi N$) is about 18%.

Decay width of the $d^*(2380) \rightarrow NN\pi$ process in a chiral constituent quark model

Yubing Dong^{a,b,c,*}, Fei Huang^c, Pengnian Shen^{d,a,b}, Zongye Zhang^{a,b,c}

^a Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

^b Theoretical Physics Center for Science Facilities (TPCSF), CAS, Beijing 100049, China

^c School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China

^d College of Physics and Technology, Guangxi Normal University, Guilin 541004, China

ARTICLE INFO

Article history: Received 22 February 2017 Received in revised form 13 March 2017 Accepted 25 March 2017 Available online 31 March 2017 Editor: V. Metag

Keywords: d*(2380) Chiral quark model Strong decay Single-pion decay

ABSTRACT

The width of three-body single-pion decay process $d^* \rightarrow NN\pi^{0,\pm}$ is calculated by using the d^* wave function obtained from our chiral SU(3) constituent quark model calculation. The effect of the dynamical structure on the width of d^* is taken into account in both the single $\Delta\Delta$ channel and coupled $\Delta\Delta + CC$ two-channel approximations. Our numerical result shows that in the coupled-channel approximation, namely, the hidden-color configuration being considered, the obtained partial decay width of $d^* \rightarrow NN\pi$ is about several hundred keV, while in the single $\Delta\Delta$ channel it is just about $2 \sim 3$ MeV. We, therefore, conclude that the partial width in the single-pion decay process of d^* is much smaller than the widths in its double-pion decay processes. Our prediction may provide a criterion for judging different interpretations of the d^* structure, as different pictures for the d^* may result quite different partial decay width.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

Very recently

Fig. 1. Six possible ways to emit pion only from the $\Delta\Delta$ component of d^* in the $d^* \rightarrow NN\pi$ decay process. The outgoing pion with momenta \vec{k} is emitted from Δ_2 . The other six sub-diagrams with pion emitted from Δ_1 are similar, and then are not shown here for reducing the size of the figure.

The suppressions enable to ignore the contribution from the CC component in d*

Our prediction 1%

Table 1 The calculated decay width of the $d^* \rightarrow NN\pi$ process and the widths contributed individually from the (a)-, (b)-, (c)-, (d)-, (e)-, and (f)-type diagrams (in units of MeV).

Case	Total width	(a)	(b)	(c)	(d)	(e)	(f)	sum of (a)-(f)
One ch. ($\Delta\Delta$ only)	2.276	0.550	0.306	0.267	0.0963	0.209	0.233	1.661
Two chs. ($\Delta\Delta$ + CC)	0.670	0.154	0.0884	0.0789	0.0279	0.0687	0.0847	0.503

Recently Gal(arXiv:1612.05092)

Recently Gal(arXiv:1612.05092) In order to match the up-limit $\longrightarrow d^* > \sqrt{\frac{5}{7}} |\Delta \Delta > + \sqrt{\frac{2}{7}} |N\Delta \pi >$

Of exp.

4. Summary

•Our understanding:

d* with CC component dominant (~ 66-68%)

$M \approx 2380 \text{ MeV}$ $\Gamma \approx 72 \text{ MeV}$

 $(M^{exp'\dagger} \approx 2380 \text{ MeV} \Gamma^{exp'\dagger} \approx 70-75 \text{ MeV})$

• Other experimental measurements

$$e^{+} + e^{-} \rightarrow \overline{d}^{*} + p + n \quad \Upsilon \rightarrow \overline{d} + d^{*}, \quad d + \overline{d}^{*}, \quad \overline{d}^{*} + d^{*}$$

BR($\Upsilon \rightarrow \overline{d} + X$) ~ 2.86 X 10⁻⁵

• Short range interaction

If it is 6q dominant, one can get more information

Effective $\Delta - \Delta$ short range interaction induced by OGE (VM) are attractive One-gluon-exchange (OGE)

q-q short range int. 24/7/17

Vector meson exchange (VME)

Thanks !

If the d* is further confirmed by other experiments, we believe that our interpretation is reasonable. Thus, it is a resonance state with 6q structure dominant and moreover, the more information about the short range interaction is expected.

Analysis: Large component of CC (67%) in d*?

$$\begin{aligned} \begin{pmatrix} 1 \\ \Psi_{6q} &= (1 - 9P_{36})[\phi_{\Delta}\phi_{\Delta}\eta_{\Delta\Delta}(\mathbf{r})]_{\mathrm{SIC}=30(00)} \\ & + (1 - 9P_{36})[\phi_{\mathrm{C}}\phi_{\mathrm{C}}\eta_{\mathrm{CC}}(\mathbf{r})]_{\mathrm{SIC}=30(00)} \\ & & & \\ (3) & (4) \\ \chi_{\Delta\Delta}(r) &\equiv \langle \phi_{\Delta}(\xi_{1},\xi_{2})\phi_{\Delta}(\xi_{4},\xi_{5}) | \Psi_{6q} \rangle, \quad (1) \quad (2) \quad (4) \text{ terms} \\ \chi_{\mathrm{CC}}(r) &\equiv \langle \phi_{\mathrm{C}}(\xi_{1},\xi_{2})\phi_{\mathrm{C}}(\xi_{4},\xi_{5}) | \Psi_{6q} \rangle, \quad (3) \quad (4) \quad (2) \text{ terms} \\ \Psi_{d^{*}} &= |\Delta\Delta\rangle \chi_{\Delta\Delta}(r) + |\mathrm{CC}\rangle \chi_{\mathrm{CC}}(r) \end{aligned}$$

XCC contains the contri. From (2), from $\Delta\Delta$ exchanged terms.

P₃₆ Exchange is important! Thus

ΔΔ+coupled channels (in quark level)

J.L.Ping, F.Wang et al. PRC <u>89</u>, 034001 (2014)

$IJ^{p} = 03^{+} \qquad \begin{array}{c} 1 & 2 & 3 & 4 \\ \Delta\Delta(^{7}S_{3}) & NN(^{3}D_{3}) & \Delta\Delta(^{3}D_{3}) & \Delta\Delta(^{7}D_{3}) \\ 5 & 6 & 7 & 8 & 9 & 10 \\ ^{2}\Delta_{8} \, ^{2}\Delta_{8}(^{3}D_{3}) & ^{4}N_{8} \, ^{4}N_{8}(^{3}D_{3}) & ^{4}N_{8} \, ^{2}N_{8}(^{3}D_{3}) & ^{2}N_{8} \, ^{2}N_{8}(^{3}D_{3}) & ^{4}N_{8} \, ^{4}N_{8}(^{7}S_{3}) \end{array}$

 $BE= 71 \text{ MeV} \qquad \Gamma = 150 \text{ MeV}$

QDCSM (4 coupled channels)

 $\Delta\Delta^7 S_3$, NN³D₃, $\Delta\Delta^3 D_3$, $\Delta\Delta^7 D_3$

BE= 107 MeV Γ = 110 MeV

TABLE III. $\Delta\Delta$ or resonance mass *M* and decay width Γ , in MeV, in two quark models for the $IJ^P = 03^+$ state.

	QD	CSM	ChQM		
	SC	4 cc	SC	4 cc	10 cc
М	2365	2357	2425	2413	2393
Γ_{NN}	_	14	_	14	14
 Γ_{inel}	103	96	177	161	136
Г	103	110 👹	177	175	150

On the charge distribution of d*						
Form factors	: 25+1	relative to	size	arXiv:1704.0125	3	
Nucleon(1/	$< N(p') \mid$	$J_N^{\mu} \mid N(p) >= \bar{U}_N(p)$	$p')\Big[F_1(Q^2)\Big]$	$)\gamma^{\mu} + i \frac{\sigma^{\mu\nu} q_{\nu}}{2M_N} F_2(Q^2) \Big] U$	V(p),	
2):	$G_E(Q^2)$	$= F_1(Q^2) - \eta F_2(Q^2),$	$G_M(Q$	$F^{2}) = F_{1}(Q^{2}) + F_{2}(Q^{2}),$		
Breit frame	$< N(\vec{q}/2)$	2) $ J_N^0 N(-\vec{q}/2) > =$	$= (1 + \eta)^{-1}$	$^{-1/2}\chi^+_{s'}\chi_s G_E(Q^2)$		
	$< N(\vec{q}/2)$	$2) \mid \vec{J}_N \mid N(-\vec{q}/2) > =$	$= (1 + \eta)^{-1}$	$^{-1/2}\chi^+_{s'}\frac{\sigma \times q}{2M_N}\chi_s G_M(Q^2).$		
Deuteron(1)	$J^{\mu}_{jk}(p)$	$p',p) = \epsilon_j^{'*\alpha}(p')S^{\mu}_{\alpha\beta}\epsilon_{\beta}$	$_{k}^{\beta}(p)$			
	$S^{\mu}_{\alpha\beta} = - \Big[G_1$	$(Q^2)g_{\alpha\beta} - G_3(Q^2)\frac{Q_\alpha}{2m}$	$\left[\frac{Q_{\beta}}{n_D^2}\right]P^{\mu} - 0$	$G_2(Q^2)(Q_\alpha g^\mu_\beta - Q_\beta g^\mu_\alpha) ,$		
	$G_C(Q^2) = 0$	$G_1(Q^2) + \frac{2}{3}\eta_D G_2(Q^2)$, $G_M(c$	$Q^2) = G_2(Q^2) ,$		
	$G_Q(Q^2) = 0$	$G_1(Q^2) - G_2(Q^2) + (1)$	$+\eta_D)G_3(0)$	$Q^2)$,		
Breit frame	$G_C($	$(Q^2) \longrightarrow$	$\frac{1}{3}\sum_{\lambda}$	$< p', \lambda \mid J^0 \mid p, \widecheck{\lambda} >$	>.	
24/7/17					32	

$$d^{\star}(3): \qquad \mathcal{J}^{\mu} = (\epsilon^{*})^{\alpha'\beta'\gamma'}(p')\mathcal{M}^{\mu}_{\alpha'\beta'\gamma',\alpha\beta\gamma}\epsilon^{\alpha\beta\gamma}(p) \\ \mathcal{M}^{\mu}_{\alpha'\beta'\gamma',\alpha\beta\gamma} = \begin{bmatrix} G_{1}(Q^{2})\mathcal{P}^{\mu} \left[g_{\alpha'\alpha} \left(g_{\beta'\beta}g_{\gamma'\gamma} + g_{\beta'\gamma}g_{\gamma'\beta} \right) + permutations \right] \\ + G_{2}(Q^{2})\mathcal{P}^{\mu} \left[q_{\alpha'}q_{\alpha} \left[g_{\beta'\beta}g_{\gamma'\gamma} + g_{\beta'\gamma}g_{\gamma'\beta} \right] + permutations \right] / (2M^{2}) \\ + G_{3}(Q^{2})\mathcal{P}^{\mu} \left[q_{\alpha'}q_{\alpha}q_{\beta'}q_{\beta}q_{\gamma'\gamma} + permutations \right] / (4M^{4}) \\ + G_{4}(Q^{2})\mathcal{P}^{\mu}q_{\alpha'}q_{\alpha}q_{\beta'}q_{\beta}q_{\gamma'}q_{\gamma} / (8M^{6}) \\ + G_{5}(Q^{2}) \left[\left(g^{\mu}_{\alpha'}q_{\alpha} - g^{\mu}_{\alpha}q_{\alpha'} \right) \left(g_{\beta'\beta}g_{\gamma'\gamma} + g_{\beta'\gamma}g_{\beta'\gamma} \right) + permutations \right] \\ + G_{6}(Q^{2}) \left[\left(g^{\mu}_{\alpha'}q_{\alpha} - g^{\mu}_{\alpha}q_{\alpha'} \right) \left(q_{\beta'}q_{\beta}q_{\gamma'\gamma} + q_{\gamma'}q_{\gamma}g_{\beta'\beta} + q_{\beta'}q_{\gamma}g_{\gamma'\beta} + q_{\gamma'}q_{\beta}g_{\gamma\beta'} \right) \\ + permutations \right] / (2M^{2}) \\ + G_{7}(Q^{2}) \left[\left(g^{\mu}_{\alpha'}q_{\alpha} - g^{\mu}_{\alpha}q_{\alpha'} \right) q_{\beta'}q_{\beta}q_{\gamma'}q_{\gamma} + permutations \right] / (4M^{4}) \right] \\ \overline{q_{\mu}} \mathcal{M}^{\mu}_{\alpha'\beta'\gamma',\alpha\beta\gamma} = 0$$

$$G_E^{d^*}(Q^2) = \frac{1}{7} \sum_{m_{d^*} = -3}^3 < p', m_{d^*} \mid J^0 \mid p, m_{d^*} >$$

$$J^{0} = \sum_{i=1}^{6} e_{i} \bar{q}_{i} \gamma^{0} q_{i} = \sum_{i=1}^{6} j_{i}^{0}.$$

Cases	$d^{*}(2$	D_{12}	
	A1		
rms (fm)	1.09	0.78	2.39

24/7/17