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|. Introduction : Motivation & Basics

How to understand the nonperturbative physics of the strongly interacting systems ?
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Holography Principle (AdS/CFT correspondence) :
3+1 dim. Quantum Field Theory & 4+1 Gravity Theory

« New methodology for strongly interacting systems ?
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Il. Holography Principle (AdS/CFT Correspondence)

“2d revolution of the string theory (1994)
(Stronqlv Interacting) Quantum Field Theory

in a given space time dimension (Ex):3+1=4 dim)

can be equivalently described by

the (classical) gravity theory

in one higher dimensional spacetime (Ex): 4+1=5dim).

Question: 4 =

57

3+1 dim. QFT (large Nc)
&

4+1 dim. Effective Gravity description

Naive Answer : Coupling constants are running in QFTJO.

Energy scale in QFT corresponds to

the parameter in extra “dimension”

or radial direction in AdS5 space
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New Paradigm for the Strongly Interacting Quantum System

—
‘Size’ L of the 5dim is proportional to the coupling constant A of the 4 dim.

4Dim QFT Perturbative : Easy Nonperturbative : Hard
Coupling constant A AL 1 A>1
—>
Size of the paramenter L LK1 L>»1
5Dim parameter Quantum Gravity : Hard Classical Gravity: “Easy”

Strongly Interacting Quantum System (4 >> 1)
N

Classical Gravity (L >> 1)

New Methodolgoy : can use the 5 dim. classical gravity description
for the 4dim. strongly interacting system.



AdS/CFT Dictionary | Wwitten 98

Gubser,Klebanov,Polyakov 98

A
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Vs —
= A= gy 4V 2 N
&’2 'qyj:{ ] ( g}_/:‘u 9 _ﬁ?\’ )

Parameters ( 9, , R )[ Amg N =

Partition function of bulk gravity Generating functional of bdry
theory (semi—classial) .QF T for operator (V)
. ! — d .t
ZStT [@U (x )] B Tty D@ P I:_S[{ﬂ‘ ) Z[@U (x)] <e}{p /bcmﬂdm‘u e QUL >
— 8_ (o, -[Gl" [) = /exp{-iSJ‘—I—a'/c_.-‘}g(;r}(f?"}
O(t, x; u = 00) = u? 4o (t,x) ¢o (t,x) : source of the bdry ()

oo bdry value of the bulk field

[ Zyrl ()] = Zlg ()] ]

. .[;-‘i}i scalar > S = / d*rdur/—g (gabé‘a@é‘b@— -??1..2(;}2) o) ~ ut AOO + u” (O)
‘ﬁ Z string
dpo(ty.x1) - &@[](fn Xn)

* Correlation functions by <1 O(t1,x1) - - O{tu._x-”.}>

field theory

« 5D bulk field (t,x,u) €->  Operator () (t,X)
w/ 5D mass  E(X,JJ, -++) wl Operator dimesion A (X, .J,J, --)

« 5D gauge symmetry <= Current (global symmetry)
» Radial coord. r (= 1/u) in the bulk is proportional to the energy scale E of QFT



« Temperature <
Black hole geometry

T= THawking E. Witten (1998) /'-ﬂ_—_ﬂxwhermal acD
2 _ L (e |2 2 L 2 /
dS’S = ) (f (: )(lf — (d_l‘ ) — f:_’[ “)(l: ). ||I /_\ "|
, . \_  AdS,eH |
fAz)=1-(—)* T — 1 ‘______bk:l.il_lf___,_/
2T -~ _

» Flavor degrees of Freedom
by adding probe brane

y(p) =Mg+ 5=+ (p>>1)

« Chemical potential or density
by turning on U(1) gauge field on the probe brane

Ar:;z.—{—f_—%-_k.., ([-1’>>]_)

)



Ill. Holographic QCD & CMT Witten ‘08

Goal : Using the 5 dim. dual gravity, study 4dim. strongly interacting QCD
& CMT such as spectra & Phases, etc.

Needs the dual geometry !.

Ex) Confinement —Deconfinement

boundary

horizon

Figure from
| P Erdmenger et.al,

conformal confining deconfining

AdS AdS black hole EPJA (2008)




Hawking—Page phase transition
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The geometry is described by the following action AR

Temperature T [MeV]
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Nuclei

1 ; 6
S=ﬁ/dm@(—ﬁ+2ﬁ)< S \

The geometry with smaller action is the stable one for given T.

3
AS = lim (Saassn — Saas) = B ( 11 )

Net Baryon Density

K2 \zfp 2z
>0forT<Tc
<0 for T>Tc [ Herzog , Phys.Rev.Lett.98:091601,2007 ]

Low T QCD Phase transition High T

T Connemen | becontinoment

QCD (4Dim) Hadron Quark-Gluon
Gravity (5Dim) Thermal AdS AdS Black Hole
Hawking—Page phase transition



Holographic QCD for finite chemical potential

Low T QCD Phase transition HighT

T Conmement | becontement

QCD (4Dim) Hadron Quark-Gluon
Gravity (5Dim) thermal & charged AdS RNAdS Black Hole
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Light meson spectra in the hadronic phase Jo, BHL, Park,Sin
JHEP 2010, arXiv:0909.3914

Turn on the fluctuation in bulk corresponding the meson spectra in QCD

AS = /d5-rx/§ Tr [|DX|2 — X+ i 2 (Ff +F3) } M% = -3/I?
X is the dual to the quark blllnear operator <qq>.

1. Vector meson N
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Nuclear medium (with isospin 1/2 : protons & neutrons)

B-HL, S. Mamedov, S. Nam, C. Park, JHEP 1308 ,045
(2013) arXiv:1305.7281v2

Mass

The T meson mass splitting for a =1/2,
(mg=2.383MeV, 6 = (304MeV)? Nc =3 and R=1 )
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Linear response theory (Kubo Formula)
3{Oa)

spLY

a(w):L, oz(w)T:%;;uz(w), E:(w):%%oj(m.

dd:rf_,r‘:DO> = f’D[@] exp{i.%—|—ifg}{|{;r}c)}

R
Q5OA@B —

Note : Z[@U ($ ) ]: <e:x:1:- f.a:.mmdm'y

B0 i - 2

52W [g]
0G0 () 0Gxp(Y)

(T (@)1 (y) =

Guv="uv

Guv="uv

- Need the (retarded) two-point functions for the transport properties.
- Calculate the two-point function from the bulk gravity side (holography
principle) to get the transport properties of the boundary quantum physics

2

- T - ds 2 ] ¢ ;
les are defin 2 8w 4 O — (005, S8 0)2
EX) the shear & bulk viscosities are defined as 57 = 7 |9+ O — 50 0)8y |+ (0 v)

o . 1.1
Bulk viscosity — ¢ = — lim —ImGr(w.0),



Relevant Operator

Source Operator
Background Metric T
Background EM JH
Dynamical field ¢ O

eSO 0] — oxp (@'/dd% /—g(o)éq)(o)O))F.T.

(i):(& %§>(—(v?%)/T)’

where



Diffeomorphism transformation

REAVAYA
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the Einstein dilaton gravity theory

1

S=—
167G

/ d*z\/—g R — 2(0¢0)* — V(o).  V(p)=2Ae", A<O

Liouville—type scalar potential
Note : If phi =0, the geometry is
the Anti de-Sitter (AdS) space or Schwarzschild AdS (SAdS) black hole (or brane).

Equations of motion :

Bf{uj - ‘_B‘g}uﬂy + ‘_'g’l“/‘/ ((:)) — 2()}[1!(_—)();)(_‘) - _‘_f],[u/ (()(_—))2,

2 )

1 S 1oV(e)
7'-% PP 24 '.)V H) = = Rty

= (vV—99""0u0) = - o

Ansatz (Note : generically hyperscaling violating solutions)
dr?
a(r)?

o(r) = —kologr

ds? = —a(r)2dt® + + b(r)2(dz? + dy?), with a.(r) = agr®, b(r) _ b(}'}"bl,

Note :

1) Can choose bo=1, by rescaling the x & y coordinates.

2) The general solution for phi includes constant term, which can be put
to zero by rescaling the cosmological constant.

3) Isometry : 1ISO(2,1). 2+1 dim. Poincare symmetry

—



The non-black hole solution

(4 + n*)vV—A 2 4
apg = — ko = VEIRCE ap = by = 5
2,/12_”2 4+T/ 4+7/

Note : For eta =0 and lambda = —3, the metric reduces to the usual AdS metric, with
the isometry group is enhanced to SO(2,3) the conformal group of the dual gauge theory.

By introducing new coordinates, the metric solution can be rewritten
in the form of an warped geometry

ds? = p2a1/(1=a1) [—dfz 1+ dit 4 df}ﬂ 1+ di?.

The black hole (brane solution),

ds® = —a(r)” f(r)dt® + (N2 f () + b(r)"(dx” + dy~),
with the following black hole factor firy=1—=6mr™°,
s St 12-nt [Fdrdy M the black hole mass

Vo(=A) 4+n%

¢ 2
Then, the solution is described by the same a(r) and b(r), along with  ~ — 142 — ’{2 _

Note :
In the asymptotic region r — oo, the metric agrees with the previous
non—black hole one.



the horizon msatisfying f(rm) = 0 (12-n2)/(4-r?)
h

m =

0

The Hawking temperature Thdefined by the surface gravity at the horizon, is
given by ,

C(ENEHTT) @)/
T = 4;1 ()I {a B 167 "h '

The Bekenstein—Hawking entropy Ssxis

Spy = Alrn) _ 142 P +7)  A(rn) :the area at the black hole horizon.
4 / 1

The black hole thermodynamics
0=dE — TydSpH.
the energy is is obtained by integrating :

o (FAV2 44 0’ (12-7) /(4+17°)
8t 12—n2 'l ’

and the free energy of this black hole is given by

(=M)Va16 =1 (12-2)/(440?)
F=FE-TS=— 3 " '
Gar 12—12 "




the pressure of the system is given by

P = —0F/0Va,

the eq of state parameter w can be read from the relation P =wFE/V;

1 ;
w = §(4 — 7).

Note: 0<n?<12 <« —1<w< ¥

The gauge theory interpretation of the BH thermodynamic quantities:

Foreta=0 (orw = 1),
the gravity is given by the AdS black hole and corresponds to
the gauge theory with the conformal matter whose energy—momentum tensor

IS traceless.
For 0 <eta—squared< 12, (—1<w < 1),
the gauge theory is with the non—conformal matter.



The thermodynamic stability of the dual gauge theory

The specific heat of the black hole

dFE
C,, = —
’Uh,- dTH
‘ 12—n2 4—n?
_ (—AX)LE 4+ T]2 167 (12=n7) /(4= )-TS/(4_'772)
8 4—n2 \(=A)(4+n?) H '

Note : The specific heat of the SAdS black hole (obtained by setting eta = 0) is always
positive, which implies that the SAdS black hole is thermodynamically stable.

There exists another critical point called the crossover point at eta-squared = 4.

For eta—squared < 4, the heat capacity is positive.
For eta—squared = 4, the heat capacity is singular.
For 4 < eta—squared< 12, it is negative.

Note :
the black hole is stable only for 0 < eta-squared < 4,

For 0 < w <1/2 the non-conformal matter provides the thermodynamically stable system.
For —1 <w <0, the dual gauge theory is thermodynamically unstable.




Properties of the non—conformal dual gauge theory

the linear response of the vector fluctuation in the hydrodynamic limit
with small frequency and momentum.

In the gauge/gravity duality, the nontrivial dilaton profile can be
identified with the running coupling constant of the dual gauge theory.

Vector fluctuation without the dilaton coupling
Maxwell field action as a fluctuation over the background geometry

1

Sy=—r [ d*o/—gF*™F
/ PR kS JV s , a0 a
“]:l(}i . F,'.LV — ()}'_L“{V - ()11‘14,'.1;?

gis a constant coupling of the bulk gauge field.

In the Ar = 0 gauge, we take Ai (i =t, X, y) in the Fourier space as

dwd®q i ax
Aj (tth }) — / (QW)B & (wi—q )143' (w,q, '}"),



The equations of motion for the gauge fluctuations
oy [\ﬁggu{)g,{m F, O’p} =0,

can be reduced to two parts, longitudinal and transverse.

The longitudinal part is given by the coupled equations for Atand Ay
0= waA;_ + _gqfl;

i : 1 ‘
0 = b2A) + 200 AL — ~(quA, + ¢*Ay)
9

) 1 .
0= gflg -~ g’AL - a(wQAt - szy),

where the prime denotes the derivative with respect to the radial
coordinate r and new function g(r) is introduced for later convenience

g(r) = a(r)*f(r).

The transverse mode governed by Ax satisfies the following equation

! )

: g L9 949
(_) — _(4” _14" A I:L{/' - _i| 14.1".
r gt T TRl



Charge diffusion constant and conductivity

Calculate the retarded Green’s functions on the boundary:

According to the gauge/gravity duality, the on—shell gravity action
corresponding to the boundary term can be regarded as a generating
functional of the dual gauge theory.

Thus, the generating functional of the dual gauge theory can be
described by the boundary action of the bulk gauge fluctuation

202 /dfd._z'dy V=997 (2)g" (z) Ai(2)0. A, , where i, j =1t, x, V.

Sp = o
gy . 2=0

Since, the boundary value of the gauge fluctuation plays the role of
the source Aoifor an operator in the dual gauge theory, the retarded Green
function of the dual operator can be derived by the following relation

_ 625p(2)
Gij = iy 5 ADS AT




Near the boundary, we get
@ :40 + "2140
(i‘*:‘ — @2)
249 + GwAY
(& g AY) N

Ay ()4 (2) = A -
ag (1..-7\ —q )

A (N A () ~ :& 0 w
Az(2)AL(2) = (QU) (A7) ( X —q ) + -
The boundary action reduces to
0 0 0 2 0 ~~ A0

Ty
Sp — —
b 293 { W — \q
Thus, the retarded Green’s functions of the longitudinal modes are given by

1 i q> ]
gtt Y 3 . .
g (%) Note : the longitudinal modes have a
; 1| quasi normal pole as we expected
W T M_(%)qz
S w
G = bt = 9;21 {zw — (%) QJ



The charge diffusion constant D of this quasi normal mode is

A (—A) (4+ T'/Q)Q

D= __-—=_" —
Ty 1677y 4 —n?

For the AdS black brane (eta = 0 and lambda = —3), the charge diffusion
constant is given by ;

4WTH:
which shows the pole structure of the quasi normal mode in the dual conformal gauge
theory.

D =

Note : The quasi normal mode decays with a half-life time ti2=1/D g2 . |
Note :the dispersion relation w = —iDg*

For conformal gauge theory,
a quasi normal mode with a larger momentum will decay rapidly.
Alternatively, the quasi normal mode can sustain longer in high temperature.

On the other hand, in the non-conformal dual gauge theory,

the diffusion constant depends on the temperature as well as on the parameter eta and
increases with eta.

Thus, we infer that when the system deviates from the conformality, the quasi normal
mode decays more rapidly.



The Green function of the transverse mode is

which has no pole as we expected.

Note : the Green function of the transverse mode turned out to be the inverse of the
longitudinal one up to a multiplication factor.

The real DC conductivity of this system can be easily read off

o = lim Re ( g,m) = %
gi

w—0 (19 il

Note that the non—conformality does not influence the DC conductivity.



Vector fluctuation without the dilaton coupling

1 M H 1 Ct() L/
Maxwell field fluctuations coupled to a dilaton SMD = d*z\/—ge®F"E,,,

4J4

The equations of motion for gauge fluctuations 0=0, [\/ gq"Pg"%e D“”F

Then the coupled equations for the longitudinal modes are rewritten as

0 = 0A} + F(u)qA,,
y 2
( )
(f) Aéﬂ
F(u) y F(u)H (u)
the equation of the decoupled transverse mode Axis given by

F'(u) |, A2
Flo) % Fluy B |

0= A —

[GOAy + ¢ Ar]

0=A)+ (DG A + 07 A, ],

0=A"+

&% — F(u)§*] |

Near the asymptotic boundary u =0,

A (Vzﬁ (@qAY +(§2{1§,) ) u!' = N ©GAY + A7 | |
G (20 +6-1) (32)]") 10 (ﬁ (201 +5-1) (}_g)]” _ qz)
w (g Y
o |20 +0-1) (Gt )| ' (_{f; |20 +0-1) (%) —q‘>

Similarly, the transverse mode A«xis related to the boundary value of Ax



The non-vanishing 1components of the Green’s function to be
q

gtt = —E T N 1v/2 i ; )
iw [(2a; +0 — 1) (Tf) — (TC;) >
Gy = —— .
w2 I io\17/2 i )\
91 (-gw (2a; +6 —1) (}_If) _ (}—Hﬁ) qz)
1 W
gty — gyt )

- (w [(2(11 o (};)]/z B (};) qQ) :

Gow = l W Qz | (;\eﬁ>
oo [(20.1 +6—1) (}—;)]’/2 (1—7) [(20_1 +6—1) (}Hﬂ)]’ Ty )|

Note : the Green function of the transverse mode is not exactly the inverse
of that of the longitudinal one.

Charge diffusion constant and conductivity
We can easily read off the diffusion constant D, to be

(=) (4+n2?

D p—
67Ty 4

The quasi normal modes possess similar qualitative features.
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Figure 1. Charge diffusion constants:

(a) eta dependence and (b) temperature dependence.

The dashed and solid curve implies with or without a non—
trivial dilaton coupling, respectively

(The AdS.result is represented as a dotted curve).



From the retarded Green function of the transverse mode, the real DC
conductivity is given by

T?Q 2

1 [ 167 ]m Tﬁz
A (e VIR
Note 1)a significant change in the behaviour from that of the previous one.
2) The conductivity obeys a power law behaviour.

g =

Re o Re o

-
-
-
-
-""'._
o

()7 P T S S RS | )2 0.0 L. L —_— T

0.0 0.5 1.0 1.5 2.0

Figure 2. Real conductivities:

(a) eta dependence and (b) temperature dependence.

The dashed and solid curve implies with or without a dilaton
coupling respectively.



/d x\/—g ( + ﬂ — (Vo) — %e4¢ Y (Vii)® - 6—2¢F2) .

=1

Einstein and Field Equations

3 1 _
Ry = — 729w +2V,.oVio + _€4¢VMCLVVCL + 2e 2¢)FMPF — 9 9u€ *°F?,

O — —e4¢z (Vi) + = _2¢F2 =0,

O + 4vu¢v%i —0,
VM(G_QQSF'uu) = O .



Linear Axion Fields

L2 — z Z, zZ)— z
ds® = — (—g(z)dt2 + g(2) tdz? 4 ATBE) gp? 4 A=) B )dyQ) :
¢ = ¢(2), Auda" = A(2)dt, a1 = arx, a2 = asy,

th = A; = szG_A+2¢ o

EOM

247 1 (41) 4 (8) 44 (+)? =

ng” + (g (zA, — 2) + zg/> B + éze_A_B+4¢ (a% — a%ezB) =0,

\
o

(4z _ 2z2A’) g + (—2:2 (A’)Q + 824" 4 22 (B’)2 4+ 422 (¢’)2 — 12) g

2 2 —A—B+4¢ _ agz2€—A+B+4¢ _

2 4 2¢0—2A
—0412.’ ZZ e

4p +12 =0,

28‘4

g _ 1 _ 1
eAg¢// + (eAgA’ + eAg/ . ) ¢/ _ p§z282¢ A 7Q%S4¢ B 7Q%@B+4¢ -0,

z



Evolution of background fields

0 E T —
1t 'fi'if‘\?;
s _2f
1S —3r
_47
-5k ‘
0 0.0 0.2 0.4 0.6 0.8 1.0
Z Z
OF e 3 (.20r
-1 1 0.1s) e
8 -2 18 i
< ‘ = 0.10¢f
_3-
0.05¢}
_47
‘ ‘ ‘ : : ‘ 0.00k : : : : g
0.0 0.2 04 0.6 0.8 1.0 00 02 04 06 08 1.0

z
Figure: Fix a1 = 2, ag = 2, & =2.4x10"4 (Red), 0.5 (Blue), and 1 (Green).
Notice that tgle black dashed line is )
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Perturbation

A,dr" — A(z)dt + [flm(t, 2)de + Ay (t, z)dy] :

2

2L
Guvda"de” — g, dx" dx” + — (Gt (t, 2)dtdx + Gy (E, 2)dEdy]

Fourier mode decompositions

) _
—e T A (2), G448, 2) =
J—o0 27

o0

Aj(t.z) =

co  d2

J—oo 27

e

—'LSZtg

t’i(z)* ﬁ..L —r (Y7".'I,"L +i

oo d2

—Q

J—oo 27

— 02t
e

xqi(2),

Fluctuation Equations

/ 2 2 2¢p—2A 2
_ g Q 4z<e Yo} _
AQ’+(BZ-’+——2¢’> Al+ |5 - ————= ) 4, — ;LT Apx] = 0
g g g
7 ’ ! ’ / 0? aeBi=4
Xy oA A 4= = = F4de Xi+72X1'— 2 ggi = 0
g z g g
—A_2
_ de z%pz 4 K
géi + (Bz‘/ - A )Qtz‘ - TAI' — aj;ge d)Xz‘ =0.

AL(Z) = g(z)A,/i

Aj(2) = (1 — 2)a; (=),

Xi(2) = (1 — ) n;(2)

(2),

Ai() = (1 -2 a;(2),

Xi(2) = (1 — 2) i (=)

Xi(2) = a(2)x}(2) .

98i(2) = (1 — ) ¢4i(2)



Fluctuation Equation

2
_ A Q _ —
al + (B - —2¢" Ja; + [ — 4222?7242 | 0y — 0,0:L%%7 40, =0,
1 — =z g
A @4
al — a; — — =0,
1 —=z g
2 —A+B;
W ’ . z AR Q 6 e AT Bicy,
fl; 1A — - —+4e | + —n; — ———— =0,
1 —z z g g
/ 2 i
i — g — =0,
1 —=z
—A_2
A 4pze z<a
’ / ’ 4¢ . z i
Cti+(—A + B, — )C“_Qlerz_ =0
1 — =z L
2
Q
0 — 0] 6] 0
) g’ (1) A o
S 0 0 0 0 @i ©
g’(l) _ g ag;
0 0 0 02 e A)—Bi(1) i =X A
g’ (1) g’ (1) Uk i
0 0 A 0 0 Cti Cti
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Multi-interacting fields
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where different fields, A;, g:; and ;, are distinguished by an index a. Here
A, is a positive value and corresponds to the conformal dimension of the
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Figure: Fix ooy = 2 with kK =1 and ae = 0 (Blue), 2 (Black), 4
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Table: Parameters of the Drude formula fitting the electric conductivity well.
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formula, while dots represent the numerical results.



Intermediate scaling
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DC conductivity
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3.Holographic Approach to the nonequilibrium physics
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V. Summary

Holographic Principles ( through the D—brane configuration)

(d+1 dim.) (classical) gravity < (d dim.T) (quantum) YM theories
BH geometry < Finite Temperature field theory

Constructing the dual geometry :
Top—down & Bottom—up

Holographic QCD

— w/o chemical potential —
phase : confined phase < deconfined phase transition
Geometry : thermal AdS < AdS BH

Hawking—Page transition

- in dense matter — (U(1) chemical potential> baryon density )

deconfined phase by RNAdS BH < hadronic phase by tcAdS
Hawking—Page phase transition



V. Summary — continued

In the hadronic phase, the quark density dependence of the light
meson masses has been investigated.

Holographic study on the Baryon Properties in Dense Matter

We have studied the black hole solution of the Einstein—dilaton theory with a
Liouville potential. This solution having a non—-zero scalar profile modifies
the asymptotic geometry from AdS to an warped space.

The warped geometry with one parameter preserves the ISO(1, 2) isometry
corresponding to the the dual relativistic nonconformal matter.

We have also shown that the non—conformal gauge theory is thermodynamically
stable only for the parameter range 0 < eta—-squared < 4.

We have studied the linear response of the vector fluctuations.
Longitudinal modes & the transverse mode propagates independently.



V. Summary — continued

When the gauge fields couple only to gravity,

the charged diffusion constant and the DC conductivity take the form
similar to that of AdS dual gauge theory.

We observed that, the dependence increases the charge diffusion
constant compared to its AdS counterpart.

In a nutshell, the quasi normal mode in the non—conformal medium
has shorter life—time than that of the conformal case.

The longitudinal modes have a quasi normal pole.

The DC conductivity, computed from the Green’s function of the
transverse mode is proportional to the bulk gauge coupling.

Since the bulk gauge coupling is constant, there is no significant
difference between the DC conductivities of the conformal and non-
conformal matter.



V. Summary — continued

we considered the gauge fluctuations coupled with the dilaton.

This kind of nontrivial dilaton coupling provides a peculiar physical
aspect to the dual gauge theory such as the strange metallic behavior.
Here for definiteness, we chose a specific value, = —/2.

With this choice, the charge diffusion constant has a similar form to that
of the previous one with some modifications.

For a fixed non—conformality, the diffusion constant is smaller than the
one, obtained from the dilaton free gauge fluctuation.

This also leads to the fact that the quasi normal mode with the dilaton
coupling survives longer than that of the free one.

We have shown that the effective bulk gauge coupling depending
nontrivially on the radial coordinate can change the behaviour of the DC
conductivity, dramatically.

The DC conductivity of the system increases with temperature, which is a
typical aspect commonly found in electrolytes, and in conductive
polymers such as polypyrrole films.

We also would like to explore the paradigm by including the metric
fluctuation and thus determine other hydrodynamical quantities like shear
vViscosity etc.



V. Summary — continued

e Linear Axion and Massive Gravity theories were discussed motivated
by momentum relaxation and anisotropy.

e Transport Coefficients were computed using linear response theory
using Green’s function and Membrane Paradigm.

o SL(2,R) transformation were used to generate solutions in EM
configuration so that Hall conductivity.

e Deeper investigation for resistivity and its temperature dependency
would provide more evidence of cupates.

 Holographic principle can also be applied to the strongly interacting

condensed matter system as well as nonequilibrium physics
 Holographic Principle may provide a new methodology

for the strongly interacting phenomenal
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