Electromagnetic Duality and Optical Helicity

Pengming Zhang

Institute of Modern Physics, Lanzhou
11th APCTP - BLTP JINR - PNPI NRC KI - SPbU Joint Workshop

July 25, 2017

Outline

(1) Motivation

Outline

(1) Motivation

(2) Duality and helicity of electromagnetic field

- Aspects of duality
- Dual vector potential C

Outline

(1) Motivation

(2) Duality and helicity of electromagnetic field

- Aspects of duality
- Dual vector potential C
(3) Photon wave function and duality
- RS and Dirac Lagrangian
- RS and Klein-Gordon Lagrangian
- More variations

Outline

(1) Motivation

(2) Duality and helicity of electromagnetic field

- Aspects of duality
- Dual vector potential C
(3) Photon wave function and duality
- RS and Dirac Lagrangian
- RS and Klein-Gordon Lagrangian
- More variations
(4) Discussion

Proton Spin

- Proton spin and gluon spin ?

Leader and Lorce, Phys. Rept. 541 (2014) 163

- Electron spin and photon spin ? Bliokh, et al, Phys. Rept. 690 (2017) 1-70
- Helicity of photon

Electromagnetic duality

- It has been long known [O. Heaviside (1892), J. Larmor (1897)] that duality transformations

$$
\begin{align*}
\mathbf{E}^{\prime} & =\mathbf{E} \cos \theta+\mathbf{B} \sin \theta \tag{1a}\\
\mathbf{B}^{\prime} & =\mathbf{B} \cos \theta-\mathbf{E} \sin \theta \tag{1b}
\end{align*}
$$

leave the Maxwell equations

$$
\begin{array}{ll}
\boldsymbol{\nabla} \cdot \mathbf{E}=0, & \boldsymbol{\nabla} \times \mathbf{B}-\frac{\partial \mathbf{E}}{\partial t}=0 \\
\nabla \cdot \mathbf{B}=0, & \boldsymbol{\nabla} \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0 \tag{2b}
\end{array}
$$

invariant.

- Elements of $T^{\mu \nu}$, e.g.,

$$
\begin{equation*}
T^{00}=\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{B}^{2}\right), \quad T^{0 i}=(\mathbf{E} \times \mathbf{B})^{i} \tag{3}
\end{equation*}
$$

are also invariant under (1).

- However, Maxwell action itself

$$
\begin{equation*}
S_{M}=\int d^{4} \times L_{M}=-\frac{1}{4} \int d^{4} \times F^{\mu \nu} F_{\mu \nu}=\frac{1}{2} \int d^{4} \times\left(\mathbf{E}^{2}-\mathbf{B}^{2}\right) \tag{4}
\end{equation*}
$$

with

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

transforms under finite transformations (1) as

$$
S_{M}^{\prime}=\frac{1}{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \int d^{4} x\left(\mathbf{E}^{2}-\mathbf{B}^{2}\right)+2 \sin \theta \cos \theta \int d^{4} x \mathbf{E} \cdot \mathbf{B}
$$

- Infinitesimal transformations

$$
\begin{equation*}
\delta \mathbf{E}=\delta \theta \mathbf{B}, \quad \delta \mathbf{B}=-\delta \theta \mathbf{E} \tag{5}
\end{equation*}
$$

yield a surface term

$$
\begin{equation*}
S_{M}^{\prime}=S_{M}+2 \delta \theta \int d^{4} x \mathbf{E} \cdot \mathbf{B}=-\frac{1}{4} \delta \theta \int d^{4} x \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma} \tag{6}
\end{equation*}
$$

Calkin/Noether theorem

- M. G. Calkin, [M. G. Calkin, (1965)], was the first to investigate the conserved charge/generator of (1) from the Lagrangian point of view.
- The action of (5) descends on the potentials \mathbf{A}, ϕ

$$
\begin{equation*}
\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}, \quad \mathbf{E}=-\boldsymbol{\nabla} \phi-\partial_{t} \mathbf{A}, \tag{7}
\end{equation*}
$$

as

$$
\begin{equation*}
\delta \phi=-\delta \theta\left(\partial_{t} \lambda\right), \quad \delta \mathbf{A}=\delta \theta(\boldsymbol{\nabla} \lambda)-\delta \theta(\boldsymbol{\nabla} \times \mathbf{Z}) \tag{8}
\end{equation*}
$$

where λ is a gauge parameter and \mathbf{Z} is the polarization potential/Hertz vector.

- Calkin substituted (8) in (4) and obtained the associated charge, χ_{C} :

$$
\begin{equation*}
\chi_{c}=\int d^{3} \mathbf{x}\left(\left(\frac{\partial \mathbf{Z}}{\partial t}\right) \cdot \mathbf{B}-\mathbf{Z} \cdot\left(\frac{\partial \mathbf{B}}{\partial t}\right)\right), \quad \partial_{t} \mathbf{Z}=\mathbf{A}^{T} . \tag{9}
\end{equation*}
$$

- Physical meaning and properties of χ_{C} is not clear in the form (9).
- However, box quantization with p.b.c. , e.g.,

$$
\mathbf{Z}=\left(\frac{4 \pi \hbar}{V}\right)^{1 / 2} \sum_{k, s} i\left(2 \omega_{k}^{3}\right)^{-1 / 2} \boldsymbol{\epsilon}_{k, s}\left(b_{k, s} e^{i \mathbf{k} \cdot x-i \omega_{k} t}-\text { h.c. }\right), \ldots
$$

yields

$$
\begin{equation*}
\chi_{C} \sim \hbar(N(R)-N(L)) \tag{10}
\end{equation*}
$$

where $N(R), N(L)$ is the total number of right and left circularly polarized photons, respectively.

- The conclusion is that the difference $N(R)-N(L)$ is the conserved charge associated with the duality symmetry.

Deser and Teitelboim/Hamiltonian formalism

- In [S. Deser and C. Teitelboim, (1975)], same problem was studied from a Hamiltonian point of view.
- Canonical variables $\mathbf{A}=\mathbf{A}^{T}$ and $\mathbf{E}=\mathbf{E}^{T}$ transform under (5) as

$$
\begin{equation*}
\delta \mathbf{E}=\delta \theta \boldsymbol{\nabla} \times \mathbf{A}, \quad \delta \mathbf{A}=\delta \theta \boldsymbol{\nabla}^{-2} \boldsymbol{\nabla} \times \mathbf{E} \tag{11}
\end{equation*}
$$

where ∇^{-2} is the inverse of the $3-d$ Laplacian.

- They obtained the conserved charge $\chi_{D T}$ as,

$$
\begin{align*}
\chi_{D T} & =\frac{1}{2} \int d^{3} \mathbf{x}\left(\mathbf{B} \cdot \nabla^{-2} \boldsymbol{\nabla} \times \mathbf{B}+\mathbf{E} \cdot \nabla^{-2} \boldsymbol{\nabla} \times \mathbf{E}\right), \\
& =\frac{1}{2} \int d^{3} \mathbf{x}\left(-\mathbf{A} \cdot \boldsymbol{\nabla} \times \mathbf{A}+\mathbf{E} \cdot \nabla^{-2} \boldsymbol{\nabla} \times \mathbf{E}\right), \tag{12}
\end{align*}
$$

which is manifestly non-local.

- In the second line, they arrived a local expression by defining

$$
\begin{equation*}
\mathbf{A}(t, \mathbf{x})=-\nabla^{-2} \boldsymbol{\nabla} \times \mathbf{B}=\int d^{3} \mathbf{x}^{\prime} \frac{\nabla^{\prime} \times \mathbf{B}\left(t, \mathbf{x}^{\prime}\right)}{4 \pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \tag{13}
\end{equation*}
$$

- $\chi_{D T}$ (12) is explicitly gauge invariant. However, gauge independence of $\chi_{C}(9)$ is not so obvious.
- Q: Is it possible to find a local, gauge invariant and dual symmetric charge with an explicit clear meaning?
- They stated that the other non-local expression can also be made local by introducing another potential.
- Then, relation to Calkin's work should be:

$$
\begin{equation*}
\boldsymbol{\nabla} \times \mathbf{Z}=-\boldsymbol{\nabla}^{-2} \boldsymbol{\nabla} \times \mathbf{E} . \tag{14}
\end{equation*}
$$

Dual vector potential

- Helicity of the electromagnetic field, without any relation to duality symmetry, is also studied by [G. N. Afanasiev and Yu. P. Stepanovsky, (1996)].
- In their formulation, A^{μ} co-exists with a second, dual vector potential C^{μ} :

$$
\begin{aligned}
\mathbf{E} & =-\boldsymbol{\nabla} \times \mathbf{C}=-\partial_{t} \mathbf{A}-\nabla A^{0}, \\
\mathbf{B} & =-\nabla C^{0}-\partial_{t} \mathbf{C}=\boldsymbol{\nabla} \times \mathbf{A} .
\end{aligned}
$$

- They have a relativistic current in terms of both of them

$$
\begin{equation*}
j^{\mu}=\tilde{F}^{\mu \nu} A_{\nu}-F^{\mu \nu} C_{\nu} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{F}^{\mu \nu}=\partial^{\mu} C^{\nu}-\partial^{\nu} C^{\mu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}=\star F^{\mu \nu} \tag{16}
\end{equation*}
$$

is the dual field strength.

- Provided Maxwell equations (2) hold, (15) is conserved, $\partial_{\mu} j^{\mu}=0$.
- Separately, divergence of each part is calculated to be

$$
\begin{equation*}
\partial_{\mu}\left(\tilde{F}^{\mu \nu} A_{\nu}\right)=\partial_{\mu}\left(F^{\mu \nu} C_{\nu}\right)=-2 \mathbf{E} \cdot \mathbf{B} \tag{17}
\end{equation*}
$$

- Splitting temporal and spatial components, we get

$$
\begin{align*}
j^{0} & =\mathbf{A} \cdot \mathbf{B}-\mathbf{C} \cdot \mathbf{E}, \tag{18a}\\
\mathbf{j} & =A^{0} \mathbf{B}+\mathbf{E} \times \mathbf{A}-C^{0} \mathbf{E}+\mathbf{B} \times \mathbf{C} \tag{18b}
\end{align*}
$$

- Integral of j^{0} is called the optical helicity:

$$
\begin{align*}
\chi_{A S}=\int d^{3} \mathbf{x} j^{0} & =\int d^{3} \mathbf{x} \mathbf{A} \cdot \mathbf{B}-\mathbf{C} \cdot \mathbf{E} \tag{19a}\\
& =\int d^{3} \mathbf{x} \mathbf{A} \cdot \boldsymbol{\nabla} \times \mathbf{A}+\mathbf{C} \cdot \nabla \times \mathbf{C} . \tag{19b}
\end{align*}
$$

- $\chi_{A S}$ is gauge invariant provided the fields vanish on the spatial boundary.
- $\chi_{A S}$ is in the double Chern-Simons form.
- Physical meaning becomes clear in momentum space (in Coulomb gauge)

$$
\begin{equation*}
\chi_{A S} \sim \int d^{3} \mathbf{k}\left(\left|f_{R}\right|^{2}-\left|f_{L}\right|^{2}\right) \tag{20}
\end{equation*}
$$

where $\left|f_{R, L}\right|^{2}$ are the number densities for the right and left circularly polarized photons, respectively.

- Relation with the previous expressions, i.e, χ_{C} and $\chi_{A S}$:

$$
\begin{equation*}
-\boldsymbol{\nabla} \times \mathbf{Z}=-\boldsymbol{\nabla}^{-2} \boldsymbol{\nabla} \times \mathbf{E}=\mathbf{C}^{T} \tag{21}
\end{equation*}
$$

- Choosing the Coulomb gauge

$$
\boldsymbol{\nabla} \cdot \mathbf{A}=\boldsymbol{\nabla} \cdot \mathbf{C}=0, \quad A^{0}=C^{0}=0
$$

also simplifies the spatial term which is called the helicity flow,

$$
\begin{equation*}
\mathbf{j}=\mathbf{E} \times \mathbf{A}+\mathbf{B} \times \mathbf{C} \tag{22}
\end{equation*}
$$

- In momentum space, it becomes

$$
\begin{equation*}
\mathbf{s}=\int d^{3} \mathbf{x} \mathbf{j} \sim \int d^{3} \mathbf{k}\left(\left|f_{R}\right|^{2}-\left|f_{L}\right|^{2}\right) \frac{\mathbf{k}}{|\mathbf{k}|} \tag{23}
\end{equation*}
$$

- Helicity $\chi_{A S}$ is divided into magnetic part χ_{m} and electric part χ_{e} as

$$
\begin{align*}
\chi & =\chi_{m}+\chi_{e} \tag{24a}\\
\chi_{m} & =\frac{1}{2} \int d^{3} \mathbf{x} \mathbf{A} \cdot \nabla \times \mathbf{A}, \quad \chi_{e}=\frac{1}{2} \int d^{3} \times \mathbf{C} \cdot \nabla \times \mathbf{C}, \tag{24b}
\end{align*}
$$

- Separately, they obey

$$
\begin{equation*}
\frac{d \chi_{m}}{d t}=-\int d^{3} \times \mathbf{E} \cdot \mathbf{B}, \quad \frac{d \chi_{e}}{d t}=\int d^{3} \times \mathbf{E} \cdot \mathbf{B} \tag{25}
\end{equation*}
$$

- Unlike χ_{m} and $\chi_{e}, \chi_{A S}$ is the constant of the free Maxwell theory.
- Duality transformations (1) descend to the transverse vector potentials as

$$
\begin{align*}
\mathbf{A}^{\prime} & =\mathbf{A} \cos \theta+\mathbf{C} \sin \theta \tag{26a}\\
\mathbf{C}^{\prime} & =\mathbf{C} \cos \theta-\mathbf{A} \sin \theta \tag{26b}
\end{align*}
$$

- One can observe that neither χ_{m} nor χ_{e} are invariant under (26).
- Only their combination $\chi_{A S}$ is invariant.
- In plasma physics χ_{m} is called the magnetic helicity, a measure of twisting of magnetic field lines in plasma physics [L. Woltjer (1958)]....
- Knot theory: χ_{m} and χ_{e} are related to the linking numbers of the magnetic and electric field lines, respectively [A. F. Rañada, (1991). M. Arrayás, D. Bouwmeester and J. L. Trueba (2017)].
- R. H.S. of (25) $\mathbf{E} \cdot \mathbf{B}=-1 / 8 \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}$ is the Chern-Pontryagin density [S. S. Chern (1979)], a metric independent quantity.
- Therefore, in relation with the chiral anomaly of massless fermions in QGP [C. Manuel and J. M. Torres-Rincon (2015)].
- Fluid mechanics' analogue is the vortex helicity [...R. Jackiw, (2000)]...
- We worked out this problem from a symplectic point of view, as duality transformations being canonical transformations (1608.01131).
- Later, we tried to construct various Lagrangians based on the photon wave function (1608.08573).

Photon wave function

- The history of the photon wave function goes back to the work of E. Majorana [E. Majorana (1928-1932)].
- In this work, E. Majorana wrote a Dirac-like equation for the photon [R. Mignani, E. Racami and M. Baldo (1974)].
- It is also advocated by I. Bialynicki-Birula [I. Bailynicki-Birula (1996)...] as a link between classical electromagnetism and quantum electrodynamics.
- As in E. Majorana's work, the key element is the Riemann-Silberstein vector [L. Silberstein (1907), see also H. Bateman (1915)]:

$$
\begin{equation*}
\mathbf{F}_{ \pm}=\frac{1}{\sqrt{2}}(\mathbf{E} \pm i \mathbf{B}) \tag{27}
\end{equation*}
$$

- I. Bialynicki-Birula's derivation is based on taking the square root of the Klein-Gordon equation.
- Bialynicki-Birula used the $S O(3)$ generators for spin-1 particles

$$
\begin{equation*}
\left(S_{i}\right)_{a b}=-i \varepsilon_{i a b}, \quad i, a, b=1,2,3 . \tag{28}
\end{equation*}
$$

- Complicated anti-commutation relation of S-matrices

$$
\begin{equation*}
\left\{S_{i}, S_{j}\right\}_{a b}=2 \delta_{i j} \delta_{a b}-\delta_{a i} \delta_{b j}-\delta_{a j} \delta_{b i} \tag{29}
\end{equation*}
$$

dictates to work out divergenceless $\mathbf{F}_{ \pm}$, i.e.,

$$
\begin{equation*}
\nabla \cdot \mathbf{F}_{ \pm}=0 \tag{30}
\end{equation*}
$$

- Then, the first order equations become

$$
\begin{equation*}
i \partial_{t} \mathbf{F}_{ \pm}=\mp i(\mathbf{S} \cdot \nabla) \mathbf{F}_{ \pm}= \pm \boldsymbol{\nabla} \times \mathbf{F}_{ \pm} \tag{31}
\end{equation*}
$$

where \pm stands for the helicity of the photon.

- (30) and (31) provide a compact form of vacuum Maxwell eqns (2).

Dirac/Weyl Lagrangian

By using (31), we would like to obtain a Dirac type Lagrangian with both helicities.

We begin with

$$
\mathcal{F}=\binom{\mathbf{F}_{+}}{\mathbf{F}_{-}} \quad \Sigma^{\mu}=\left(\begin{array}{cc}
0 & \bar{S}^{\mu} \tag{32}\\
S^{\mu} & 0
\end{array}\right) .
$$

$\mu=0, \ldots, 3$ and $S^{\mu}=(1, \mathbf{S})$ and $\bar{S}^{\mu}=(1,-\mathbf{S})$ where $\left(S_{j}\right)_{a b}$ are (28).
Then, (31) can be written in a similar form to the Dirac equation,

$$
\begin{align*}
\Sigma^{\mu} \partial_{\mu} \mathcal{F} & =0 \tag{33a}\\
\nabla \cdot \mathcal{F} & =0 . \tag{33b}
\end{align*}
$$

supplemented with the divergence constraint,

Naturally, we propose a Dirac type Lagrangian

$$
\begin{equation*}
\mathcal{L}_{\mathcal{F}}=\overline{\mathcal{F}}\left(\Sigma^{\mu} \partial_{\mu}\right) \mathcal{F}=\left(\mathbf{F}_{-}^{\dagger} \bar{S}^{\mu} \partial_{\mu} \mathbf{F}_{-}+\mathbf{F}_{+}^{\dagger} S^{\mu} \partial_{\mu} \mathbf{F}_{+}\right), \quad \bar{F}=\mathcal{F}^{\dagger} \Sigma^{0} . \tag{34}
\end{equation*}
$$

Treating \mathcal{F} and $\overline{\mathcal{F}}$ as independent quantities in (34), variational calculus yields (33a).
(34) is invariant under the duality transformations (1):

$$
\mathcal{F} \rightarrow e^{-i \theta \rho_{3}} \mathcal{F}, \quad \rho_{3}=\left(\begin{array}{cc}
1_{3} & 0 \tag{35}\\
0 & -1_{3}
\end{array}\right)
$$

Noether theorem yields the associated conserved current,

$$
\begin{equation*}
k^{\mu}=\overline{\mathcal{F}} \Sigma^{\mu} \rho_{3} \mathcal{F}=\mathbf{F}_{+}^{\dagger} S^{\mu} \mathbf{F}_{+}-\mathbf{F}_{-}^{\dagger} \bar{S}^{\mu} \mathbf{F}_{-}, \quad \partial_{\mu} k^{\mu}=0 \tag{36}
\end{equation*}
$$

which is similar to the current of chiral fermions in form.

However, this current is identically vanishing:

$$
\begin{equation*}
k^{\mu} \equiv 0 \quad \Rightarrow \quad \chi_{F}=\int d^{3} \mathbf{r} k^{0}=\int d^{3} \mathbf{r}\left(\mathbf{F}_{+}^{\dagger} \mathbf{F}_{+}-\mathbf{F}_{-}^{\dagger} \mathbf{F}_{-}\right)=0 \tag{37}
\end{equation*}
$$

Therefore, we conclude that (34) is unsuitable to derive optical helicity χ.

Moreover, if we substitute $\mathbf{F}_{ \pm}=\frac{1}{\sqrt{2}}(\mathbf{E} \pm i \mathbf{B})$ into (34), we get

$$
\begin{align*}
\mathcal{L}_{\mathcal{F}} & =\mathbf{E} \cdot\left(\partial_{t} \mathbf{E}-\nabla \times \mathbf{B}\right)+\mathbf{B} \cdot\left(\partial_{t} \mathbf{B}+\nabla \times \mathbf{E}\right) \tag{38a}\\
& =\partial_{t}\left(\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{B}^{2}\right)\right)+\nabla \cdot(\mathbf{E} \times \mathbf{B}), \tag{38b}
\end{align*}
$$

observing that $\mathcal{L}_{\mathcal{F}}$ is different from (4), rather it is the divergence of the $\mathcal{T}^{\mu 0}$ associated with it.

Klein-Gordon Lagrangian

We observe that, (31) can also be satisfied if we replace B, E with A, C and define a new RS vector:

$$
\begin{equation*}
\mathbf{V}_{ \pm}=\frac{1}{\sqrt{2}}(\mathbf{A} \pm i \mathbf{C}) \tag{39}
\end{equation*}
$$

Then we have the following set of wave equations:

$$
\begin{align*}
i \partial_{t} \mathbf{V}_{ \pm} & =\mp i(\mathbf{S} \cdot \boldsymbol{\nabla}) \mathbf{V}_{ \pm} \tag{40a}\\
\boldsymbol{\nabla} \cdot \mathbf{V}_{ \pm} & =0 \tag{40b}
\end{align*}
$$

Subsidiary condition (40b) fixes the gauge choice as Coulomb gauge,

$$
\begin{equation*}
\nabla \cdot \mathbf{A}=\nabla \cdot \mathbf{C}=0, \quad A^{0}=C^{0}=0 \tag{41}
\end{equation*}
$$

On the other hand, (40a) turn out to be

$$
\begin{equation*}
\nabla \times \mathbf{A}=-\partial_{t} \mathbf{C}(=\mathbf{B}), \quad \nabla \times \mathbf{C}=\partial_{t} \mathbf{A}(=-\mathbf{E}), \tag{42}
\end{equation*}
$$

Iterating (40a), we obtain two massless Klein-Gordon equations,

$$
\begin{equation*}
\partial_{\mu} \partial^{\mu} \mathbf{V}_{ \pm} \equiv\left[\partial_{t}^{2}-\nabla^{2}\right] \mathbf{V}_{ \pm}=0 \tag{43}
\end{equation*}
$$

which can be naturally derived from the following K-G Lagrangian

$$
\begin{equation*}
L_{V}=\frac{1}{2}\left(\partial_{\mu} \mathbf{V}_{-}\right) \cdot\left(\partial^{\mu} \mathbf{V}_{+}\right) \tag{44}
\end{equation*}
$$

by considering \mathbf{V}_{+}and \mathbf{V}_{-}as independent variables.
(43) are actually Maxwell equations in the Coulomb gauge:

$$
\partial_{\mu} \partial^{\mu} \mathbf{A}=\partial_{\mu} \partial^{\mu} \mathbf{C}=0
$$

Action of duality transformations (26) i.e.,

$$
\begin{equation*}
\mathbf{V}_{ \pm} \rightarrow \mathbf{V}_{ \pm} e^{\mp i \theta} \tag{45}
\end{equation*}
$$

leave (44) invariant.

With the infinitesimal version of (45), $\delta \mathbf{V}_{ \pm}=\mp i \theta \mathbf{V}_{ \pm}$, we derive the Noether current

$$
\begin{equation*}
j^{\mu}=\frac{1}{2}\left(\partial^{\mu} \mathbf{V}_{+} \cdot \delta \mathbf{V}_{-}+\partial^{\mu} \mathbf{V}_{-} \cdot \delta \mathbf{V}_{+}\right)=\frac{1}{2}\left(\left(\partial^{\mu} \mathbf{A}\right) \cdot \mathbf{C}-\left(\partial^{\mu} \mathbf{C}\right) \cdot \mathbf{A}\right) \tag{46}
\end{equation*}
$$

whose conservation, $\partial_{\mu} j^{\mu}=0$, can also be checked directly using (43).
The associated conserved charge is the space integral of the zeroth component,

$$
\begin{equation*}
\chi=\int d^{3} \mathbf{r} \frac{1}{2}\left(\partial_{t} \mathbf{A} \cdot \mathbf{C}-\partial_{t} \mathbf{C} \cdot \mathbf{A}\right)=\int d^{3} \mathbf{r} \frac{1}{2}(\mathbf{B} \cdot \mathbf{A}-\mathbf{E} \cdot \mathbf{C}), \tag{47}
\end{equation*}
$$

where we recognize the double Chern-Simons expression of helicity.
Conversely, the charge (47) generates the duality action (45).
The constraint $\mathbf{V}_{-}=\mathbf{V}_{+}^{*}$ does not now imply the vanishing of (47).
$\chi(47)$ matches with $(10,20)$.
Components of the symmetric energy-momentum tensor $T^{\mu \nu}$ are,

$$
\begin{align*}
T^{00} & =\frac{1}{4}\left(\partial_{t} \mathbf{A} \cdot \partial_{t} \mathbf{A}+\partial_{t} \mathbf{C} \cdot \partial_{t} \mathbf{C}+\partial_{i} \mathbf{A} \cdot \partial_{i} \mathbf{A}+\partial_{i} \mathbf{C} \cdot \partial_{i} \mathbf{C}\right), \tag{48a}\\
T^{0 i} & =\frac{1}{2}\left(\partial_{t} \mathbf{A} \cdot \partial^{i} \mathbf{A}+\partial_{t} \mathbf{C} \cdot \partial^{i} \mathbf{C}\right) \tag{48b}
\end{align*}
$$

Its conservation, $\partial_{\nu} T^{\mu \nu}=0$, can be checked also easily.
T^{00} and $T^{0 i}$ are, up to surface terms, the usual expressions of the energy and momentum densities, respectively.

We note also that the helicity flow is [up to a surface term] the spin angular momentum density,

$$
\begin{equation*}
\mathbf{j}=\mathbf{s}=\frac{1}{2}(\mathbf{E} \times \mathbf{A}+\mathbf{B} \times \mathbf{C}) . \tag{49}
\end{equation*}
$$

However, s does not satisfy the $S O(3)$ algebra but it is a measurable quantity in optics [S. J. V Enk and G. Nienhuis, (1994)].

We realized that (44) is equivalent to the dual symmetric Lagrangian in [R. P. Cameron, S. M. Barnett (2012)...]:
$\underbrace{\frac{1}{2}\left(\partial_{\mu} \mathbf{V}_{-}\right) \cdot\left(\partial^{\mu} \mathbf{V}_{+}\right)}_{\text {our } L_{V}}=\underbrace{-\frac{1}{8}\left[F_{\mu \nu} F^{\mu \nu}+\star F_{\mu \nu} \star F^{\mu \nu}\right]}_{\text {Barnett et al-Bliokh et al }}-\underbrace{\frac{1}{4} \partial_{i}\left(A_{j} \partial_{j} A_{i}+C_{j} \partial_{j} C_{i}\right)}_{\text {surface term }}$.

Warning: As stated by in Barnett et al., one should not attach any physical interpretation to A, C such that (42) a priori.

Likewise, in (44), we treat \mathbf{V}_{+}and \mathbf{V}_{-}as independent and derive (43) before inserting the constraint $\mathbf{V}_{-}=\mathbf{V}_{+}^{*}$.

Dirac Lagrangian with potentials

$\mathbf{V}_{ \pm}$(39) could again be unified into a 6-component system by putting

$$
\mathcal{V}=\binom{\mathbf{V}_{+}}{\mathbf{V}_{-}}
$$

Then, (40a) and (40b) becomes,

$$
\begin{align*}
\Sigma^{\mu} \partial_{\mu} \mathcal{V} & =0 \tag{50a}\\
\nabla \cdot \mathcal{V} & =0 \tag{50b}
\end{align*}
$$

as in (33) : we get Dirac / Weyl type theory.
Similar to (34), we propose,

$$
\begin{equation*}
\mathcal{L}_{\mathcal{V}}=\overline{\mathcal{V}}\left(\Sigma^{\mu} \partial_{\mu}\right) \mathcal{V}=\left(\mathbf{V}_{-}^{\dagger} \bar{S}^{\mu} \partial_{\mu} \mathbf{V}_{-}+\mathbf{V}_{+}^{\dagger} S^{\mu} \partial_{\mu} \mathbf{V}_{+}\right), \quad \overline{\mathbf{V}}=\mathbf{V}^{\dagger} \Sigma^{0} \tag{51}
\end{equation*}
$$

This Lagrangian is invariant w.r.t. duality transformations (45), and yields a Noether current similar to (36),

$$
\begin{equation*}
\ell^{\mu}=\overline{\mathcal{V}} \Sigma^{\mu} \rho_{3} \mathcal{V}=\mathbf{V}_{+}^{\dagger} S^{\mu} \mathbf{V}_{+}-\mathbf{V}_{-}^{\dagger} \bar{S}^{\mu} \mathbf{V}_{-} . \tag{52}
\end{equation*}
$$

However the current vanishes again due to $\mathbf{V}_{+}^{*}=\mathbf{V}_{-}$,

$$
\begin{equation*}
\ell^{\mu} \equiv 0 \quad \Rightarrow \quad \chi v=\int \ell^{0} d^{3} \mathbf{r}=\int\left(\mathbf{V}_{+}^{\dagger} \mathbf{V}_{+}-\mathbf{V}_{-}^{\dagger} \mathbf{V}_{-}\right) d^{3} \mathbf{r}=0 \tag{53}
\end{equation*}
$$

We conclude that the Dirac-type approach yields, once again, trivial current and charge.

K-G Lagrangian with fields

Since the original $R S$ vector $\mathbf{F}_{ \pm}=\frac{1}{\sqrt{2}}(\mathbf{E} \pm i \mathbf{B})$ satisfies the $K-G$ equation

$$
\begin{equation*}
\partial_{\mu} \partial^{\mu} \mathbf{F}_{ \pm} \equiv\left[\partial_{t}^{2}-\nabla^{2}\right] \mathbf{F}_{ \pm}=0 \tag{54}
\end{equation*}
$$

We would like to investigate the corresponding K-G Lagrangian

$$
\begin{equation*}
L_{F}=\frac{1}{2}\left(\partial_{\mu} \mathbf{F}_{-}\right) \cdot\left(\partial^{\mu} \mathbf{F}_{+}\right) \tag{55}
\end{equation*}
$$

This Lagrangian is plainly symmetric under duality (1) with associated Noether current

$$
\begin{equation*}
z_{\mu}=\frac{1}{2}\left(\left(\partial_{\mu} \mathbf{E}\right) \cdot \mathbf{B}-\left(\partial_{\mu} \mathbf{B}\right) \cdot \mathbf{E}\right) \tag{56}
\end{equation*}
$$

Conserved charge, the integral of z_{0} becomes

$$
\begin{align*}
Z & =\int d^{3} \mathbf{r} \frac{1}{2}\left(\left(\partial_{t} \mathbf{E}\right) \cdot \mathbf{B}-\left(\partial_{t} \mathbf{B}\right) \cdot \mathbf{E}\right), \\
& =\int d^{3} \mathbf{r} \frac{1}{2}(\mathbf{B} \cdot \nabla \times \mathbf{B}+\mathbf{E} \cdot \nabla \times \mathbf{E}) . \tag{57}
\end{align*}
$$

This expression, is again in the form of double Chern-Simons form.
In optics, this is known as the Lipkin's Z^{000}-zilch [D. M. Lipkin, (1964)] or optical chirality.

Its space part,

$$
\begin{equation*}
\mathbf{z}=\frac{1}{2} \int d^{3} \mathbf{r}(\mathbf{E} \times(\boldsymbol{\nabla} \times \mathbf{B})-\mathbf{B} \times(\boldsymbol{\nabla} \times \mathbf{E})) \tag{58}
\end{equation*}
$$

is in turn Lipkin's $Z^{0 i 0}=Z^{00 i}$, identified as the optical chirality flow.

Conclusions

- We used the photon wave function as a trick to rewrite electromagnetism in a Dirac/Weyl resp. Klein-Gordon-type form, allowing us to use field theoretical tools.
- Our trick of replacing the e.m. fields by the respective potentials works because all components satisfy, in the Coulomb gauge, the wave equation, allowing for the "square root trick"
- In our framework, zilch seems to be associated with duality symmetry.
- Our findings fit perfectly into the hierarchy pattern [M. G. Calkin, (1965). D. J. Candlin, (1965)...]

