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Proton Spin

Proton spin and gluon spin ?
Leader and Lorce, Phys. Rept. 541 (2014) 163

Electron spin and photon spin ?
Bliokh, et al, Phys. Rept. 690 (2017) 1-70

Helicity of photon
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Electromagnetic duality

It has been long known [O. Heaviside (1892), J. Larmor (1897)] that
duality transformations

E′ = E cos θ + B sin θ, (1a)

B′ = B cos θ − E sin θ, (1b)

leave the Maxwell equations

∇ · E = 0, ∇× B− ∂E

∂t
= 0, (2a)

∇ · B = 0, ∇× E +
∂B

∂t
= 0, (2b)

invariant.

Elements of Tµν , e.g.,

T 00 =
1

2
(E2 + B2), T 0i = (E× B)i (3)

are also invariant under (1).
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However, Maxwell action itself

SM =

∫
d4x LM = −1

4

∫
d4x FµνFµν =

1

2

∫
d4x (E2 − B2), (4)

with
Fµν = ∂µAν − ∂νAµ,

transforms under finite transformations (1) as

S ′M =
1

2
(cos2 θ − sin2 θ)

∫
d4x (E2 −B2) + 2 sin θ cos θ

∫
d4x E ·B.

Infinitesimal transformations

δE = δθB, δB = −δθE (5)

yield a surface term

S ′M = SM + 2δθ

∫
d4xE · B = −1

4
δθ

∫
d4x εµνρσFµνFρσ. (6)
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Calkin/Noether theorem

M. G. Calkin, [M. G. Calkin, (1965)], was the first to investigate the
conserved charge/generator of (1) from the Lagrangian point of view.

The action of (5) descends on the potentials A, φ

B = ∇× A, E = −∇φ− ∂tA, (7)

as
δφ = −δθ(∂tλ), δA = δθ(∇λ)− δθ(∇× Z). (8)

where λ is a gauge parameter and Z is the polarization
potential/Hertz vector.

Calkin substituted (8) in (4) and obtained the associated charge , χC :

χC =

∫
d3x

(
(
∂Z

∂t
) · B− Z · (∂B

∂t
)
)
, ∂tZ = AT . (9)
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Physical meaning and properties of χC is not clear in the form (9).

However, box quantization with p.b.c. , e.g.,

Z =
(4π~

V

)1/2∑
k,s

i(2ω3
k)−1/2εk,s(bk,se

ik·x−iωk t − h.c .), ...

yields

χC ∼ ~
(
N(R)− N(L)

)
(10)

where N(R),N(L) is the total number of right and left circularly
polarized photons, respectively.

The conclusion is that the difference N(R)− N(L) is the conserved
charge associated with the duality symmetry.
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Deser and Teitelboim/Hamiltonian formalism

In [S. Deser and C. Teitelboim, (1975)], same problem was studied
from a Hamiltonian point of view.

Canonical variables A = AT and E = ET transform under (5) as

δE = δθ∇× A, δA = δθ∇−2∇× E, (11)

where ∇−2 is the inverse of the 3−d Laplacian.

They obtained the conserved charge χDT as,

χDT =
1

2

∫
d3x (B ·∇−2∇× B + E ·∇−2∇× E),

=
1

2

∫
d3x (−A ·∇× A + E ·∇−2∇× E), (12)

which is manifestly non-local.
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In the second line, they arrived a local expression by defining

A(t, x) = −∇−2∇× B =

∫
d3x′

∇′ × B(t, x′)

4π|x− x′|
. (13)

χDT (12) is explicitly gauge invariant. However, gauge independence
of χC (9) is not so obvious.

Q: Is it possible to find a local, gauge invariant and dual symmetric
charge with an explicit clear meaning?

They stated that the other non-local expression can also be made
local by introducing another potential.

Then, relation to Calkin’s work should be:

∇× Z = −∇−2∇× E. (14)
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Dual vector potential

Helicity of the electromagnetic field, without any relation to duality
symmetry, is also studied by [G. N. Afanasiev and Yu. P.
Stepanovsky, (1996)].

In their formulation, Aµ co-exists with a second, dual vector potential
Cµ:

E = −∇× C = −∂tA−∇A0,

B = −∇C 0 − ∂tC = ∇× A.

They have a relativistic current in terms of both of them

jµ = F̃µνAν − FµνCν , (15)

where

F̃µν = ∂µC ν − ∂νCµ =
1

2
εµνρσFρσ = ?Fµν (16)

is the dual field strength.
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Provided Maxwell equations (2) hold, (15) is conserved, ∂µj
µ = 0.

Separately, divergence of each part is calculated to be

∂µ(F̃µνAν) = ∂µ(FµνCν) = −2E · B. (17)

Splitting temporal and spatial components, we get

j0 = A · B− C · E, (18a)

j = A0B + E× A− C 0E + B× C. (18b)

Integral of j0 is called the optical helicity:

χAS =

∫
d3x j0 =

∫
d3x A · B− C · E (19a)

=

∫
d3x A ·∇× A + C ·∇× C. (19b)
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χAS is gauge invariant provided the fields vanish on the spatial
boundary.

χAS is in the double Chern-Simons form.

Physical meaning becomes clear in momentum space (in Coulomb
gauge)

χAS ∼
∫

d3k (|fR |2 − |fL|2). (20)

where |fR,L|2 are the number densities for the right and left circularly
polarized photons, respectively.

Relation with the previous expressions, i.e, χC and χAS :

−∇× Z = −∇−2∇× E = CT . (21)
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Choosing the Coulomb gauge

∇ · A = ∇ · C = 0, A0 = C 0 = 0

also simplifies the spatial term which is called the helicity flow,

j = E× A + B× C. (22)

In momentum space, it becomes

s =

∫
d3x j ∼

∫
d3k (|fR |2 − |fL|2)

k

|k|
. (23)

Helicity χAS is divided into magnetic part χm and electric part χe as

χ = χm + χe , (24a)

χm =
1

2

∫
d3x A ·∇× A, χe =

1

2

∫
d3x C ·∇× C, (24b)
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Separately, they obey

dχm

dt
= −

∫
d3x E · B, dχe

dt
=

∫
d3x E · B. (25)

Unlike χm and χe , χAS is the constant of the free Maxwell theory.

Duality transformations (1) descend to the transverse vector
potentials as

A′ = A cos θ + C sin θ, (26a)

C′ = C cos θ − A sin θ. (26b)

One can observe that neither χm nor χe are invariant under (26).

Only their combination χAS is invariant.
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In plasma physics χm is called the magnetic helicity, a measure of
twisting of magnetic field lines in plasma physics [L. Woltjer
(1958)]....

Knot theory: χm and χe are related to the linking numbers of the
magnetic and electric field lines, respectively [A. F. Rañada, (1991).
M. Arrayás, D. Bouwmeester and J. L. Trueba (2017)].

R. H. S. of (25) E · B = −1/8εµνρσFµνFρσ is the Chern-Pontryagin
density [S. S. Chern (1979)], a metric independent quantity.

Therefore, in relation with the chiral anomaly of massless fermions in
QGP [C. Manuel and J. M. Torres-Rincon (2015)].

Fluid mechanics’ analogue is the vortex helicity [...R. Jackiw,
(2000)]....
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We worked out this problem from a symplectic point of view, as
duality transformations being canonical transformations (1608.01131).

Later, we tried to construct various Lagrangians based on the photon
wave function (1608.08573).
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Photon wave function

The history of the photon wave function goes back to the work of E.
Majorana [E. Majorana (1928-1932)].

In this work, E. Majorana wrote a Dirac-like equation for the photon
[R. Mignani, E. Racami and M. Baldo (1974)].

It is also advocated by I. Bialynicki-Birula [I. Bailynicki-Birula
(1996)...] as a link between classical electromagnetism and quantum
electrodynamics.

As in E. Majorana’s work, the key element is the Riemann-Silberstein
vector [L. Silberstein (1907), see also H. Bateman (1915)]:

F± =
1√
2

(
E± iB

)
. (27)

I. Bialynicki-Birula’s derivation is based on taking the square root of
the Klein-Gordon equation.
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Bialynicki-Birula used the SO(3) generators for spin-1 particles

(Si )ab = −iεiab, i , a, b = 1, 2, 3. (28)

Complicated anti-commutation relation of S−matrices

{Si , Sj}ab = 2δijδab − δaiδbj − δajδbi (29)

dictates to work out divergenceless F±, i.e.,

∇ · F± = 0. (30)

Then, the first order equations become

i∂tF± = ∓i(S ·∇)F± = ±∇× F±, (31)

where ± stands for the helicity of the photon.

(30) and (31) provide a compact form of vacuum Maxwell eqns (2).
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Dirac/Weyl Lagrangian

By using (31), we would like to obtain a Dirac type Lagrangian with both
helicities.

We begin with

F =

(
F+

F−

)
Σµ =

(
0 S

µ

Sµ 0

)
. (32)

µ = 0, . . . , 3 and Sµ = (1,S) and S
µ

= (1,−S) where
(
Sj
)
ab

are (28).

Then, (31) can be written in a similar form to the Dirac equation,

Σµ ∂µF = 0 (33a)

∇ · F = 0. (33b)

supplemented with the divergence constraint,
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Naturally, we propose a Dirac type Lagrangian

LF = F (Σµ∂µ)F =
(
F†− S

µ
∂µF− + F†+ Sµ∂µF+

)
, F = F†Σ0. (34)

Treating F and F as independent quantities in (34), variational calculus
yields (33a).

(34) is invariant under the duality transformations (1):

F → e−iθρ3F , ρ3 =

(
13 0
0 −13

)
(35)

Noether theorem yields the associated conserved current,

kµ = F Σµρ3F = F†+S
µF+ − F†−S

µ
F− , ∂µk

µ = 0, (36)

which is similar to the current of chiral fermions in form.
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However, this current is identically vanishing:

kµ ≡ 0 ⇒ χF =

∫
d3r k0 =

∫
d3r
(
F†+F+ − F†−F−

)
= 0. (37)

Therefore, we conclude that (34) is unsuitable to derive optical helicity χ.

Moreover, if we substitute F± = 1√
2

(
E± iB

)
into (34), we get

LF = E ·
(
∂tE−∇× B

)
+ B ·

(
∂tB + ∇× E

)
(38a)

= ∂t(
1

2
(E2 + B2)) + ∇ · (E× B), (38b)

observing that LF is different from (4), rather it is the divergence of the
T µ0 associated with it.
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Klein-Gordon Lagrangian

We observe that, (31) can also be satisfied if we replace B,E with A,C
and define a new RS vector:

V± =
1√
2

(A± i C). (39)

Then we have the following set of wave equations:

i∂tV± = ∓i(S ·∇)V±, (40a)

∇ · V± = 0. (40b)

Subsidiary condition (40b) fixes the gauge choice as Coulomb gauge,

∇ · A = ∇ · C = 0, A0 = C 0 = 0. (41)

On the other hand, (40a) turn out to be

∇× A = −∂tC (= B), ∇× C = ∂tA (= −E), (42)
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Iterating (40a), we obtain two massless Klein-Gordon equations,

∂µ∂
µV± ≡

[
∂2t −∇2

]
V± = 0, (43)

which can be naturally derived from the following K-G Lagrangian

LV =
1

2
(∂µV−) · (∂µV+) , (44)

by considering V+ and V− as independent variables.

(43) are actually Maxwell equations in the Coulomb gauge:

∂µ∂
µA = ∂µ∂

µC = 0.

Action of duality transformations (26) i.e.,

V± → V±e
∓iθ. (45)

leave (44) invariant.
Pengming Zhang (IMP-CAS) July 2017 23 / 31



With the infinitesimal version of (45), δV± = ∓iθV±, we derive the
Noether current

jµ =
1

2

(
∂µV+ · δV− + ∂µV− · δV+

)
=

1

2

(
(∂µA) · C− (∂µC) · A

)
, (46)

whose conservation, ∂µj
µ = 0, can also be checked directly using (43).

The associated conserved charge is the space integral of the zeroth
component,

χ =

∫
d3r

1

2

(
∂tA · C− ∂tC · A

)
=

∫
d3r

1

2

(
B · A− E · C

)
, (47)

where we recognize the double Chern-Simons expression of helicity.

Conversely, the charge (47) generates the duality action (45).

The constraint V− = V∗+ does not now imply the vanishing of (47).
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χ (47) matches with (10, 20).

Components of the symmetric energy-momentum tensor Tµν are,

T 00 =
1

4

(
∂tA · ∂tA + ∂tC · ∂tC + ∂iA · ∂iA + ∂iC · ∂iC

)
, (48a)

T 0i =
1

2
(∂tA · ∂ iA + ∂tC · ∂ iC), (48b)

Its conservation, ∂νT
µν = 0, can be checked also easily.

T 00 and T 0i are, up to surface terms, the usual expressions of the energy
and momentum densities, respectively.

We note also that the helicity flow is [up to a surface term] the spin
angular momentum density,

j = s =
1

2
(E× A + B× C). (49)
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However, s does not satisfy the SO(3) algebra but it is a measurable
quantity in optics [S. J. V Enk and G. Nienhuis, (1994)].

We realized that (44) is equivalent to the dual symmetric Lagrangian in
[R. P. Cameron, S. M. Barnett (2012)...]:

1

2
(∂µV−) · (∂µV+)︸ ︷︷ ︸

our LV

= −1

8

[
FµνF

µν + ?Fµν ? F
µν
]

︸ ︷︷ ︸
Barnett et al−Bliokh et al

− 1

4
∂i

(
Aj∂jAi + Cj∂jCi

)
︸ ︷︷ ︸

surface term

.

Warning: As stated by in Barnett et al., one should not attach any
physical interpretation to A, C such that (42) a priori.

Likewise, in (44), we treat V+ and V− as independent and derive (43)
before inserting the constraint V− = V∗+ .
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Dirac Lagrangian with potentials

V± (39) could again be unified into a 6-component system by putting

V =

(
V+

V−.

)
Then, (40a) and (40b) becomes,

Σµ ∂µV = 0, (50a)

∇ · V = 0, (50b)

as in (33) : we get Dirac / Weyl type theory.

Similar to (34), we propose,

LV = V(Σµ∂µ)V =
(
V†−S

µ
∂µV− + V†+S

µ∂µV+

)
, V = V†Σ0. (51)
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This Lagrangian is invariant w.r.t. duality transformations (45), and yields
a Noether current similar to (36),

`µ = V Σµρ3 V = V†+S
µV+ − V†−S̄

µV− . (52)

However the current vanishes again due to V∗+ = V−,

`µ ≡ 0 ⇒ χV =

∫
`0d3r =

∫ (
V†+V+ − V†−V−

)
d3r = 0. (53)

We conclude that the Dirac-type approach yields, once again, trivial
current and charge.
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K-G Lagrangian with fields

Since the original RS vector F± = 1√
2

(
E± iB

)
satisfies the K-G equation

∂µ∂
µF± ≡

[
∂2t −∇2

]
F± = 0, (54)

We would like to investigate the corresponding K-G Lagrangian

LF =
1

2
(∂µF−) · (∂µF+). (55)

This Lagrangian is plainly symmetric under duality (1) with associated
Noether current

zµ =
1

2

(
(∂µE) · B− (∂µB) · E

)
. (56)
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Conserved charge, the integral of z0 becomes

Z =

∫
d3r

1

2

(
(∂tE) · B− (∂tB) · E

)
,

=

∫
d3r

1

2

(
B ·∇× B + E ·∇× E

)
. (57)

This expression, is again in the form of double Chern-Simons form.

In optics, this is known as the Lipkin’s Z 000-zilch [D. M. Lipkin, (1964)] or
optical chirality.

Its space part,

z =
1

2

∫
d3r

(
E× (∇× B)− B× (∇× E)

)
, (58)

is in turn Lipkin’s Z 0i0 = Z 00i , identified as the optical chirality flow.

Pengming Zhang (IMP-CAS) July 2017 30 / 31



Conclusions

We used the photon wave function as a trick to rewrite
electromagnetism in a Dirac/Weyl resp. Klein-Gordon-type form,
allowing us to use field theoretical tools.

Our trick of replacing the e.m. fields by the respective potentials
works because all components satisfy, in the Coulomb gauge, the
wave equation, allowing for the “square root trick”

In our framework, zilch seems to be associated with duality symmetry.

Our findings fit perfectly into the hierarchy pattern [M. G. Calkin,
(1965). D. J. Candlin, (1965)... ]
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