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1. Introduction

++ What is the compositeness ? ++
= Compositeness ( X ) is a quantity to “measure” the hadronic
molecular component inside an excited hadron of interest.

% g
h . . | Hadronic ] (cg)q %g) Compact
. states
molecules | v

Jes

) @M =X+Z=1

= Compositeness is defined as the norm of the two-body part of
the bound-state wave function: | d3q 2
)a|¥) = / (2r)? [ (Q)]

--- To obtain the bound-state wave functlon it is better to solve
the Lippmann-Schwinger Eq. rather than Schrodinger Eq.

X =

= In general compositeness is a model dependent quantity, but
becomes model independent if the pole exists near the threshold.

--- Weinberg’s compositeness condition (Br << Eqypical). Weinberg (1965).
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1. Introduction

++ Motivation ++
= We evaluate the wave function of hadron-hadron composite part.

--- ¢f. Wave function for relative motion of two nucleons in deuteron.

X =1 1
= ha hp 5 AN
=A hB
— r \
-
4
A LA N A
AR A

= For a given interaction (potential) which generates a bound state,

we solve the Lippmann-Schwinger Eq. |
i Y =i =5 10

T(E; ¢, q) = (¢'|T(E)|q) ~ v(g')v(q) | Epole —£(q) |

--- The WF and compositeness (= norm) are automatically scaled.
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2. Wave functions from amplitudes

++ Setup of our model ++
= We consider the following system in quantum mechanics.

v | X
o Full Hamiltonian: | & = &, + V(E) = @W\M@
<

--- Composed of free part Hy and interaction V. >
--- The interaction V, determined in some theory, /

may depend on the energy of the system E.

5]

o The free Hamiltonian has eigenstates of free two-body state:
q

E(q) = =
(g) =my +mo + 2

or

--- The two-body state with relative momentum g.

o The full Hamiltonian has an eigenstate of a bound state:

H|) = (Ho + V)|¥) = Epore|¥)

--- The eigenvalue E,. Is real (stable bound state)
or complex (resonance).
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2. Wave functions from amplitudes

++ Compositeness as a norm ++
= Definition: Compositeness is defined as the norm of the two-body

part of the bound-state wave function.

o Two-body bound-state wave function in momentum space:
(%) = 9(q)

o The norm of the two-body wave function is:

*= [ oy

o However, for the moment we have not normalized the bound-
state wave function.
--> To interpret the compositeness, we have to nhormalize it.
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2. Wave functions from amplitudes

++ Wave function from Lippmann-Schwinger Eq. ++
= To obtain the correct normalization of bound-state wave function

it is better to solve the Lippmann-Schwinger Eq.
than the Schrodinger Eq. !

o Schrodinger Eq. in momentum space:

3,/
E@U@ + [ GV (@ a)P(a) = Bparch(a)

~~

~

~—

>

r

-

--- Homogeneous integral Eq., so we have to normalize it by hand !

o Lippmann-Schwinger Eg. in momentum space:
¢’k V(d, kK)T(E; k, q)

T(E;d',q)=V(d, q) +/ (23 E—£(k)

--- Inhomogeneous integral Eq., so we need not take care of

the normalization of the scattering amplitude !

o Where is the wave function in Lippmann-Schwinger Eq. ?
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2. Wave functions from amplitudes

++ Wave function from Lippmann-Schwinger Eq. ++
= Solve the Lippmann-Schwinger equation at the pole position of

the bound state. , .

- e IT(B; 4, @) = (@ [T(E)a)

T"E)=V+V—n =V +V—o V| ———
E — Hy FEF—-—H

A LN A N A
—>—@—>— — —>—D—>—@—>—
--- Near the resonance pole position E,.., amplitude is dominated

by the pole term in the expansion by the eigenstates of H as
/\

!\ 1Y 1 STIR 9 4 = A
(@[T (B)|a) ~ (@|V]¥) ———(¥|V]a) ), lasa)y | (@], (@gals-o
pole
| _ 1= [O)(F| 4
--- The residue of the amplitude - Y
at the pole position has information on the wave function !
(a|V|¥) = (a|(H — Ho)|¥) = [Epole — 8(q)]@5(q) | £(q) = \/m’f +q¢° + \/m% + ¢°

2

q

(¥|V|q) = [Epoi — E(@)](a) |

or
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2. Wave functions from amplitudes

++ Wave function from Lippmann-Schwinger Eq. ++
= Solve the Lippmann-Schwinger equation at the pole position of

the bound state. |T(E; q, q) = (d'|T(E)|q) ‘

PE) =V+V— P V4V ¥
E — Hy FEF—H

LN A N A N
7’ — . ’ N ’ ’
~>—@—>— — —>—D—>—@—>—

--- The wave function can be extracted from
the residue of the amplitude at the pole position:

v(g@')v(q) | <= Off-shell Amp. !
E — Epole v(q) = (q|V|¥) = [Epote — £(0)]9(q)

T(E; d', @) = (d|T(E)|a) ~

--> Because the scattering amplitude cannot be freely scaled
(Lippmann-Schwinger Eg. is inhomogeneous !), the WF from
the residue of the amplitude is automatically scaled as well !

If purely molecule --> | [ d% g 1*_,| <-Weobtain!
(2m)3 | Epole — £(q) o E. Hernandez and A. Mondragon,

Phys. Rev. C29 (1984) 722.
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2. Wave functions from amplitudes

++ Example: Stable bound state ++

= A A hyperon in A ~40 nucleus.
--> Calculate wave functions in 2 ways.

1. Solve Schrodinger equation:
~ 3 ~ ~ ~
E(q)¥(q) + / (gwggV(q, q)¥(q") = Epole?¥(q)
dq 1~ 12
--> Normalize \ by hand ! f (2733 P =1

2. Solve Lippmann-Schwinger

V. Bg [MeV]

.........

Woods-Saxon
potential

equation:

T(E;d;q)=V(d,;a)+ / (gwl)cs V(ql,; )_Ts(’j(E;c;)k, !

--> Extract WF from the residue:

v(q")v(q) =« v(q)
B—Eyae | | "9 By g

--- Without normalizing by hand !

T(E; d', q) ~

q)
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2. Wave functions from amplitudes

~

++ Example: Stable boun r() - 2™ [j(a)’

. 27r)3
= A A hyperon in A ~40 nucleus. 0.01 (2m) PR
--> Calculate wave functions in 42 °°| % Flndep.V. 7,

ol g . 0.008 | VT '|. Schr.0p O

1. Solve Schrodinger equation; ;| ' & LS. 0p ====s q
o Schr,0d A
- 0006 + !

LS. Od v |

E(q)¥(q) + / ((21:;3‘7(% q)¥(q) = Epole?

dq
)3

--> Normalize y by hand ! / (2

0.005 \ Schr. 1 s
0.004 - - . 4 g i o Ay I '. _"_ K c-aw |
0003 | ! ¥ A :

P [MeV

2. Solve Lippmann-Schwinger 0002 |
equation: 0.001 |

T(E;q,q)=V(d, q) +/

&3k V(d, k)1 o 50 200 250 300 30 400
UM e In 1st Point
: ; o In 1st way: Points.
> Extract WI(= ,f)rc(ar)n the residue: r 2nd way: Lines.
;3 ;pzle --> P(q) = Epolzi] £(9) o Exact coincidence !
--- We obtain auto-
matically normalized
WF from the Amp. !

T(E;d, q) ~

--- Without normalizing by hand !
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2. Wave functions from amplitudes

++ Example: Stable bound state ++
= We define the compositeness X as the norm of the wave function:

x= [ AL(baa) = [ dP@) P - e

--- In the foIIowmg, we calculate X from the scattering amplitude.

o The compositeness is unity for energy independent interaction.
Hernandez and Mondragon (1984).

0.014

o An interesting thing happens
when we introduce the
energy dependence for V.

0.012
0.01

0.008 |
o If the interaction depends on

the energy,

the compositeness from
the scattering amplitude
0 50 100 150 200 250 300 350 400 deviates from unity.

7 [MeV] V(r; E) o [vo + v1(E — Epote)]

0.006

P [MeV ™

0.004 |

0.002 |
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2. Wave functions from amplitudes

++ Example: Stable bound state ++

= We define the compositeneé

X/( ) =

--- In the following, we calcula

o The compositeness is unit

0.014 —
Os, from Scatt. Amp vy =-04
0.012 o, 0.2
SN X=1 0.0
001 | j ; (ri=0) o2
0.4

0.008 |

1

08

06

04

02

0
° Llnes X from Amp
0s from oVOE [J
()p ..... POlntS. X X(')V/(')E
O0p from dVROE © o
i O0d = seessnn vi‘
0d from aVIOE A .,".‘c'

" 1s from dVOE g

| s - w

.
)
et

P [MeV ™

- |V (r; E) [v0+v1(E Epote)]
0004 | k¥ \

1 = /dSMp*(r) [1 ( pole; T) ¢(P)L

- -

0 50 100 150 200
q[MeV]

400

s Consistent with the norm

with energy-dep. interaction.

oV
Xovioe =1+ /d3T¢*(r)3—E(Epole; r)(r)

Formanek, Lombard and Mares (2004);

Miyahara and Hyodo (2016).
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2. Wave functions from amplitudes

++ Example: Stable bound state ++
= We define the compositeneé 1 . , ,

X/( ) =

--- In the following, we calcula

o The compositeness is unit

0.014

0s, from Scatt. Amp.  ©1=04
0.2

0.012 .‘ ‘a — '
S0 X=1 0.0
] “ (Vl ] 0) 0.2

= Deviation of compositeness
from unity can be interpreted

0 50 100 150 200 250 300 350 400 as a missing-channel part.

q [MeV] T.S., Hyodo and Jido, PTEP 2015 063D04.
13
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3. The N* compositeness program

++ What | want to do is ++
= For a given interaction, we can calculate two-body wave functions

from the scattering amplitude.
o In particular, compositeness (= the norm of the wave function)
is automatically normalized !

A |

g_ Normalized ! ;
v(¢')(9) @’\
T(E;d', q) = h
( a1 q) E — Epole \B
: . q
o For an energy dependent interaction, -

the compositeness deviates from unity,
interpreted as a missing channel contribution.

= Therefore, we can investigate:
o Compositeness for “interesting” resonances from amplitudes.

o Experimental information on the scattering amplitudes available.

o Construction of detailed interactions possible.
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3. The N* compositeness program

++ Wave functions for hadrons ++
= By using the two-body wave function and compositeness (norm),

we can dlstlngmsh a certaln conflguratlon of hadrons in a model.

| ‘Hadronlc molecules '
{  as abound state g | Ordinary
": of hadrons " . hadrons
(cf. deuteron) !
R R A0 SR P B, D B e o e 5 e . —
@ =X+2=1] x= [l @aa = [ 2% i)

= In the previous studies, we have investigated:
o A(1405). o© E(1690). o NA535) & N(1650). ©o..

T.S.,Hyodo and Jido, PTEP 2015, 063D04; T. S. , PTEP 2015 091D01;
T.S.T. Arai, J. Yamagata-Sekihara and S. Yasui, Phys. Rev. C93 (2016) 035204..

--- Evaluated X for these “dynamically generated resonances”.
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3. The N* compositeness program

++ Example: compositeness for A(1405) ++

= Compositeness X for A(1405) in the chiral unitary approach.
Amplitude taken from: Ikeda, Hyodo and Weise, Phys. Lett. B706, (2011) 63;

Nucl. Phys. A881 (2012) 98.
11

\N

A(1405), lower pole

g WA N
A(1405)
—
T M \1 —‘7/\-\ | :: :
: bs A(1405), higher pole
v/ Spole 1424 — 267 MeV
,-:'0 Im{z] [MeV] Xﬂ'E —0.19 — 0.222
R(ll\!\l T X"?A 0.13 + 0.022
: XK= 0.00 + 0.007
Hyod d Jido (’12). =
haik Bl Z —0.08 + 0.192

--- Large KN component

1381 — 81z MeV
—0.39 — 0.072
0.66 + 0.522
—0.04 + 0.01z
—0.00 + 0.002
0.77 — 0.462

for (higher pole) A(1405),
since Xgy Is almost unity with small imaginary parts.

@) o

T.S.,Hyodo and Jido, PTEP 2015, 063D04.
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--- The precise on-shell NV scattering amplitude is available.

3. The N* compositeness program

++ The N* compositeness from N amplitude ++
= Next target: Comprehensive analysis of the N* and A* resonances

from the precise on-shell xNV amplitude !

Kamano et al., Phys. Rev. C88 (2014) 035209.

Re (T)

Re(T)

Re (1)

0.6

0.4 H™

0.08 H

v v - v \ 4 - A4
04 } P -
.

vp'

on-shell on-shell |2
Im T'(E) = |T(E) " --- Observable !

= On-shell scattering amplitude on the real energy E: |

044




3. The N* compositeness program

++ Many N* resonances ++
= Many N* and A* resonances from the nNV scattering amplitude.

0.6 r———7mp——"r—T1—"r—r71— -Im E (MeV)
S 100

04 - M - o
C 02 jl —————————
L]
~

1300

Suzuki et al., Phys. Rev. Lett.
104 (2010) 042302.

1500 =
1700 1900

Re E (MeV)

= There are several “interesting” N* resonances, such as:

UF) = 3G) PG o We can now investigate
Breit-Wigner mass = 1410 to 1450 (~ 1430) MeV their internal structure
Breit-Wigner full width = 250 to 450 (= 350) MeV in terms Qf the meson-

N(1440) DE Fraction (I';/T) p (MeV/c) b r n m n nt.

NG “| _ baryon component

N % o o :

e |\2 o .- N(1440) is a ¢N bound

A(1232 N 20-30 % o ds o s
A(12 \ 1397 % state ? cf. Julich group.
No 11-23 % N —> N Ronchen et al. (2013); ...
P, helicity=1/2 LADB-0040 v "l @ Saint Petersburg (Jul. 24 - 28,2017) 18
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3. The N* compositeness program

++ From on-shell to off-shell amplitude ++
= By using the on-shell aN amplitude (<-- observable), | construct
the off-shell amplitude, where the N* wave functions live.

= | take Into account bare N* states and appropriate diagrams
for the meson-baryon interaction.

= How much the physical N* are “dressed” ?

b1 ¢ . R b1 ¢ M 4 . Lo X X . - b X . o X L ceccePpucccc@eeccucccss L
“. .l' .‘\::-:"' ‘ l “\::':/" “g”, p
S — — i —————— ———————y
N N N N N N N A N N A N N -— -— N
(Al) (A2) (A3) (Ad4) (AS)
n. - N n LN L ——e - o n T . - n T =M
\ A .\::-:_" o \ A e
I — *— P —— S —— -— L. ——
N N N N N N N - - N N N N N N N
(Bl) (B2) (B3) (B4) (B5)
M ceceaPpmccca@eccaPpmecans X, o
B .h -—
N N N N
(B6) (C1) (C3) (C4)

T ... o e ety VN V.V V.V VW) n. o n ... o P P
-\L_M . A Y f; .‘;.w"'ﬁ\ﬂw LLL"L f\;




3. The N* compositeness program

++ Numerical results ++
= Numerical results ...

--- Sorry, but now on going !

= If you have your own N amplitudes as solutions of the Lippmann-
Schwinger Eq., you can calculate the N* compositeness in the
manner presented here.

--- Why don’t you join me ?
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4. Summary

= We can extract the two-body WF from k]
the residue of the scattering amplitude

at the pole position, both stableand | ...
unstable states. (ql‘I’> w(q) :

34— bound state

scattering state

(@)(g) || B DN e

Scattering
_amplitUd_e: T(E q Q) _- (Q |T(E)|q> E Epole "(,b( - — ’)’((])E'( ) | state
pole — q

= The WF from the scattering amplitude is automatically scaled.

o The compositeness (= norm of the two-body WF) is unity for
a bound state in an energy independent interaction.

o For an energy dependent interaction, the compositeness deviates
from unity, reflecting a missing channel contribution.

= From the precise NV amplitude with appropriate models,
we can evaluate the compositeness for the N* and A* resonances.

o In particular, what is the structure of the N(1440) resonance ?

: JA: . } . . I
(@)| Hon Modern Problems in Nuclear and Elementary Particle Physics @ Saint Petersburg (Jul. 24 - 28,2017) 21




@3 |u,.

I
£3

Thank you very much
for your kind attention !
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Appendix

++ Wave function from Lippmann-Schwinger Eq. ++
= Near the resonance pole position E,.., amplitude is dominated
by the pole term in the expansion by the eigenstates of H as
/\

| - o 1 ~ A / ~ \

{dT(B)la) = (@|VI¥) z—F% —(¥|Vla) T, |qsan), - | (B, (qsu \

. pole

1= [O)(F|+ -
N Y,

. . . »-;-, R NP SN W NP _ DRSO & ﬁ
| o0 The idea of the renormalization for: —— = |U) (0|
i E — H(E) E — Epole

| --- We “(re-)normalize” the total wave function as ' (T|0) =Z =1

v’)‘s
- -~
- ~
’ s 1

p _mO (2) p _mghys

{ cf.

::.' o ‘:t
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Appendix

++ Model (in)dependence of compositeness ++
= Compositeness is a model dependent quantity, in general.

o Because the wave function and interaction are not observable,
they are model dependent quantities.
--- In the present study, to calculate the residue y(g) and
wave function, we need the off-shell amplitude, which is
not observable and model dependent quantity.

T(E;d, q) = ;(i,);iil > | ¥(9) = Epolz(il)g (9)

o Furthermore, the compositeness is also not observable and
model dependent quantity.

--- The field renormalization constant is not observable as well.

cf. Deuteron d-wave probability Pp ~5% Is not observable.
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Appendix

++ Model (in)dependence of compositeness ++
= Compositeness is a model dependent quantity, in general.

o Note: We can uniquely determine the compositeness once
we fix the interaction (including its energy dependence).

cf. In the pioneering studies, they fixed the interaction first and
discussed the compositeness from the scattering amplitude.

.- Separable interaction. ?V17=V(7)

=v(2l+ 1)O(A — p)O(A — p)P(cosh)| p|'| p'|,

Gamermann, Nieves, Oset and Ruiz Arriola, Phys. Rev. D81 (2010) 014029;
Yamagata-Sekihara, Nieves and Oset, Phys. Rev. D83 (2011) 014003;
Aceti and Oset, Phys. Rev. D86 (2012) 014012; ...

--- Interaction with the Yukawa coupling to a bare state.
Hyodo, Jido and Hosaka, Phys. Rev. C85 (2012) 015201. \
v

.
’
/=\
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Appendix

++ Model (in)dependence of compositeness ++
= If the pole exists near threshold, compositeness becomes

a model independent quantity.
--- Compositeness can be expressed with threshold parameters
such as scattering length and effective range,

which are observable.

o Deuteron.
Weinberg (°65).

0 £0(980) and ao(980). —
Baru et al. (°04), m~+M observables Re

Kamiya-Hyodo, Phys. Rev. C93 (2016) 035203. @_m
o0 A(1405). |

Kamiya-Hyodo, Phys. Rev. C93 (2016) 035203. Mg
- X E pole

A Im I st Riemann sheet |£

--- Model dependent part is
a minor contribution to X !

2nd Riemann sheet

= R c=——R+0O : = ——— —=4.318 fm
a= gz BFOm. ), re=—7—7R+0(m, ) 3.B o
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Appendix

++ Compositeness for £(1690) ++

= Compositeness X for E(1690) in the chiral unitary approach.
B T.S., PTEP 2015 091DOL1.

=(1690)°

v/ Spole

e 0.83 — 0.313
XI—{()Z:O 0.12 017Z
X o —0.02 + 0.00:
X, iz 0.00 + 0.003
X, 0=0 0.00 + 0.003
X,=o 0.01 + 0.02
Z 0.06 + 0.112

1684.3 — 0.52 MeV

%

1000 —— . - , .
t R
0 |
s K°A Fit (fold) ==
W [ ' —— |
O Exp.
—
T 600
b4
< 400 |
|§.‘<
i~ 200 t
~
=
0t +
16 162 164 166 168 1.7 172 174 176 1.78 1.8
M}_(‘:)J,\ [GCV]
O 350 Exp. ——
~
g 300 |
w
S 250 |
4y 200 | K2+
|
= 150
% 100 [T ~
-~
— 50 1
=
0 <+ L1110 .
1.68 1.7 1.72 1.74 1.76 1.78 1.8
MK_E+ [GC\,]
@ i
- 'Hll‘)ﬂ
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--- Large KX component for Z(1690),

since Xkx is almost unity

with small imaginary parts.
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= Compositeness X for N(1535) & N(1650) in chiral unitary approach.

Appendix

++ Compositeness for N(1535) and N(1650) ++

s | | | | | T.S.T. Arai, J. Yamagata-Sekihara and S. Yasuli,
Fit, Real part _—
it Imosimary part — e R Phys. Rev. C93 (2016) 035204.
0.6 | w108, Real part L I' SGO
W1 08, Imaginary part O é
@l
N(1535) N(1650)
1496.4 — 58.7:  1660.7 — 70.02
—0.02 + 0.032 0.00 + 0.042
05 L ‘ L nN x K:\‘ KY x XnN 0.04 + 0.377; 0.00 + 0.017/
T 12 13 14 15 16 17 XKA 0.14 + 0.00z 0.08 + 0.052
w [GeV] Xgy 0.01 — 0.022 0.09 — 0.122
Z 0.84 — 0.38: 0.84 4 0.012

o For both N* resonances, the missing-channel part Z is dominant.
--> N(1535) and N(1650) have large components originating from

contributions other than oV, nN, KA, and KX

@
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Appendix

++ Compositeness for A(1232) ++
= Compositeness X for A(1232) in chiral unitary approach.

1.2 —— T
Constrained Imaginary part 19
T Fwios ° 1
0.8
0.6
e 04 F | (S 1
S 02 Constrained A(1232)  N(940)
0 qumilbemen = _ e VSpole [MeV]  1206.9 — 49.6;  938.9
0.2 Real pant X N 0.87 + 0.357 0.00
oal Z 0.13 — 0.357 1.00
-0.6 b : :
1.1 1.15 1.2 1.25 1.3 1.35
w [GeV]

o The N compositeness Xy takes
large real part ! But non-negligible imaginary part as well.

--> Large N component in the A(1232) resonance !?
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