Compositeness for the N^* and Δ^* resonances from the πN scattering amplitude

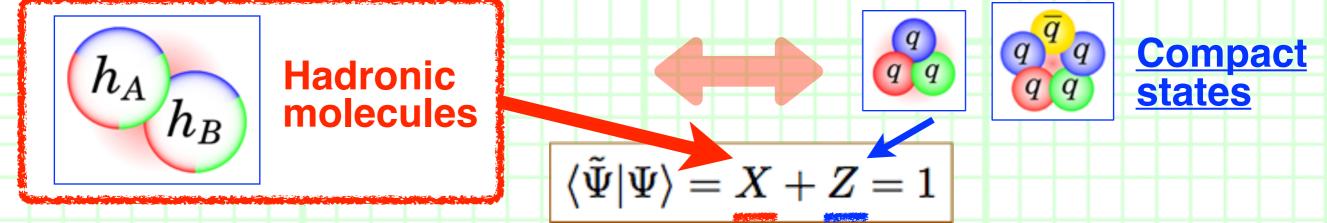
Takayasu SEKIHARA

(Japan Atomic Energy Agency)

- 1. Introduction
- 2. Two-body wave functions from scattering amplitudes
- 3. The N* compositeness program
- 4. Summary
- [1] <u>T. S.</u>, *Phys. Rev.* <u>C95</u> (2017) 025206.
- [2] <u>T. S.</u>, in preparation.
- [3] <u>T. S.</u>, T. Hyodo and D. Jido, *PTEP* <u>2015</u> 063D04.
- [4] <u>T. S.</u>, T. Arai, J. Yamagata-Sekihara and S. Yasui, *Phys. Rev.* <u>C93</u> (2016) 035204.

1. Introduction

 ++ What is the compositeness ? ++
 Compositeness (X) is a quantity to "measure" the hadronic molecular component inside an excited hadron of interest.



• Compositeness is <u>defined as the norm of the two-body part</u> of the bound-state wave function: $X = \int \frac{d^3q}{(2\pi)^3} \langle \tilde{\Psi} | \mathbf{q} \rangle \langle \mathbf{q} | \Psi \rangle = \int \frac{d^3q}{(2\pi)^3} \left[\tilde{\psi}(\mathbf{q}) \right]^2$

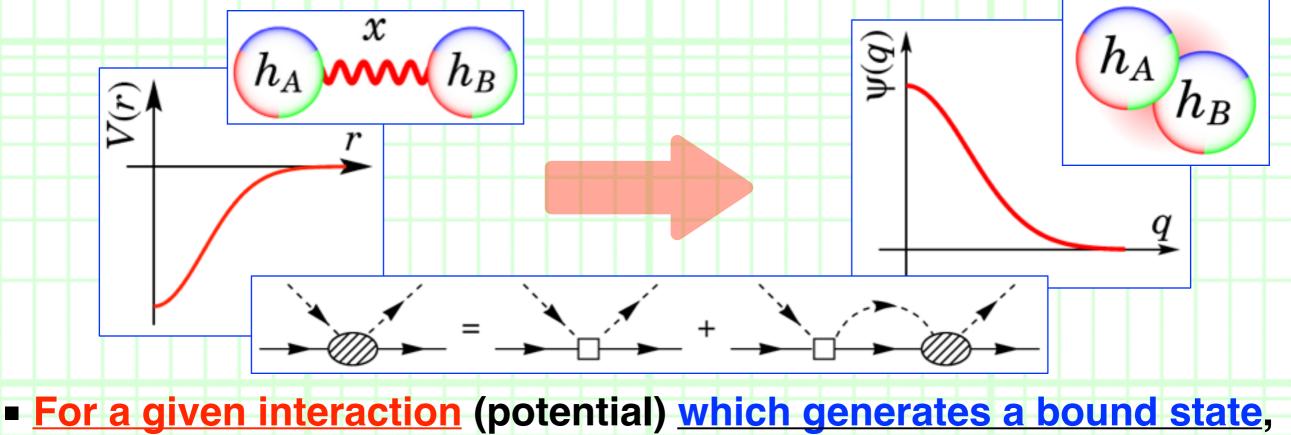
- --- To obtain the bound-state wave function, it is better to solve the Lippmann-Schwinger Eq. rather than Schrödinger Eq.
- In general compositeness is a model dependent quantity, but becomes model independent if the pole exists near the threshold.
 Weinberg's compositeness condition (B_E << E_{typical}). Weinberg (1965).

1. Introduction

++ Motivation ++

We evaluate the wave function of hadron-hadron composite part.

--- *cf.* Wave function for relative motion of two nucleons in deuteron.



For a given interaction (potential) which generates a bound state, we solve the Lippmann-Schwinger Eq. $T(E; \mathbf{q}', \mathbf{q}) = \langle \mathbf{q}' | \hat{T}(E) | \mathbf{q} \rangle \approx \frac{\gamma(q')\gamma(q)}{E - E_{\text{pole}}}$ $(\mathbf{q} | \Psi \rangle = \tilde{\psi}(q) = \frac{\gamma(q)}{E_{\text{pole}} - \mathcal{E}(q)}$ $X \equiv \int \frac{d^3q}{(2\pi)^3} \left[\tilde{\psi}(\mathbf{q}) \right]^2$

--- The WF and compositeness (= norm) are automatically scaled.

++ Setup of our model ++

- We consider the following system in quantum mechanics.
 - **Full Hamiltonian:** $\hat{H} = \hat{H}_0 + \hat{V}(E)$
 - --- Composed of <u>free part H₀</u> and <u>interaction V</u>.
 --- The interaction V, determined in some theory, may depend on the energy of the system E.
 - The free Hamiltonian has <u>eigenstates of free two-body state</u>:

 $\hat{H}_0 |\mathbf{q}\rangle = \mathcal{E}(q) |\mathbf{q}\rangle$ where $\mathcal{E}(q) = \sqrt{m_1^2 + q^2} + \sqrt{m_2^2 + q^2}$ or $\mathcal{E}(q) = m_1 + m_2 + \frac{q^2}{2\mu}$

- ---- The two-body state with relative momentum q.
- The full Hamiltonian has <u>an eigenstate of a bound state</u>:

$$\hat{H}|\Psi
angle=(\hat{H}_{0}+\hat{V})|\Psi
angle=E_{\mathrm{pole}}|\Psi
angle$$

--- The eigenvalue E_{pole} is real (stable bound state) or complex (resonance).

Modern Problems in Nuclear and Elementary Particle Physics @ Saint Petersburg (Jul. 24 - 28, 2017)

x

 $h_A \longrightarrow h_B$

++ Compositeness as a norm ++ Definition: Compositeness is defined as the norm of the two-body part of the bound-state wave function.

<u>Two-body bound-state wave function</u> in momentum space:

$$\langle {f q} | \Psi
angle = ilde{\psi}({f q})$$

The norm of the two-body wave function is:

However, for the moment we have not normalized the boundstate wave function.

--> To interpret the compositeness, we have to normalize it.

 ++ Wave function from Lippmann-Schwinger Eq. ++
 To obtain the correct normalization of bound-state wave function it is better to solve the Lippmann-Schwinger Eq. than the Schrödinger Eq. !

Schrödinger Eq. in momentum space:

$$\mathcal{E}(q) ilde{\psi}(\mathbf{q}) + \int rac{d^3q'}{(2\pi)^3} V(\mathbf{q},\,\mathbf{q}') ilde{\psi}(\mathbf{q}') = E_{
m pole} ilde{\psi}(\mathbf{q})$$

--- Homogeneous integral Eq., so we have to normalize it by hand !

Lippmann-Schwinger Eq. in momentum space:

$$T(E; \mathbf{q}', \mathbf{q}) = V(\mathbf{q}', \mathbf{q}) + \int \frac{d^3k}{(2\pi)^3} \frac{V(\mathbf{q}', \mathbf{k})T(E; \mathbf{k}, \mathbf{q})}{E - \mathcal{E}(k)}$$

--- Inhomogeneous integral Eq., so we need not take care of the normalization of the scattering amplitude !

Where is the wave function in Lippmann-Schwinger Eq. ?

++ Wave function from Lippmann-Schwinger Eq. ++ • Solve the Lippmann-Schwinger equation at the pole position of the bound state. $T(E; \mathbf{q}', \mathbf{q}) = \langle \mathbf{q}' | \hat{T}(E) | \mathbf{q} \rangle$

$$\hat{T}(E) = \hat{V} + \hat{V} \frac{1}{E - \hat{H}_{0}} \hat{T} = \hat{V} + \hat{V} \frac{1}{E - \hat{H}} \hat{V}$$
---- Near the resonance pole position E_{pole} , amplitude is dominated by the pole term in the expansion by the eigenstates of H as
$$\langle \mathbf{q}'|\hat{T}(E)|\mathbf{q}\rangle \approx \langle \mathbf{q}'|\hat{V}|\Psi\rangle \frac{1}{E - E_{\text{pole}}} \langle \tilde{\Psi}|\hat{V}|\mathbf{q}\rangle$$
---- The residue of the amplitude at the pole position has information on the wave function !
$$\langle \mathbf{q}|\hat{V}|\Psi\rangle = \langle \mathbf{q}|(\hat{H} - \hat{H}_{0})|\Psi\rangle = [E_{\text{pole}} - \mathcal{E}(q)]\tilde{\psi}(\mathbf{q})$$

$$\hat{\mathcal{U}}(\mathbf{q}) = [E_{\text{pole}} - \mathcal{E}(q)]\tilde{\psi}(\mathbf{q})$$
or
$$\mathcal{E}(q) = m_{1} + m_{2} + \frac{q^{2}}{2\mu}$$

++ Wave function from Lippmann-Schwinger Eq. ++ • Solve the Lippmann-Schwinger equation at the pole position of the bound state. $T(E; \mathbf{q}', \mathbf{q}) = \langle \mathbf{q}' | \hat{T}(E) | \mathbf{q} \rangle$

$$\hat{T}(E) = \hat{V} + \hat{V} \frac{1}{E - \hat{H}_0} \hat{T} = \hat{V} + \hat{V} \frac{1}{E - \hat{H}} \hat{V}$$

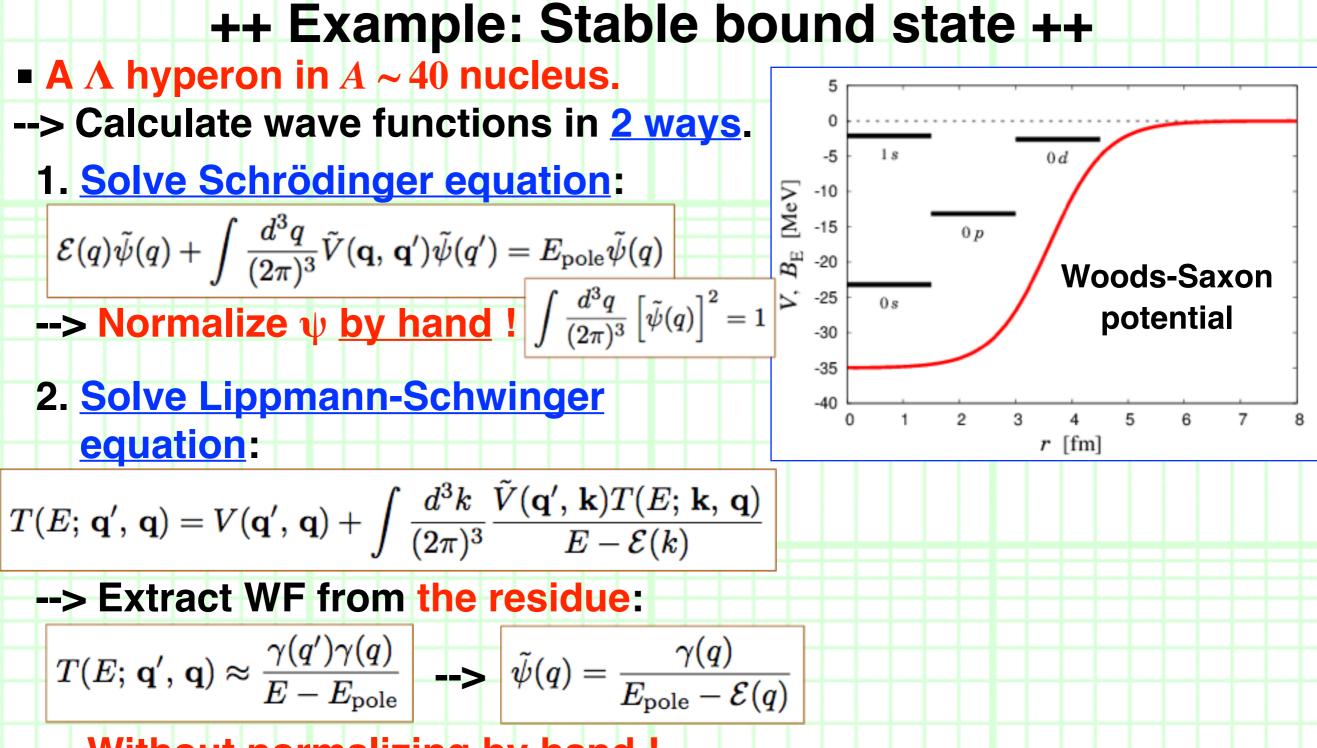
---- The wave function can be extracted from the residue of the amplitude at the pole position:

$$T(E; \mathbf{q}', \mathbf{q}) = \langle \mathbf{q}' | \hat{T}(E) | \mathbf{q} \rangle \approx \frac{\gamma(q')\gamma(q)}{E - E_{\text{pole}}}$$

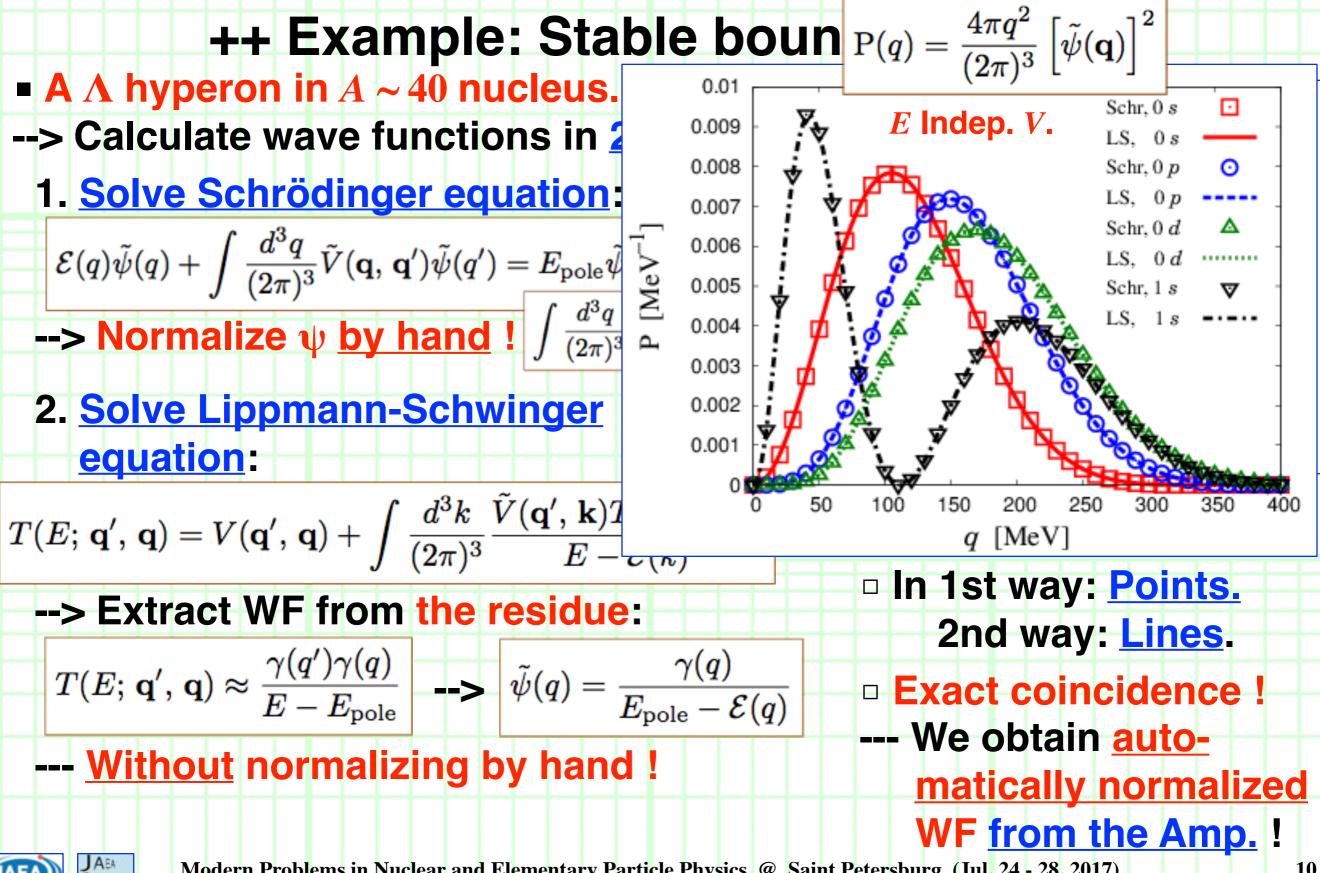
<-- Off-shell Amp. !

$$\gamma(q) \equiv \langle \mathbf{q} | \hat{V} | \Psi \rangle = [E_{\text{pole}} - \mathcal{E}(q)] \tilde{\psi}(q)$$

--> Because the scattering amplitude cannot be freely scaled (Lippmann-Schwinger Eq. is inhomogeneous !), the WF from the residue of the amplitude is <u>automatically scaled</u> as well !



--- Without normalizing by hand !



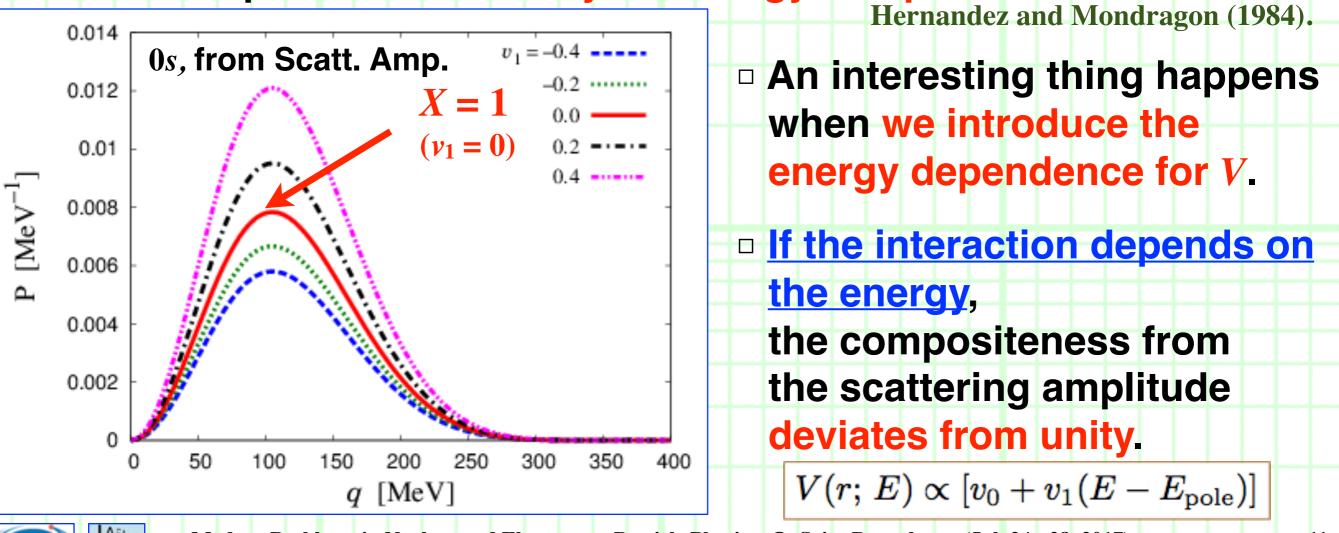
++ Example: Stable bound state ++

• We define the compositeness *X* as the norm of the wave function:

$$X \equiv \int \frac{d^3 q}{(2\pi)^3} \langle \tilde{\Psi} | \mathbf{q} \rangle \langle \mathbf{q} | \Psi \rangle = \int_0^\infty dq \, \mathrm{P}(q) \left| \begin{array}{c} \mathrm{P}(q) = \frac{4\pi q^2}{(2\pi)^3} \left[\frac{\gamma(q)}{E_{\mathrm{pole}} - \mathcal{E}(q)} \right]^2 \right|^2$$

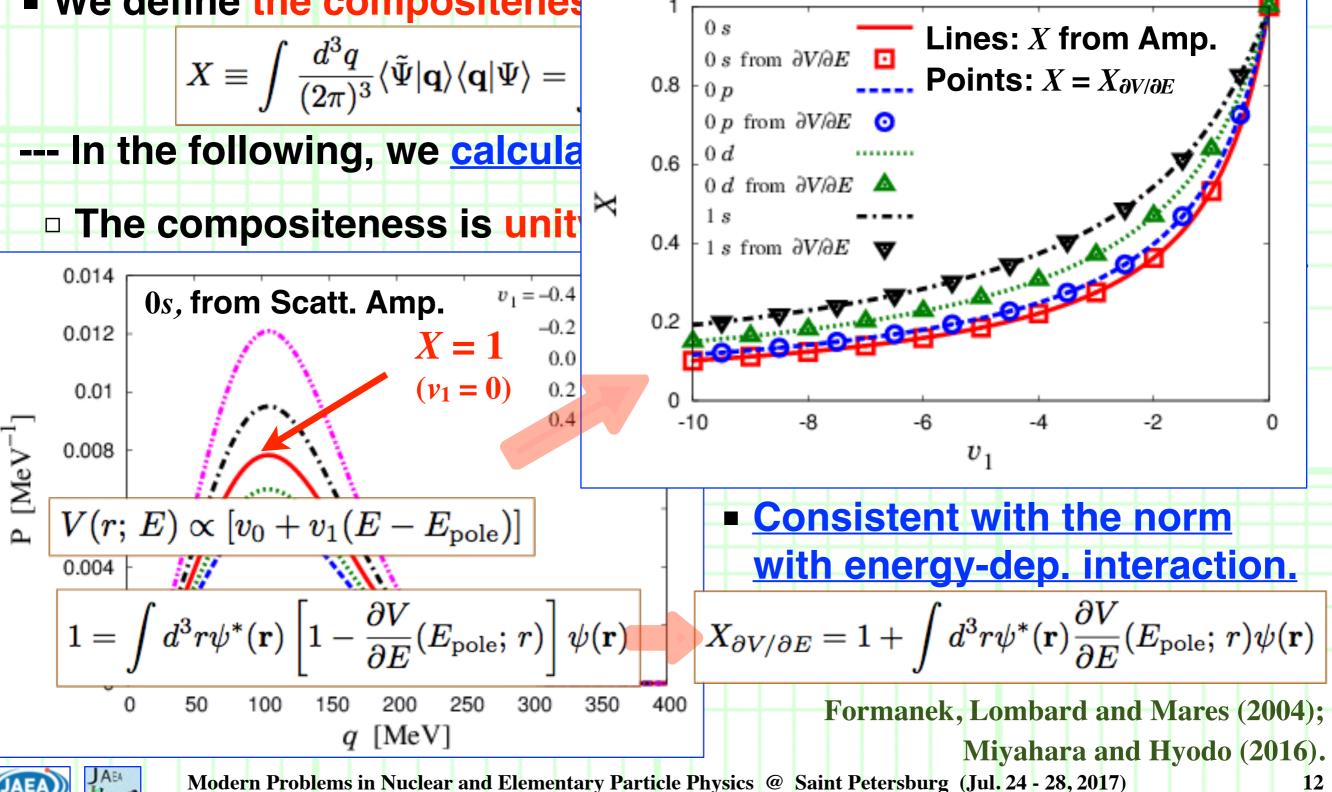
--- In the following, we <u>calculate X from the scattering amplitude</u>.

The compositeness is unity for energy independent interaction.



++ Example: Stable bound state ++

We define the compositenes

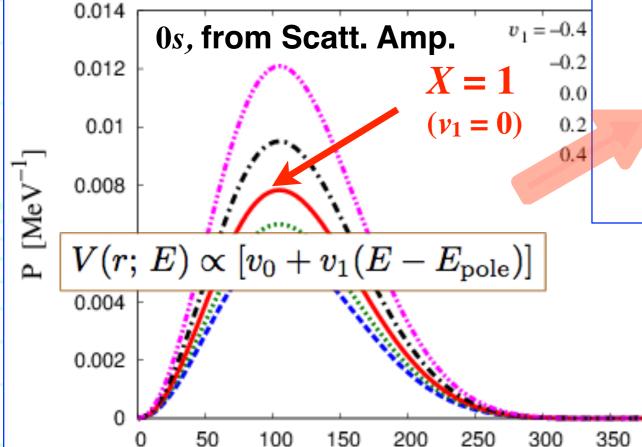


++ Example: Stable bound state ++

We define the compositenes

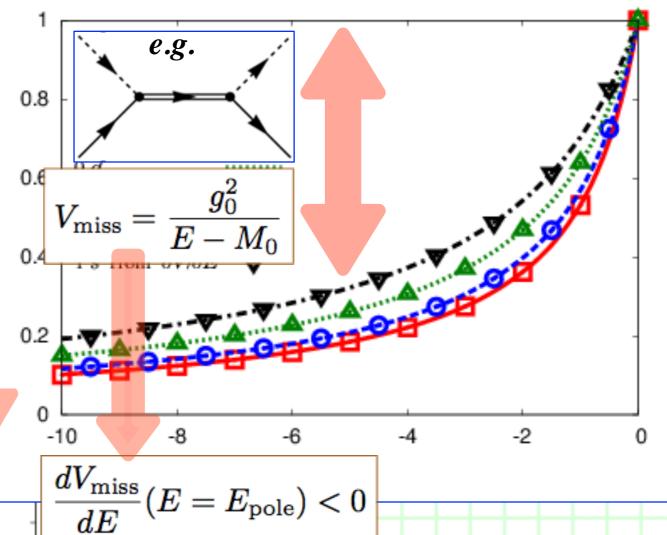
$$X\equiv\intrac{d^3q}{(2\pi)^3}\langle ilde{\Psi}|{f q}
angle\langle{f q}|\Psi
angle=,$$

--- In the following, we calcula



[MeV]

q



 Deviation of compositeness from unity can be interpreted as a missing-channel part. T. S., Hyodo and Jido, PTEP 2015 063D04.

Modern Problems in Nuclear and Elementary Particle Physics @ Saint Petersburg (Jul. 24 - 28, 2017)

400

++ What I want to do is ++

For a given interaction, we can calculate two-body wave functions from the scattering amplitude.

Normalized !

 h_A

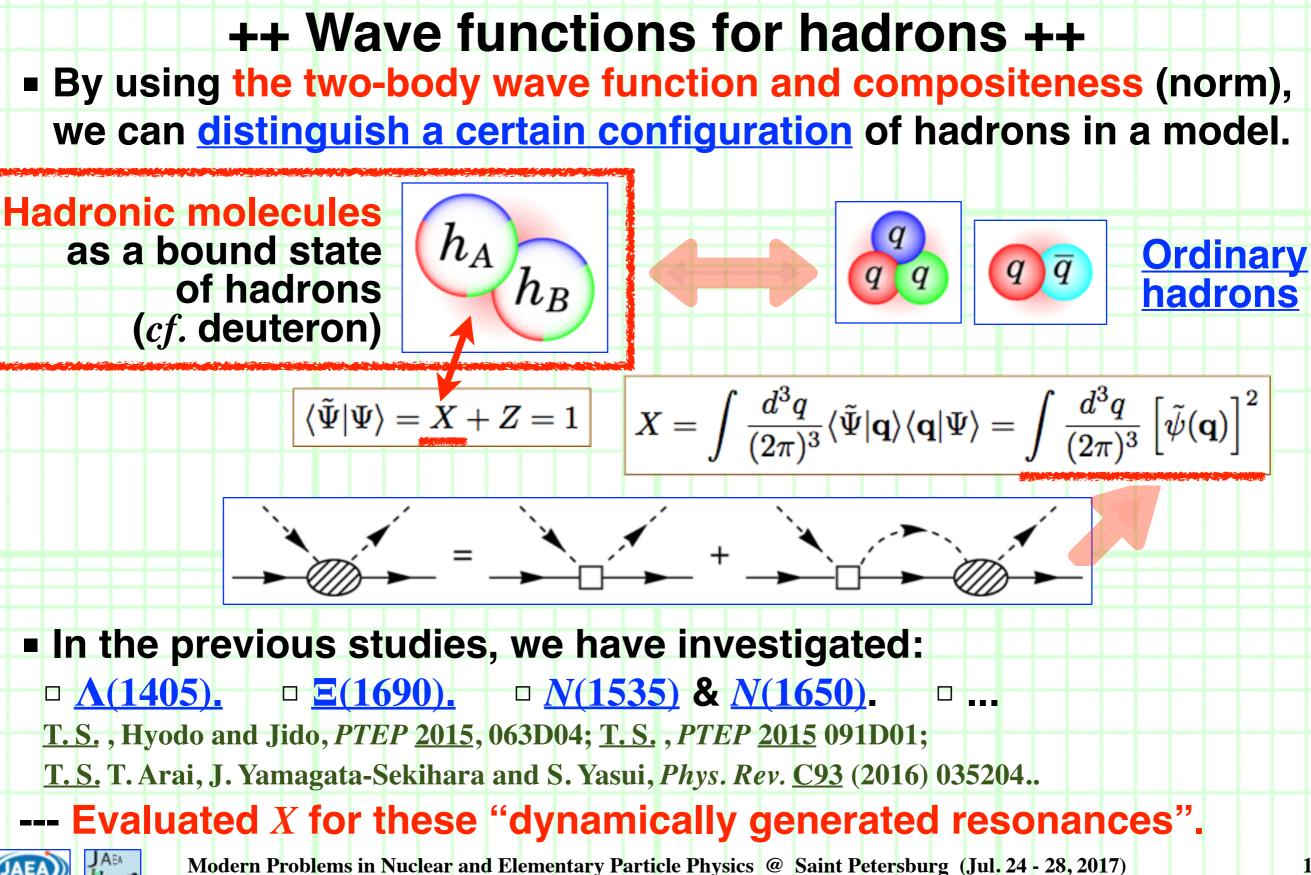
 h_B

In particular, compositeness (= the norm of the wave function) is automatically normalized !

- For an energy dependent interaction, the compositeness deviates from unity, interpreted as <u>a missing channel contribution</u>.
- Therefore, we can investigate:

 $T(E; \mathbf{q}', \mathbf{q}) \approx \frac{\gamma(q')\gamma(q)}{E - E_{\text{pole}}}$

- Compositeness for "interesting" resonances from amplitudes.
- Experimental information on the scattering amplitudes available.
- Construction of <u>detailed interactions</u> possible.



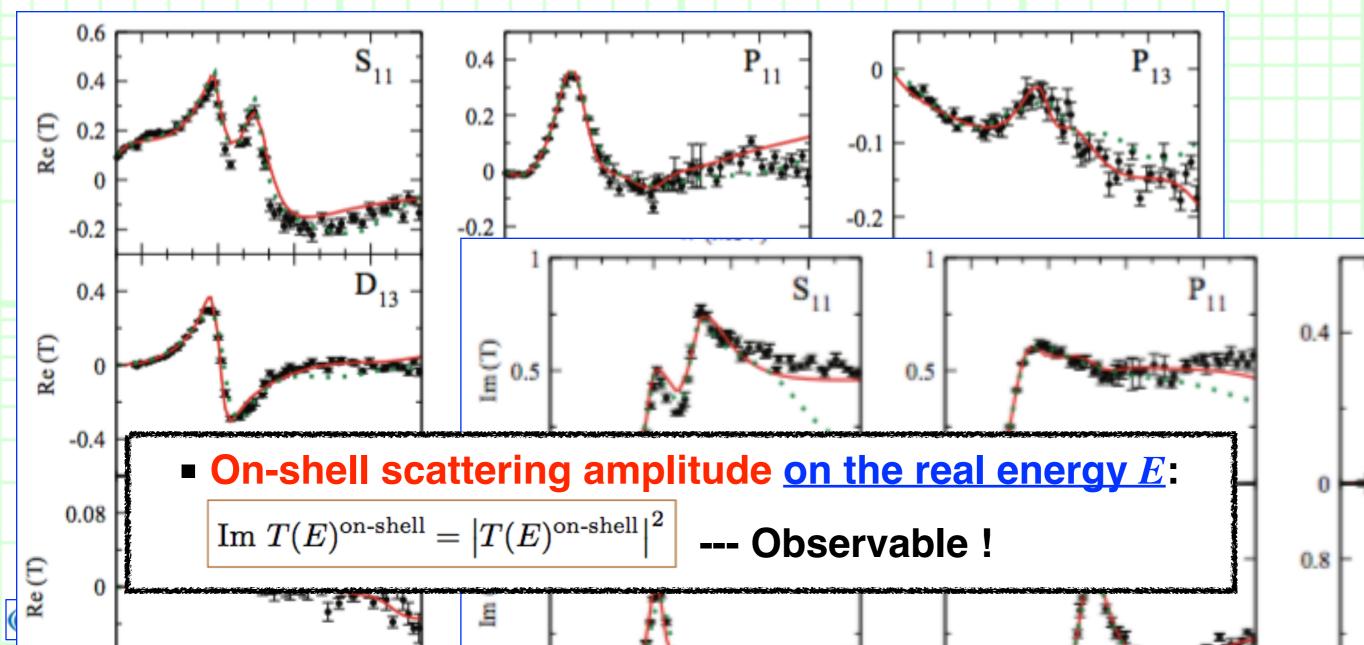
++ Example: compositeness for $\Lambda(1405)$ ++ • Compositeness X for $\Lambda(1405)$ in the chiral unitary approach. Amplitude taken from: Ikeda, Hyodo and Weise, Phys. Lett. B706, (2011) 63; Nucl. Phys. A881 (2012) 98. KΛ(1405) N0.8 0.6 ITI [1/MeV] 0.4 $\Lambda(1405)$, higher pole $\Lambda(1405)$, lower pole 0.8 0.2 1424 - 26i MeV1381 - 81i MeV 0.6 $\sqrt{s_{ m pole}}$ 0.4 $X_{ar{K}N}$ 1.14 + 0.01i-0.39 - 0.07i0.2 $X_{\pi\Sigma}$ -0.19 - 0.22i0.66 + 0.52iIm[z] [MeV] 1440 1420 1400 1460 $X_{\eta\Lambda}$ -0.04 + 0.01i0.13 + 0.02iRe[z] [MeV $X_{K\Xi}$ 0.00 + 0.00i-0.00 + 0.00iHyodo and Jido ('12). 0.77 - 0.46i-0.08 + 0.19i

--- Large \overline{KN} component $\overline{T.S.}$, Hyodo and Jido, *PTEP* 2015, 063D04. for (higher pole) $\Lambda(1405)$, since X_{KN} is almost unity with small imaginary parts.

JAEA Hidro

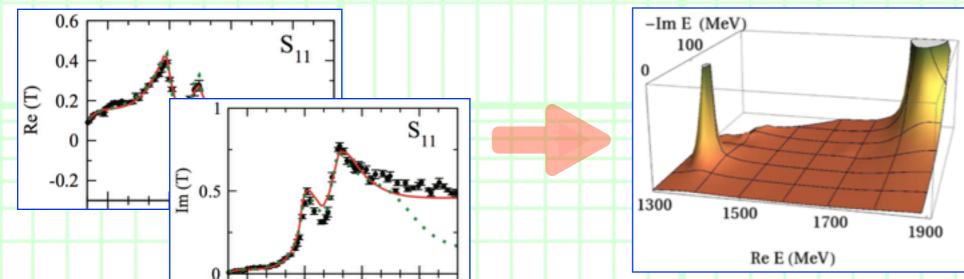
++ The N* compositeness from πN amplitude ++
 Next target: Comprehensive analysis of the N* and Δ* resonances from the precise on-shell πN amplitude !
 --- The precise on-shell πN scattering amplitude is available.

Kamano et al., Phys. Rev. <u>C88</u> (2014) 035209.



++ Many N* resonances ++

• Many N^* and Δ^* resonances from the πN scattering amplitude.



Suzuki *et al.*, *Phys. Rev. Lett.* <u>104</u> (2010) 042302.

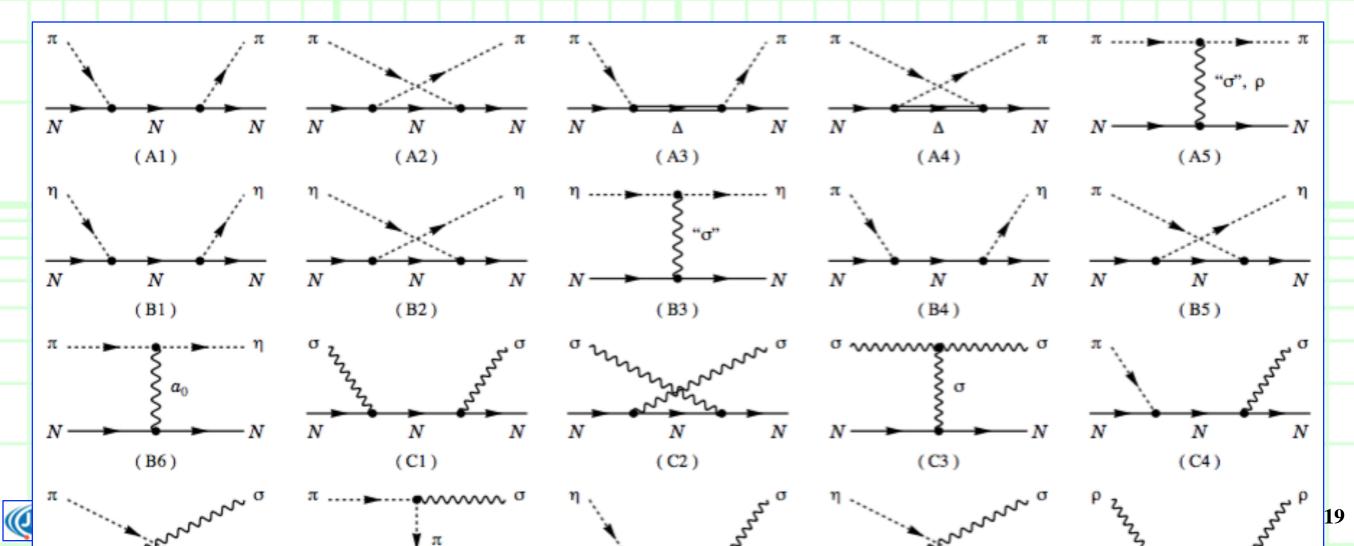
There are several "interesting" N* resonances, such as:

	N(1440) 1/2 ⁺	$I(J^P) = \frac{1}{2}(\frac{1}{2}$	+) PDG.		We can now investigate
	Breit-Wigner mass $= 14$ Breit-Wigner full width				their internal structure in terms of the meson-
	N(1440) DE ???	Fraction (Γ _i /Γ) 55–75 %	p (MeV/c)		baryon component.
	$N\eta$ $N\pi\pi$ σ N		σ ······ş······	, σ	<i>N</i> (1440) is a σ <i>N</i> bound
	$\begin{array}{c} \Delta(1232) \\ \Delta(12) \\ \end{array}$	20–30 % 13–27 %	ξσ	_	state ? cf. Jülich group.
($N\sigma$ $p\gamma$, helicity=1/2 $n\gamma$, helicity=1/2	11–23 % 1 0.035–0.048 % 0.02–0.04 %	N	• N @ Sa	Rönchen et al. (2013); Saint Petersburg (Jul. 24 - 28, 2017) 18

++ From on-shell to off-shell amplitude ++
 By using the on-shell πN amplitude (<-- observable), I construct

- the off-shell amplitude, where the *N** wave functions live.
- I take into account <u>bare N* states</u> and <u>appropriate diagrams</u> for the meson-baryon interaction.

How much the physical N* are "dressed" ?



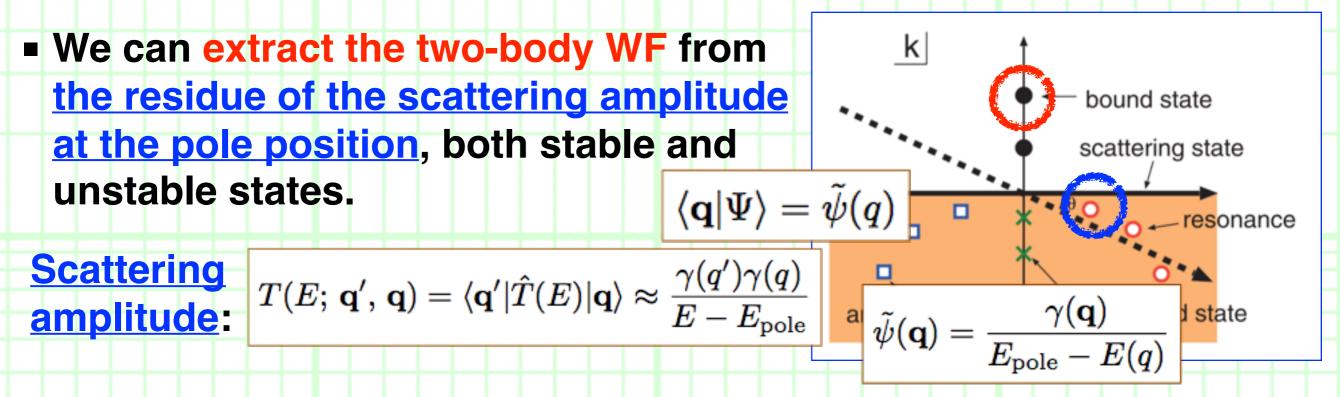
++ Numerical results ++

Numerical results ...

--- Sorry, but now on going !

 If you have your own πN amplitudes as solutions of the Lippmann-Schwinger Eq., you can calculate the N* compositeness in the manner presented here.
 --- Why don't you join me ?

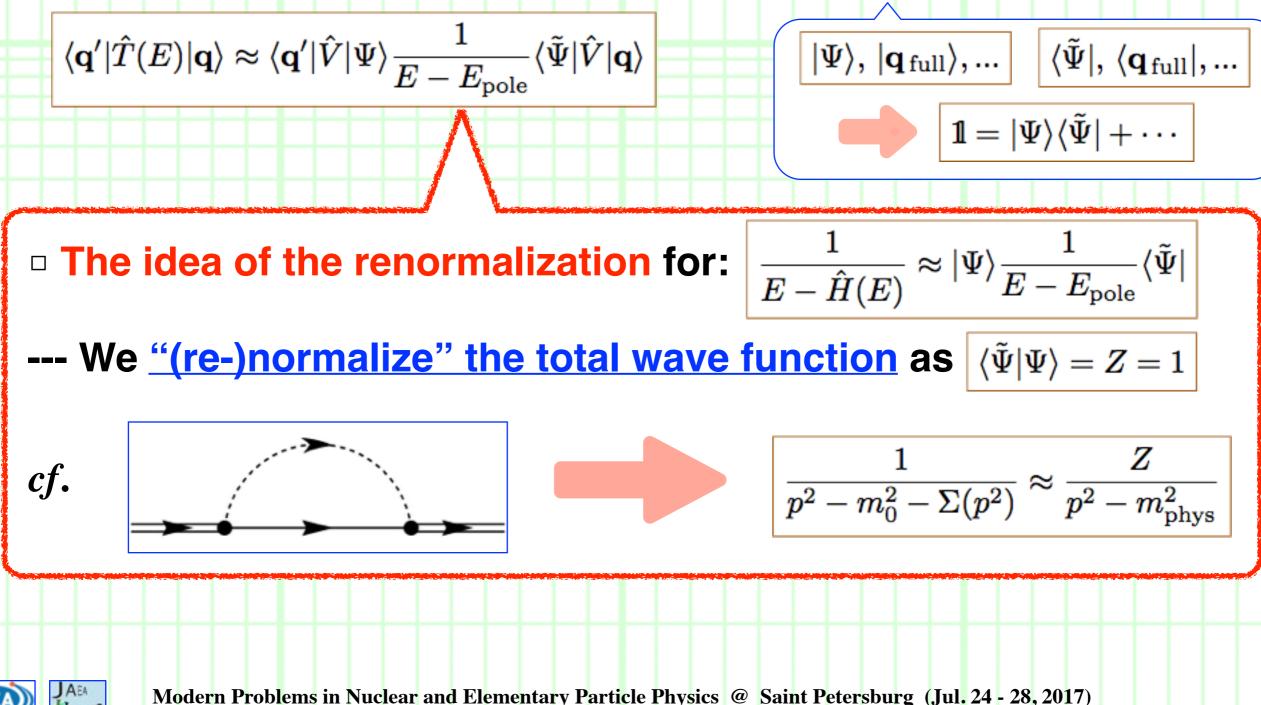
4. Summary



- The WF from the scattering amplitude is <u>automatically scaled</u>.
 <u>The compositeness</u> (= norm of the two-body WF) is <u>unity</u> for a bound state in <u>an energy independent interaction</u>.
 - For an energy dependent interaction, the compositeness deviates from unity, reflecting <u>a missing channel contribution</u>.
- From the precise πN amplitude with appropriate models, we can evaluate the compositeness for the N* and Δ* resonances.
 In particular, what is the structure of the N(1440) resonance ?

Thank you very much for your kind attention !

++ Wave function from Lippmann-Schwinger Eq. ++
 Near the resonance pole position *E*_{pole}, amplitude is dominated by the pole term in the expansion by the eigenstates of *H* as



++ Model (in)dependence of compositeness ++
 Compositeness is a model dependent quantity, in general.

- Because the wave function and interaction are not observable, they are model dependent quantities.
- --- In the present study, to calculate the residue $\gamma(q)$ and wave function, we need the off-shell amplitude, which is not observable and model dependent quantity.

$$T(E; \mathbf{q}', \mathbf{q}) \approx \frac{\gamma(q')\gamma(q)}{E - E_{\text{pole}}} \longrightarrow \tilde{\psi}(q) = \frac{\gamma(q)}{E_{\text{pole}} - \mathcal{E}(q)}$$

(E and q are independent as the off-shell Amp.)

Furthermore, the compositeness is also not observable and model dependent quantity.

- ---- The field renormalization constant is not observable as well.
- cf. Deuteron d-wave probability $P_D \sim 5\%$ is not observable.

++ Model (in)dependence of compositeness ++
 Compositeness is a model dependent quantity, in general.

 Note: We can uniquely determine the compositeness once we fix the interaction (including its energy dependence).
 cf. In the pioneering studies, they fixed the interaction first and discussed the compositeness from the scattering amplitude.

--- Separable interaction. $\langle \vec{p}' | V | \vec{p} \rangle = V(\vec{p}, \vec{p}')$

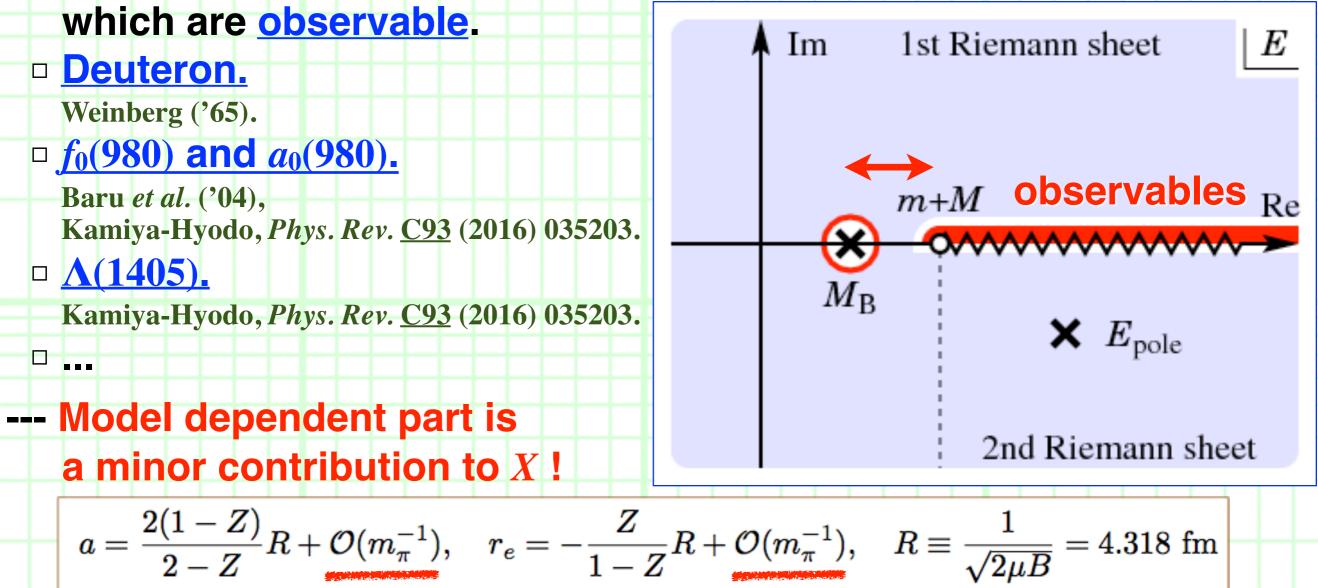
 $= v(2l+1)\Theta(\Lambda-p)\Theta(\Lambda-p')P_l(\cos\theta)|\vec{p}|^l|\vec{p}'|^l,$

Gamermann, Nieves, Oset and Ruiz Arriola, *Phys. Rev.* <u>D81</u> (2010) 014029; Yamagata-Sekihara, Nieves and Oset, *Phys. Rev.* <u>D83</u> (2011) 014003; Aceti and Oset, *Phys. Rev.* <u>D86</u> (2012) 014012; ...

--- Interaction with the Yukawa coupling to a bare state. Hyodo, Jido and Hosaka, *Phys. Rev.* <u>C85</u> (2012) 015201.

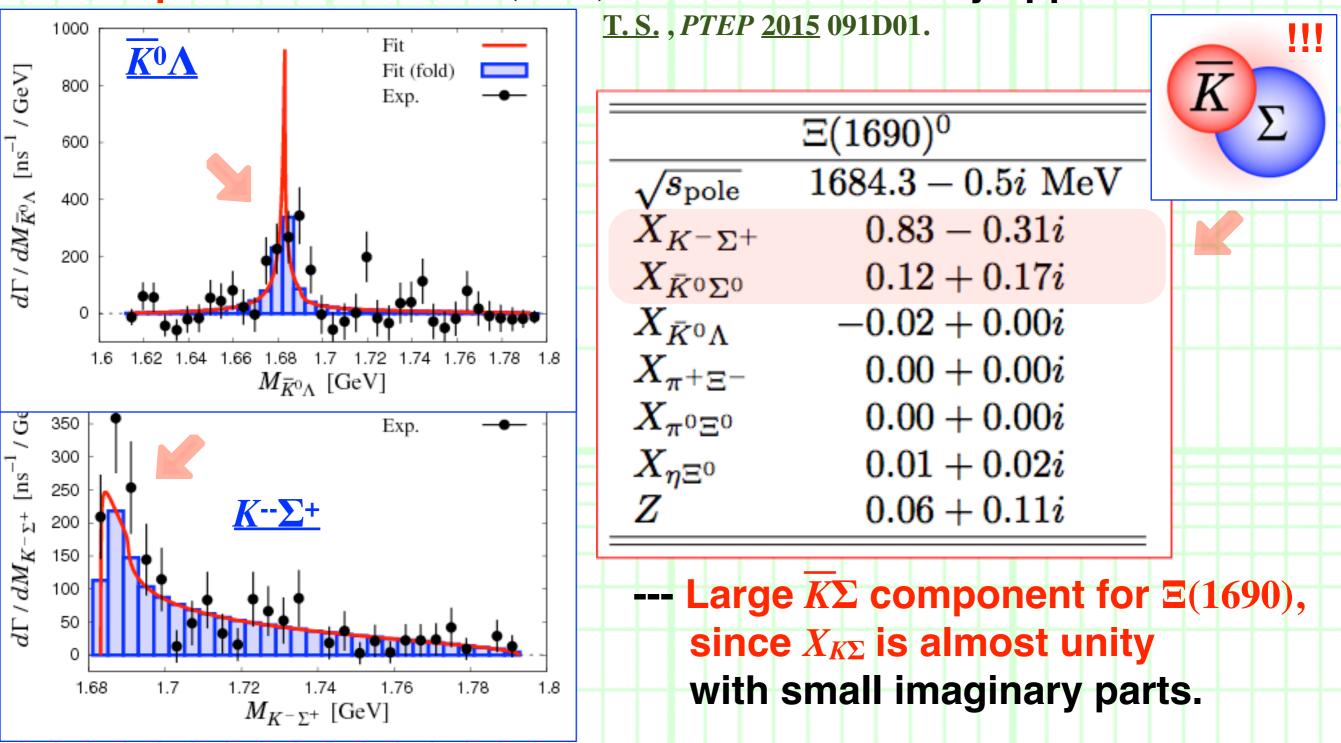
++ Model (in)dependence of compositeness ++

- If the pole exists <u>near threshold</u>, compositeness becomes
 - a model independent quantity.
- --- Compositeness can be expressed with threshold parameters such as scattering length and effective range,

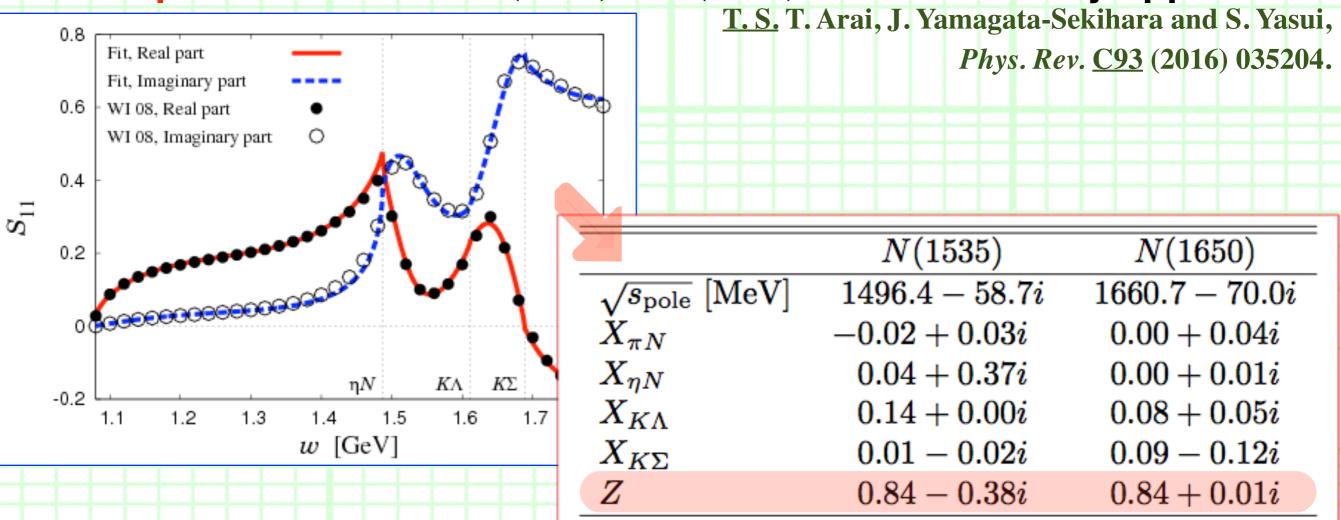


++ Compositeness for E(1690) ++

• Compositeness X for $\Xi(1690)$ in the chiral unitary approach.



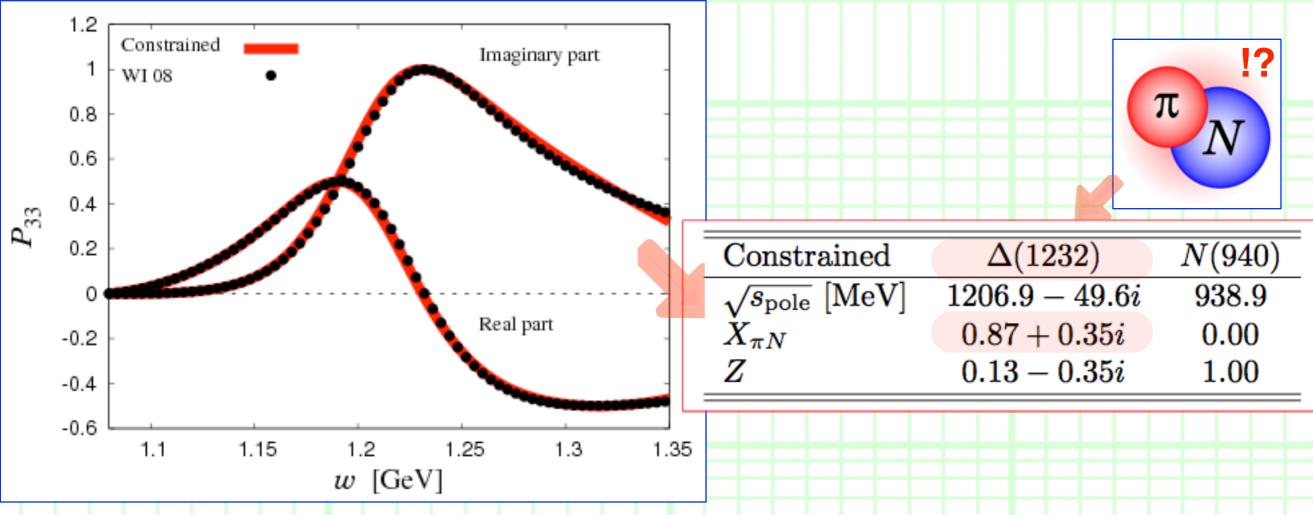
++ Compositeness for N(1535) and N(1650) ++ Compositeness X for N(1535) & N(1650) in chiral unitary approach.



For both N* resonances, <u>the missing-channel part Z is dominant</u>.
 -> N(1535) and N(1650) have large components originating from contributions other than πN, ηN, KA, and KΣ.

++ Compositeness for $\Delta(1232)$ ++

• **Compositeness** *X* for $\Delta(1232)$ in chiral unitary approach.



 <u>The πN compositeness X_{πN} takes</u> <u>large real part !</u> But non-negligible imaginary part as well.
 Large πN component in the Δ(1232) resonance !?

