St.Petersburg@2017.07.24

New Heavy-Ion Transport Approach : Daejeon BUU

Chang-Hwan Lee / Pusan National University

on behalf of DJBUU Project

1

Contents

- 1. Introduction to RAON New Korean Rare Isotope Accelerator
- 2. Introduction to **DaeJeon BUU**
- 3. What has been done
- 4. Summary and Plan

Rare isotope Accelerator complex for ON-line experiments

in 2011, Korean government approved a Rare Isotope Accelerator Project

in Korean, meaning Delightful, Joyful, Happy, ...

RAON Site : Sindong in Daejeon

Slides from Youngman Kim (RISP)

Rare Isotope Science Project (RISP)

N = 20

N = 8

• Goal : To build a heavy ion accelerator complex RAON for rare isotope science researches in Korea • **Project period : 2011.12 - 2021.12** • Total Budget : ~\$ 1.43 billion (Facilities ~ \$ 0.46 bill., Bldgs & Utilities ~ \$ 0.97 bill.) - include initial experimental apparatus **Future Extension Charged Lepton Flavor Violation** Proton number (Z) RAON Accelerator complex **ISOL + In-Flight Fragmentation Origin of Matter** N = 126**Applied Science** Nuclear Astrophysics Nuclear Matter Bio-Medical Science Super Heavy Element Search **Properties of Exotic Nuclei** Material Science High-precision Mass Measurement Neutron Science Nuclear Structure N = 28 Electric Dipole Moment and Symmetry

Nuclear Theory

Hyperfine Structure Study

RAON Concept

Major Milestones

Status of Site(Cultural assets & Site renovation/building)

Eval of Cultural assets: Acc & Exp('15.12.~'16.09.), Support Bldg('16.06.~'16.11.)

Site Building : Acc & Exp('16.07.~'17.01.), Support bldg('16.08.~'17.06.)

for RAON

Some experience at Stony Brook

- Kaon production in heavy-ion collisions & kaon condensation in NS G.Q.Li, C.-H. Lee, G.E. Brown PRL 79 (1997) 5214; NPA 625 (1997) 372.
- Workshop on Kaon Production, Dresden, Germany, Dec. 1998
 - comparison of various transport codes
 - compared cross sections channel by channel, etc.
 - RVUU code by G.Q. Li, further developed by Zhang, Song & C.M. Ko

Special Issue for RAON

New Physics: Sae Mulli, 66 (2016) 1563 http://dx.doi.org/10.3938/NPSM.66.1563

Introduction to DaeJeon BUU

- DaeJeon BUU code description
 - Initialization
 - Mean Field
 - Propagation

- Collision and Pauli Blocking
- Hadrons, cross-section and decay
- Preliminary test results and comparison

DJBUU project

New Physics: Sae Mulli, 66 (2016) 1563 http://dx.doi.org/10.3938/NPSM.66.1563

- What is DJBUU
 DaeJeon Boltzmann-Uehling-Uhlenbeck
- **DaeJeon** is city name in Korea where **RAON** will be built
- Current collaboration members
 S. Jeon (McGill, chair) ** developed MARTINI for RHIC/LHC
 Y. Kim, K. Kim (RISP) ** participated with RBUU last time
 Myungkuk Kim, Y.M. Kim, C.-H. Lee (PNU)

Boltzmann-Uehling-Uhlenbeck eq.

$$p_{a}^{\mu}\partial_{\mu}f_{a}(x,\mathbf{p}_{a}) + F_{a}^{j}(x)\frac{\partial}{\partial p_{a}^{j}}f_{a}(x,\mathbf{p}_{a}) = \mathcal{C}_{a}[\{f_{b}(x,\mathbf{p}_{b})\}]$$

$$C_{ab} = \frac{1}{2}\int \frac{d^{3}p'}{(2\pi)^{3}2E_{p'}}\int \frac{d^{3}k}{(2\pi)^{3}2E_{k}}\int \frac{d^{3}k'}{(2\pi)^{3}2E_{k'}} |\mathcal{M}_{ij}|^{2} (2\pi)^{4}\delta(p+k-p'-k')$$

$$\times \left[f_{a}(x,\mathbf{p}')f_{b}(x,\mathbf{k}')\tilde{f}_{a}(x,\mathbf{p})\tilde{f}_{b}(x,\mathbf{k}) - f_{a}(x,\mathbf{p})f_{b}(x,\mathbf{k})\tilde{f}_{a}(x,\mathbf{p}')\tilde{f}_{b}(x,\mathbf{k}')\right]$$

- Boltzmann eq. **collision term** $C_a[\{f_b\}]$
- Uehling-Uhlenbeck eq. Pauli-blocking factor $\tilde{f}_a(x, \mathbf{p}) = 1 f_a(x, \mathbf{p})$
- Time evolution of the one-body phase-space density $f_a(x, \mathbf{p}_a)$ under the nuclear force (mean field potential)

Test-particle method

- 100 test particles per nucleon
- Gaussian or Power-law distribution

$$\hat{f}_a(x,\mathbf{p}) = N_{\text{test}} f_a(x,\mathbf{p})$$

$$\hat{\sigma} = \sigma / N_{\text{test}}$$

$$\hat{f}_a(x,\mathbf{p}) = \sum_{i=1}^{N_a N_{\text{test}}} (2\pi)^3 g_x(\mathbf{x} - \mathbf{x}_i(t)) g_p(\mathbf{p} - \mathbf{p}_i(t))$$

$$g(\mathbf{u}) = g(u) = \mathcal{N}_{m,n} (1 - (u/a)^m)^n \text{ for } 0 < u/a < 1$$

 $a_x = 2.5 \text{ fm}$ $a_p = s\hbar/a_x$ $s \approx 0.5$ $m = 2, n = 3$

Daejeon Boltzmann-Uehling-Uhlenbeck

- c / c++ language
- openMP (Open Multi-Processing) implemented
- easy to follow & modify
- simulated mainly in Mac OSX

E_beam_NN_for_Heavy_Ion_Collision_in_GeV 0.2 Record_p_n_densities_at_the_center_1_for_on_0_for_off 1 Radius_for_density_calc_in_fm 3.0 Record_interval 10 Record_particle_states_1_for_on_0_for_off 1 Record_Interval 10 Turn_on_Coulomb_1_for_on_0_for_off 0 Number_of_grid_points_in_x 100 SigmaNN_CutOff_in_mb 50 Uncertainty_param_dxdp 0.6

RBUU code
• 1995, first developed in Munich (C. Fuchs)
 1996-2000, density-dep. RMF models, DBHF approaches (T. Gaitanos, C. Fuchs)
 2002-2005, isospin effects in the production thresholds (G. Ferini, T. Gaitanos)
 2005-2010, in-medium isospin effects in cross sections&kaon pot. (V. Prassa, T. Gaitanos)
· 2014, improvement in stability (RISP)

Mean Field

- We use relativistic mean field theory to calculate collective nuclear force using σ,ρ and ω fields
- make the approximation that the spatial part of the vector fields ω^μ and ρ^μ negligible

Parameter	Set I	Set II	NL3
f_{σ} (fm ²)	10.33	same	15.73
f_{ω} (fm ²)	5.42	same	10.53
f_{ρ} (fm ²)	0.95	3.15	1.34
f_{δ} (fm ²)	0.00	2.50	0.00
$A ({\rm fm}^{-1})$	0.033	same	-0.01
B	-0.0048	same	-0.003

TABLE I. Parameter sets.

B. Liu et al. PRC 65, 045201

Mean Field

$$egin{aligned} \partial^2 \sigma &+ rac{\partial U}{\partial \sigma} = -g_\sigma
ho_S \ (\partial^2 &+ m_\omega^2) \omega^
u = g_\omega j_b^
u \ (\partial^2 &+ m_
ho^2) oldsymbol{
ho}^
u = g_
ho oldsymbol{j}_I^
u \end{aligned}$$

$$p^{0} = E_{a}^{*} = \sqrt{(m_{a}^{*})^{2} + (\mathbf{p} - \mathbf{V})^{2}} + V^{0}$$

scalar potential
$$S = g_{\sigma}\sigma$$

vector potential $V^{\mu} = g_{\omega}\omega^{\mu} + g_{\rho}\tau^{3}\rho_{3}^{\mu}$
 $m_{a}^{*} = m_{a} + S$
 $U = \frac{m_{\sigma}^{2}}{2}\sigma^{2} + \frac{g_{2}}{3}\sigma^{3} + \frac{g_{3}}{4}\sigma^{4}$

scalar density
$$\rho_S = g \sum_{a=p,n,\bar{p},\bar{n}} \int \frac{d^3p}{(2\pi)^3 E_a^*} m_a^* f_a(x,\mathbf{p}_a)$$

baryon current $j_b^{\mu} = g \sum_{a=p,n,\bar{p},\bar{n}} (-1)^a \int \frac{d^3p}{(2\pi)^3 E_a^*} p_a^{\mu} f_a(x,\mathbf{p}_a)$
Isospin current $j_I^{3\mu} = g \sum_{a=p,n,\bar{p},\bar{n}} \tau_a^3 \int \frac{d^3p}{(2\pi)^3 E_a^*} p_a^{\mu} f_a(x,\mathbf{p}_a)$

Propagation

• Equation of motion

$$\frac{d\mathbf{x}_a}{dt} = \frac{\mathbf{p}_a}{E_a}$$
$$\frac{d\mathbf{p}_a}{dt} = -\nabla V_a^0 - m_a^* \nabla S.$$

- At each time step, pair of particle is under the decision of collision within the given time interval Δt

Collision and Pauli Blocking

Criterion for collision

$$d \leq \sqrt{\frac{\hat{\sigma}}{\pi}}$$

$$d^2 = \Delta \mathbf{x}_{\mathrm{CM}} \times \mathbf{n}_{\mathrm{CM}}|^2$$

two ptl distance

unit vector along the momentum direction

$$\hat{\sigma} = \sigma/N_{\mathrm{test}}$$

inversely scaled cross-section we adapted full ensemble method

$$t_{\rm coll} = t_{\rm prev} + \Delta t_{\rm coll}$$

$$\Delta t_{\rm coll} = -\frac{\Delta \mathbf{x} \cdot \Delta \mathbf{v}}{|\Delta \mathbf{v}|^2}.$$

Hadrons, cross-section and decay

- E_{lab} ~ O(100MeV)
 p, n, π, Δ(1232), N(1440), N(1520)
- cross-sections among hadrons
 Huber and Aichelin Nucl. Phys. A 573, 587 (1994)
 Cugnon et al. Nucl. Instrum. Methods Phys. Res. Sect. B 111, 215 (1996)
- decays of resonances
 Particle data group review
 C.Patrignani et al., Chin. Phys. C 40, 100001 (2016).

Code process at each time step

Collision of decayed particles, or decay of collided particles within Δt is not considered

What has been done

- Comparison of Heavy-ion transport codes under controlled conditions
- Box calculation for collision integral and Pauli blocking

Code-comparison project

PHYSICAL REVIEW C 93, 044609 (2016)

Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions

Jun Xu,^{1,*} Lie-Wen Chen,^{2,†} ManYee Betty Tsang,^{3,‡} Hermann Wolter,^{4,§} Ying-Xun Zhang,^{5,∥} Joerg Aichelin,⁶ Maria Colonna,⁷ Dan Cozma,⁸ Pawel Danielewicz,³ Zhao-Qing Feng,⁹ Arnaud Le Fèvre,¹⁰ Theodoros Gaitanos,¹¹ Christoph Hartnack,⁶ Kyungil Kim,¹² Youngman Kim,¹² Che-Ming Ko,¹³ Bao-An Li,¹⁴ Qing-Feng Li,¹⁵ Zhu-Xia Li,⁵ Paolo Napolitani,¹⁶ Akira Ono,¹⁷ Massimo Papa,¹⁸ Taesoo Song,¹⁹ Jun Su,²⁰ Jun-Long Tian,²¹ Ning Wang,²² Yong-Jia Wang,¹⁵ Janus Weil,¹⁹ Wen-Jie Xie,²³ Feng-Shou Zhang,²⁴ and Guo-Qiang Zhang¹

- Single Au nucleus stability
- Au+Au time evolution
- Pauli Blocking factor
 - B-cascade (100A MeV, without mean field)
 - B-full (100A MeV, with mean field)
 - D-full (400A MeV, with mean field)
- dNdYrap and Transverse flow

Single Au density profile

Au + Au collision @ 100 MeV/u (b=7 fm)

1.7

Attempted & successful collisions

Pauli Blocking factor

DJBUU

Transverse flow

t=140 fm/c **DJBUU**

BUU ----- BLOB ---- GIBUU-RMF ---- GIBUU-Skyrme ----- IBL ----- IBUU ----- PBUU ----- RBUU ----- RVUU

----- SMF

Box calculations (2016-2017)

- box size: 20 fm*20 fm*20 fm
- symmetric nuclear matter (equal p & n)
- HW1: test collisions and Pauli blocking without mean fields
- T = 0 MeV & 5 MeV (Fermi-Dirac)

The Box Simulation Organizing Committee

Maria Colonna, Akira Ono, Yongjia Wang, Jun Xu, Yingxun Zhang

(b)Time evolution of momenum distribution within 14 fm/c at T=0 MeV in CBOP1T0

Summary & Prospects

· DJBUU

- Daejeon BUU (new BUU-type code) is developed
- preliminary results are consistent with Jun Xu et al. (PRC93,044609) *"transport code-comparison project"*
- collisions and Pauli blockings seem to be working well

· Prospect

- perform code-tests (provided by Box Simulation Organizing Committee) *HW1 (collision & Pauli blocking), HW2 (mean field), HW3 (pion)*
- investigate various nuclear equations of states
- do simulations with various rare isotopes expected for RAON

Thanks