RESONANCE BEHAVIOUR OF THE PION PRODUCTION IN THE REACTION $\mathrm{pp} \rightarrow\{\mathrm{pp}\}_{\mathrm{s}} \pi^{0}$

Yu.N. Uzikov

Joint Institute for Nuclear Research, DLNP, Dubna

11th APCTP-BLTP JINR-PINP NRC KI-SpbSU Joint Workshop "Modern Problems in nuclear and elementary particle physics",

St-Petersburg, 24-28 July, 2017

- Dubna $p+{ }^{12} C \rightarrow d+X$ at 670 MeV (M.G. Mescheryakov et al.,1957)
D.I. Blokhintsev(1957): fluctons (6q) in nuclei
- $\Delta(1232)$ in $p d \rightarrow d p$ at $\sim 500-600 \mathrm{MeV}$:
N.S. Craigie, C. Wilkin, (1969) OPE; V.M. Kolybasov, N.Ya.

Smorodinskya (1973)
L. Kondratyuk, F. Lev, L.Schevchenko (1979-1982) :
$\Delta+$ B3 Tribarions!
O.Imambekov, Yu.N. U., L.Schevchenko (1988-1989):
Δ-dominates $d \sigma / d \Omega$ but masks short-range $\mathbf{N N}$ and T_{20} problem!
\Longrightarrow Spin structure of $N N \rightarrow N \Delta$ is not well known.

- $\Delta(1232)$ against of exotics
- How to suppress the Δ-contribution in $p d$ - and $p N$-ineractions?
- Reactions with the ${ }^{1} S_{0}$ diproton $\{p p\}_{s}$ (i.e. $E_{p p}<3 \mathrm{MeV}$) at large Q can give more insight into underlying dynamics due to difference in quantum numbers $J_{d}^{\pi}=1^{+}, T_{d}=0 \Longrightarrow$ $J_{p p}^{\pi}=0^{+}, T_{p p}=1$

$$
\begin{aligned}
\text { deuteron } & \Longrightarrow\left({ }^{1} S_{0}\right) \text { pn singlet deuteron or } \\
& \Longrightarrow\left({ }^{1} S_{0}\right) \text {-diproton, }\{p p\}_{s}
\end{aligned}
$$

1. $\mathbf{p d} \rightarrow \mathbf{d p} \Longrightarrow \mathrm{p}\{\mathrm{NN}\}_{\mathrm{s}} \rightarrow \mathrm{dN} \quad$ in $\mathbf{A}(\mathrm{p}, \mathrm{Nd}) \mathrm{B}$ suppression of the Δ - and N^{*}-excitations as $1: 9$ and $\quad \mathrm{pd} \rightarrow\{\mathrm{pp}\}_{\mathrm{s}} \mathrm{n}$
/O.Imambekov, Yu.N.Uzikov, Yad. Fiz. 52 (1990) 1361/

$A N K E @ C O S Y p d \rightarrow(p p)_{s} n$

ONE $+\Delta+$ SS calculation (J.Haidenbauer, Yu.Uzikov, Phys.Lett. B562(2003)227) When changing hard $V_{N N}$ (RSC, Paris) to the soft $V_{N N}$ (CD Bonn), ONE decreases and Δ-increases providing agreement with the COSY data V. Komarov et al., Phys. Lett. B553 (2003) 179.
Δ is still large!
The short range $V_{N N}$ is rather soft like for the CD Bonn model, but not the RSC and Paris.

Other reactions with pp $\left({ }^{1} S_{0}\right)$
Diproton physics at ANKE-COSY, 1999-2016
pd $\rightarrow\{\mathbf{p p}\}_{\mathrm{s}}$ n $0.5-2.0 \mathrm{GeV}$
$\mathrm{pp} \rightarrow\{\mathrm{pp}\}_{\mathrm{s}} \pi^{0}$
$\mathbf{p p} \rightarrow\{\mathbf{p p}\}_{\mathrm{s}} \gamma$
$\mathbf{p p} \rightarrow\{\mathbf{p p}\}_{\mathrm{s}} \pi \pi$
$\mathbf{p n} \rightarrow\{\mathbf{p p}\}_{\mathbf{s}} \pi^{-}, T_{p}=350 \mathrm{MeV}$, the contact d-term for ChPT
$\mathbf{d p} \rightarrow\{\mathbf{p p}\}_{\mathrm{s}} \mathbf{N} \pi, \quad T_{d}=1.6-2.3 \mathrm{GeV} \pi N=\Delta$ - excitation
It is assumed that the resonance sructure in $\mathbf{p p} \rightarrow \mathbf{d} \pi^{+}$at $500-800 \mathrm{MeV}$ is dominated by the Δ (1232)-isobar excitation (J. Niskanen, Phys.Lett B141 (1984) 301; C. Furget et al. Nucl.Phys. A655 (1999) 495).
Remarkable resonance structure is observed in total cross section $p n \rightarrow d \pi^{0} \pi^{0}$,
$D_{T=0, J=3}(2380), \Gamma=70 \mathrm{MeV}$ (WASA@COSY M.Bashkanov et al. PRL 102(2009)
052301. This obseravtion stimulates to re-consider others resonance-like reactions.

So, new analysis by M.Platonova, V. Kukulin NPA (2016) shows that the Δ mechanism is not sufficient for $\mathbf{p p} \rightarrow \mathbf{d} \pi^{+}$and, therefore, some dibaryon resonances were introduced: ${ }^{1} D_{2} p(2150 \mathrm{MeV}, \Gamma=110 \mathrm{MeV}),{ }^{3} F_{3} d(2200-2260 \mathrm{MeV} \Gamma=150$ MeV) - to get an agreement (including polarizations too PRD94(2016)).
Thus, it is interesting to study another channel $: p p \rightarrow\{p p\}_{s} \pi^{0}$ at similar kinematics but with the diproton $\{p p\}_{s}$.

Allowed transitions in $\mathbf{p p} \rightarrow \mathbf{d} \pi^{+} \& \mathbf{p p} \rightarrow\{\mathbf{p p}\}_{\mathbf{s}} \pi^{\mathbf{0}}$
2. $\mathrm{pp} \rightarrow \mathrm{d} \pi^{+} \& \mathrm{pp} \rightarrow\{\mathrm{pp}\}_{\mathrm{s}} \pi^{0}$
${ }^{1} S_{0}$ diproton: $\mathbf{J}^{\pi}=\mathbf{0}^{+}, \mathbf{T}=\mathbf{1}, \mathbf{S}=\mathbf{0}, \mathbf{L}=\mathbf{0}$
deuteron: $\mathrm{J}^{\pi}=\mathbf{1}^{+}, \mathbf{T}=\mathbf{0}, \mathrm{S}=1, \mathrm{~L}=\mathbf{0}, \mathbf{2}$

- $(-1)^{\mathrm{L}+\mathrm{S}+\mathrm{T}}=-1$ (Pauli principle)
- Spin-parity conservation:
$\star \mathrm{pp} \rightarrow\{\mathrm{pp}\}_{\mathrm{s}} \pi^{0} \mathrm{~L}-\operatorname{odd}(\mathrm{L}=1,3, \ldots) \mathrm{T}=1, \mathrm{~S}=1$;
$\Longrightarrow \Delta \mathbf{N}$ in S-wave (or $\left.N^{*} N\right) \pi=+1$ - vorbidden
$\star \mathrm{pp} \rightarrow \mathrm{d} \pi^{+}$L-odd and even, $T=1, S=1$ and $S=0$;
$\Longrightarrow \Delta \mathbf{N}$ in S-wave $\left(N^{*} N\right) \pi=+1$-not vorbidden
$\Longrightarrow \Delta(1232)$ dominates in the $p p \rightarrow d \pi^{+}$at $\approx \mathbf{6 0 0} \mathbf{~ M e V}$
And what is the Δ-contribution in $\mathrm{pp} \rightarrow\{\mathrm{pp}\}_{\mathrm{s}} \pi^{0}$?

V.Komarov et al. PRC 94 (20016) 052301;

Two $T=1$ resonances are found with almost equal masses 2205 MeV : $J^{p}=0^{-}\left({ }^{3} P_{0} s\right), J^{p}=2^{-}\left({ }^{3} P_{2} d\right) ; \Gamma_{0}=95 \pm 9 \mathrm{MeV} \Gamma_{2}=170 \pm 32 \mathrm{MeV}$,

M.Bashkanov et al. PRL 102 (2009) 052301; several others reactions Recent review H. Clement, "On the History of Dibaryons and their final Discovery", Prog. Part. Nucl. Phys. 93 (2017) 195
$d(2380)$ in neutron stars - I.Vidana et al. Arxiv:1706.09701 [nucl-th]
$\pi N \Delta$ system - A.Gal, H.Garcilazo, PRL 111 (2013) 172301;
6q-models - see talk by Y.-B. Dong at this conference;
coupled channel, ordinary $\Delta \Delta$ system - J. Niskanen, PRC 95 (2017) 054002

COSY DATA pp $\rightarrow\{\mathbf{p p}\}_{\mathrm{s}} \pi^{0}: V . K u r b a t o v ~ e t ~ a l ., ~ P L B ~ 661 ~(2008) 22 ~$

theory: J.Niskanen, PLB 642 (2006) 34 /full lines/

The OPE model

The OPE is similar to that for $p d \rightarrow\{p p\}_{s} n$ /Yu.N.U., J. Haidenbauer, C. Wilkin, PRC 75 (2007) 014008/

- How to exclude Δ from $\pi^{0} p \rightarrow \pi^{0} p$?

$$
\begin{gather*}
\mathbf{A}\left(\pi^{0} \mathbf{p} \rightarrow \pi^{0} \mathbf{p}\right)=\frac{1}{3}\left(\mathbf{a}_{\frac{1}{2}}+2 \mathbf{a}_{\frac{3}{2}}\right) \tag{1}\\
\mathbf{d} \sigma\left(\pi^{0} \mathbf{p} \rightarrow \pi^{0} \mathbf{p}\right)=\frac{1}{2}\left\{\mathbf{d} \sigma\left(\pi^{+} \mathbf{p}\right)+\mathbf{d} \sigma\left(\pi^{-} \mathbf{p}\right)-\mathbf{d} \sigma\left(\pi^{0} \mathbf{n} \rightarrow \pi^{-} \mathbf{p}\right)\right\} \tag{2}
\end{gather*}
$$

If the amplitude $a_{\frac{3}{2}}$ is excluded from Eq. (1)

$$
\begin{equation*}
\mathbf{d} \widetilde{\sigma}\left(\pi^{0} \mathbf{p} \rightarrow \pi^{0} \mathbf{p}\right)=\frac{1}{18}\left\{\mathbf{3 d} \sigma\left(\pi^{-} \mathbf{p}\right)-\mathbf{d} \sigma\left(\pi^{+} \mathbf{p}\right)+\mathbf{3} \mathbf{d} \sigma\left(\pi^{0} \mathbf{n} \rightarrow \pi^{-} \mathbf{p}\right)\right\} \tag{3}
\end{equation*}
$$

$\square p p \rightarrow\{p p\}_{s} \pi^{0}:$ The OPE results with and whithout $\Delta(1232)$

$$
\text { OPE: } p p \rightarrow\{p p\}_{s} \pi^{0}, p p \rightarrow\{p p\}_{s} \gamma
$$

OPE approximation does not allow one to take into account the Pauli principle $(-1)^{S+T+L}=-1$ because the direct and exchange diagrams are not involved explicitely.
Even L must be excluded.
An explicite consideration of the Δ-isobar is required.

The BOX-diagramm with Δ for $p \pi^{0} \rightarrow p \pi^{0}$

Yu.N. Uzikov, Izv.RAN, Ser.Fiz. 81 (2017) 815 / Bull. Rus. Ac. Sci: Physics, 81
(2017) 739/ Loop integrations

$$
\begin{array}{r}
<\pi N_{2} \left\lvert\, N_{1}>=\frac{f_{\pi N N}}{m_{\pi}} \varphi_{1}^{+}(\boldsymbol{\sigma} \mathbf{Q})\left(\boldsymbol{\tau} \boldsymbol{\Phi}_{\pi}\right) \varphi_{2} 2 m_{N}\right., \\
<\rho N_{2} \left\lvert\, N_{1}>=\frac{f_{\rho N N}}{m_{\rho}} \varphi_{1}^{+}\left([\boldsymbol{\sigma} \mathbf{Q}] \epsilon_{\rho}\right)\left(\boldsymbol{\tau} \boldsymbol{\Phi}_{\rho}\right) \varphi_{2} 2 m_{N}\right., \\
<\pi N \left\lvert\, \Delta>=\frac{f_{\pi N \Delta}}{m_{\pi}}\left(\mathbf{\Psi}_{\Delta}^{+} \mathbf{Q}_{\pi}^{\prime}\right)\left(\mathbf{T} \boldsymbol{\Phi}_{\pi}\right) \varphi \sqrt{2 m_{N} 2 m_{\Delta}}\right., \\
<\rho N \left\lvert\, \Delta>=\frac{f_{\rho N \Delta}}{m_{\rho}}\left(\left[\mathbf{\Psi}_{\Delta}^{+} \mathbf{Q}_{\rho}^{\prime}\right] \boldsymbol{\epsilon}_{\rho}\right)\left(\mathbf{T} \boldsymbol{\Phi}_{\rho}\right) \varphi \sqrt{2 m_{N} 2 m_{\Delta}}\right.,
\end{array}
$$

where

$$
\begin{gathered}
f_{\pi N N}=1.00, f_{\pi N \Delta}=2.15 \\
f_{\rho N N}=6.20, f_{\rho N \Delta}=13.33 .
\end{gathered}
$$

V.F. Dmitriev et al (1987) M.Platonova, V.Kukulin, NPA (2016)

$$
\Gamma(k)=\Gamma_{0}\left(\frac{k_{o n}}{k_{R}}\right)^{3} \frac{k_{R}^{2}+\chi^{2}}{k_{o n}^{2}+\chi^{2}}, \quad \Gamma(k)=\Gamma_{0}\left(\frac{k_{o n}}{k_{R}}\right)^{3}\left(\frac{k_{R}^{2}+\lambda^{2}}{k_{o n}^{2}+\lambda^{2}}\right)^{2},
$$

$\mathbf{Z}=\frac{\mathbf{k}_{\mathbf{R}}^{2}+\chi^{2}}{\mathbf{k}_{\mathbf{o n}+}^{2}+\chi^{2}}, \quad k_{o n}=k\left(s_{\Delta}, m^{2}, m_{\pi}^{2}\right) ; \chi=0.18 \mathrm{GeV}, \quad \lambda=0.3 \mathrm{GeV} ; \sqrt{Z} \rightarrow \pi N \Delta$.

Matrix element of $p p \rightarrow\{p p\}_{s} \pi^{0}$. The PWA expansion.

$$
\begin{equation*}
M=\chi_{\sigma_{2}}^{T}(2) \frac{i \sigma_{y}}{\sqrt{2}}(A \vec{\sigma} \hat{\vec{p}}+B \vec{\sigma} \hat{\vec{q}}) \chi_{\sigma_{1}}(1) \tag{5}
\end{equation*}
$$

\vec{p} - the proton momentum, \vec{q} - the pion momentum

$$
\begin{gather*}
\frac{d \sigma}{d \Omega}=|A|^{2}+|B|^{2}+2 R e A B^{*} \cos \theta, \tag{6}\\
A_{y} \frac{d \sigma}{d \Omega}=2 I^{2} A B^{*} \sin \theta ; \\
M_{\lambda_{1}=\frac{1}{2}, \lambda_{2}=\frac{1}{2}}=-\frac{1}{\sqrt{2}}(A+B \cos \theta) \equiv \Phi_{1}, \\
M_{\lambda_{1}=\frac{1}{2}, \lambda_{2}=-\frac{1}{2}}=\frac{1}{\sqrt{2}} B \sin \theta \equiv \Phi_{2} \tag{7}\\
M_{\lambda_{1} \lambda_{2}}=\sum_{J} \frac{2 J+1}{2} d_{\lambda, 0}^{J}(\theta)<00 ; J M\left|J M ; l_{\pi} 0><J M ; L S\right| J M ; \lambda_{1} \lambda_{2}>A\left({ }^{2 S+1} L_{J}, l_{\pi}\right) \equiv \\
\equiv \sum_{J} \frac{2 J+1}{2} d_{\lambda, 0}^{J}(\theta) \Phi_{\lambda_{1} \lambda_{2}}^{(J)}(E), \tag{8}
\end{gather*}
$$

ANKE@COSY data • - D. Mchedlishvili et al., PRL (2013) $\lambda_{\pi}=0.5 \mathrm{GeV}$, and $\mathbf{T}_{\mathbf{2 2}}$
$\mathbf{Z}, \chi=0.180 \mathbf{G e V} p p \rightarrow\{p p\}_{s} \pi^{0}$

In \sqrt{Z}-factor in $\pi N \Delta q=q_{o n}=k\left(s_{\Delta}, m^{2}, m_{\pi}^{2}\right)$: 1- direct, 2-exchange, 3- total; 4total PK $\Gamma(k)=\Gamma_{0}\left(\frac{k}{k_{R}}\right)^{3} \frac{k_{R}^{2}+\chi^{2}}{k^{2}+\chi^{2}} \chi=0.180 \mathrm{GeV}, \lambda_{\pi}=0.55 \mathrm{GeV}$

Off-shell \sqrt{Z}-factor in $\pi N \Delta-$ vertices diminishes $d \sigma / d \Omega$ (line 2).

Off-shell $Z^{3 / 2}$-factor in $\Gamma(k)$ and in $\pi N \Delta$ - vertices improves the shape of $d \sigma / d \Omega$ at $T>0.6 \mathrm{GeV}$ but disproves at $T<0.6 \mathrm{GeV}$

PWA for $p p \rightarrow\{p p\}_{s} \pi^{0}$ within the Δ - model: three waves dominate

V.Komarov et al. PRC 93
(2016)065206: ${ }^{3} P_{0} s,{ }^{3} P_{2} d$ are sufficient for $\frac{d \sigma}{d \Omega}$ and $A_{y}(\theta)$.

The Δ-model: ${ }^{3} F_{2} d$ is also important.

Summary \& Outlook

- Joint study of the d - and $\{\mathrm{pp}\}_{\mathrm{s}^{-}}$channels is instructive.
- Δ is suppressed in the $\{p p\}_{s^{-}}$channel by spin-parity and isospin conservation but is still very important.
- The box-diagram with Δ in pp $\rightarrow\{p p\}_{s} \pi^{0}$ allows one to some extent explain E-dependence of $d \sigma / d \Omega\left(0^{\circ}\right)$ as in $p p \rightarrow d \pi^{+}$, but completely fails with angular dependence and $A_{y}(\theta)$.
- Is the observed resonance structure caused solely by the Δ-isobar or by specific $\Delta-N$ interaction?
Dibaryons contrtibution? (${ }^{3} P_{0} s,{ }^{3} P_{2} d$?)
Work is in progress with pp $\rightarrow\{\mathrm{pp}\}_{s} \pi^{0} \ldots$ THANK YOU!

