RESONANCE BEHAVIOUR OF THE PION PRODUCTION IN THE REACTION $pp \to \{pp\}_s \pi^0$

Yu.N. Uzikov

Joint Institute for Nuclear Research, DLNP, Dubna

11th APCTP-BLTP JINR-PINP NRC KI-SpbSU Joint Workshop "Modern Problems in nuclear and elementary particle physics", St-Petersburg, 24-28 July, 2017 Preface

• Dubna $p + {}^{12}C \rightarrow d + X$ at 670 MeV (M.G. Mescheryakov et al.,1957)

D.I. Blokhintsev(1957): fluctons (6q) in nuclei

• $\Delta(1232)$ in $pd \rightarrow dp$ at $\sim 500 - 600$ MeV:

N.S. Craigie, C. Wilkin, (1969) OPE; V.M. Kolybasov, N.Ya. Smorodinskya (1973) L. Kondratyuk, F. Lev, L.Schevchenko (1979-1982) : $\Delta + B3$ Tribarions!

O.Imambekov, Yu.N. U., L.Schevchenko (1988-1989): Δ -dominates $d\sigma/d\Omega$ but masks short-range NN and T_{20} problem! \Rightarrow Spin structure of $NN \rightarrow N\Delta$ is not well known.

• $\Delta(1232)$ against of exotics

 \bullet How to suppress the $\Delta\text{-contribution}$ in pd- and pN-ineractions

Motivation

• Reactions with the ${}^{1}S_{0}$ diproton $\{pp\}_{s}$ (i.e. $E_{pp} < 3$ MeV) at large Q can give more insight into underlying dynamics due to difference in quantum numbers $J_{d}^{\pi} = 1^{+}, T_{d} = 0 \Longrightarrow$ $J_{pp}^{\pi} = 0^{+}, T_{pp} = 1$

deuteron $\implies ({}^{1}S_{0})$ pn singlet deuteron or $\implies ({}^{1}S_{0})$ -diproton, $\{pp\}_{s}$

1. $pd \rightarrow dp \implies p\{NN\}_s \rightarrow dN$ in A(p,Nd)B suppression of the Δ - and N^* -excitations as 1:9

$\text{and} \quad pd \to \{pp\}_{\mathbf{s}}n$

/O.Imambekov , Yu.N.Uzikov, Yad. Fiz. 52 (1990) 1361/

ONE+ Δ +**SS** calculation (*J.Haidenbauer*, *Yu.Uzikov*, *Phys.Lett. B562*(2003)227) When changing hard V_{NN} (RSC, Paris) to the soft V_{NN} (CD Bonn), **ONE** decreases and Δ -increases providing agreement with the COSY data V. Komarov et al., Phys. Lett. B553 (2003) 179.

 Δ is still large! The short range V_{NN} is rather soft like for the CD Bonn model, but not the RSC and Paris.

Other reactions with $pp(^1S_0)$ _ Diproton physics at ANKE-COSY, 1999-2016 $pd \rightarrow \{pp\}_{s}n \ 0.5 - 2.0 \ GeV$ $\mathbf{pp} \to \{\mathbf{pp}\}_{\mathbf{s}} \pi^{\mathbf{0}}$ $pp \rightarrow \{pp\}_{s}\gamma$ $\mathbf{pp} \rightarrow \{\mathbf{pp}\}_{\mathbf{s}} \pi \pi$ $\mathbf{pn} \rightarrow \{\mathbf{pp}\}_{\mathbf{s}} \pi^{-}, T_{p} = 350 \text{ MeV}, \text{ the contact d-term for ChPT}$ $d\mathbf{p} \rightarrow \{\mathbf{pp}\}_{\mathbf{s}} \mathbf{N}\pi$, $T_d = 1.6 - 2.3 \text{ GeV } \pi N = \Delta$ - excitation It is assumed that the resonance sructure in $~{f pp}
ightarrow {f d}\pi^+$ at 500-800 MeV is dominated by the $\Delta(1232)$ -isobar excitation (J. Niskanen , Phys.Lett B141 (1984) 301; C. Furget et al. Nucl. Phys. A655 (1999) 495). Remarkable resonance structure is observed in total cross section $pn \rightarrow d\pi^0 \pi^0$, $D_{T=0,J=3}(2380), \Gamma = 70 \text{ MeV}$ (WASA@COSY M.Bashkanov et al. PRL 102(2009) 052301. This obseravtion stimulates to re-consider others resonance-like reactions. So, new analysis by M.Platonova, V. Kukulin NPA (2016) shows that the Δ mechanism is not sufficient for ${f pp}
ightarrow {f d}\pi^+$ and, therefore, some dibaryon resonances were introduced: ${}^{1}D_{2}p$ (2150 MeV, $\Gamma = 110$ MeV), ${}^{3}F_{3}d$ (2200-2260 MeV $\Gamma = 150$ MeV) – to get an agreement (including polarizations too PRD94(2016)). Thus, it is interesting to study another channel: $pp \rightarrow \{pp\}_s \pi^0$ at similar kinematics but with the diproton $\{pp\}_s$.

Allowed transitions in $pp \rightarrow d\pi^+ \& pp \rightarrow \{pp\}_s \pi^0$

2.
$$pp \rightarrow d\pi^+ \& pp \rightarrow \{pp\}_s \pi^0$$

¹S₀ diproton: $J^{\pi} = 0^+, T = 1, S = 0, L = 0$
deuteron: $J^{\pi} = 1^+, T = 0, S = 1, L = 0, 2$

- $(-1)^{L+S+T} = -1$ (Pauli principle)
- Spin-parity conservation:

*
$$pp \rightarrow \{pp\}_{s}\pi^{0} L - odd(L = 1, 3, ...)T = 1, S = 1;$$

 $\implies \Delta N \text{ in S-wave (or } N^{*}N) \pi = +1 - vorbidden$

* $pp \rightarrow d\pi^+$ L-odd and even, T = 1, S = 1 and S = 0; $\implies \Delta N$ in S-wave (N^*N) $\pi = +1$ -not vorbidden $\implies \Delta(1232)$ dominates in the $pp \rightarrow d\pi^+$ at \approx 600 MeV

And what is the Δ -contribution in $pp \rightarrow \{pp\}_s \pi^0$?

WASA@COSY $pn \rightarrow d\pi^0 \pi^0$, $\Gamma = 70$ MeV .

H. Clement / Progress in Particle and Nuclear Physics 93 (2017) 195-242

M.Bashkanov et al. PRL 102 (2009) 052301; several others reactions Recent review H. Clement, "On the History of Dibaryons and their final Discovery", Prog. Part. Nucl. Phys. 93 (2017) 195 d(2380) in neutron stars – I.Vidana et al. Arxiv:1706.09701 [nucl-th]

 $\pi N\Delta$ system – A.Gal, H.Garcilazo, PRL 111 (2013) 172301; 6q-models – see talk by Y.-B. Dong at this conference; coupled channel, ordinary $\Delta\Delta$ system – J. Niskanen, PRC 95 (2017) 054002

How to exclude Δ from $\pi^0 p \rightarrow \pi^0 p$?

$$A(\pi^{0}p \to \pi^{0}p) = \frac{1}{3} \left(a_{\frac{1}{2}} + 2a_{\frac{3}{2}} \right),$$
 (1)

$$\mathbf{d}\sigma(\pi^{\mathbf{0}}\mathbf{p}\to\pi^{\mathbf{0}}\mathbf{p}) = \frac{1}{2} \Big\{ \mathbf{d}\sigma(\pi^{+}\mathbf{p}) + \mathbf{d}\sigma(\pi^{-}\mathbf{p}) - \mathbf{d}\sigma(\pi^{\mathbf{0}}\mathbf{n}\to\pi^{-}\mathbf{p}) \Big\},\tag{2}$$

If the amplitude $a_{\frac{3}{2}}$ is excluded from Eq. (1)

$$d\widetilde{\sigma}(\pi^{0}\mathbf{p} \to \pi^{0}\mathbf{p}) = \frac{1}{18} \Big\{ 3d\sigma(\pi^{-}\mathbf{p}) - d\sigma(\pi^{+}\mathbf{p}) + 3d\sigma(\pi^{0}\mathbf{n} \to \pi^{-}\mathbf{p}) \Big\}.$$
(3)

 $pp \rightarrow \{pp\}_s \pi^0$: The OPE results with and whithout $\Delta(1232)$

OPE: $pp \rightarrow \{pp\}_s \pi^0$, $pp \rightarrow \{pp\}_s \gamma$

OPE approximation does not allow one to take into account the Pauli principle $(-1)^{S+T+L} = -1$ because the direct and exchange diagrams are not involved explicitly.

Even L must be excluded.

An explicite consideration of the Δ -isobar is required.

 πNN , $\pi N\Delta$ -vertices; $\Gamma_{\Delta}(k)$

$$<\pi N_{2}|N_{1}> = \frac{f_{\pi NN}}{m_{\pi}}\varphi_{1}^{+}(\boldsymbol{\sigma}\mathbf{Q})(\boldsymbol{\tau}\boldsymbol{\Phi}_{\pi})\varphi_{2}2m_{N},$$

$$<\rho N_{2}|N_{1}> = \frac{f_{\rho NN}}{m_{\rho}}\varphi_{1}^{+}([\boldsymbol{\sigma}\mathbf{Q}]\epsilon_{\rho})(\boldsymbol{\tau}\boldsymbol{\Phi}_{\rho})\varphi_{2}2m_{N},$$

$$<\pi N|\Delta> = \frac{f_{\pi N\Delta}}{m_{\pi}}(\boldsymbol{\Psi}_{\Delta}^{+}\mathbf{Q}_{\pi}')(\mathbf{T}\boldsymbol{\Phi}_{\pi})\varphi\sqrt{2m_{N}2m_{\Delta}},$$

$$<\rho N|\Delta> = \frac{f_{\rho N\Delta}}{m_{\rho}}([\boldsymbol{\Psi}_{\Delta}^{+}\mathbf{Q}_{\rho}']\epsilon_{\rho})(\mathbf{T}\boldsymbol{\Phi}_{\rho})\varphi\sqrt{2m_{N}2m_{\Delta}},$$

where

$$f_{\pi NN} = 1.00, f_{\pi N\Delta} = 2.15,$$

 $f_{\rho NN} = 6.20, f_{\rho N\Delta} = 13.33.$

V.F. Dmitriev et al (1987) M.Platonova, V.Kukulin, NPA (2016)

$$\Gamma(k) = \Gamma_0 \left(\frac{k_{on}}{k_R}\right)^3 \frac{k_R^2 + \chi^2}{k_{on}^2 + \chi^2}, \qquad \Gamma(k) = \Gamma_0 \left(\frac{k_{on}}{k_R}\right)^3 \left(\frac{k_R^2 + \lambda^2}{k_{on}^2 + \lambda^2}\right)^2,$$
$$\mathbf{Z} = \frac{\mathbf{k}_R^2 + \chi^2}{\mathbf{k}_{on}^2 + \chi^2}, \quad k_{on} = k(s_\Delta, m^2, m_\pi^2); \ \chi = 0.18 \text{ GeV}, \qquad \lambda = 0.3 \text{ GeV}; \ \sqrt{Z} \to \pi N \Delta.$$

Matrix element of $pp \rightarrow \{pp\}_s \pi^0$. The PWA expansion.

$$M = \chi_{\sigma_2}^T(2) \frac{i\sigma_y}{\sqrt{2}} \left(A \vec{\sigma} \hat{\vec{p}} + B \vec{\sigma} \hat{\vec{q}} \right) \chi_{\sigma_1}(1)$$
(5)

 \vec{p} – the proton momentum, \vec{q} – the pion momentum

$$\frac{d\sigma}{d\Omega} = |A|^2 + |B|^2 + 2ReAB^* \cos\theta, \tag{6}$$
$$A_y \frac{d\sigma}{d\Omega} = 2ImAB^* \sin\theta;$$

$$M_{\lambda_{1}=\frac{1}{2},\lambda_{2}=\frac{1}{2}} = -\frac{1}{\sqrt{2}}(A + B\cos\theta) \equiv \Phi_{1},$$
$$M_{\lambda_{1}=\frac{1}{2},\lambda_{2}=-\frac{1}{2}} = \frac{1}{\sqrt{2}}B\sin\theta \equiv \Phi_{2}$$
(7)

J

$$M_{\lambda_{1}\lambda_{2}} = \sum_{J} \frac{2J+1}{2} d^{J}_{\lambda,0}(\theta) < 00; JM|JM; l_{\pi}0 > < JM; LS|JM; \lambda_{1}\lambda_{2} > A(^{2S+1}L_{J}, l_{\pi}) \equiv \\ \equiv \sum_{J} \frac{2J+1}{2} d^{J}_{\lambda,0}(\theta) \Phi^{(J)}_{\lambda_{1}\lambda_{2}}(E), \quad (8)$$

Z, $\chi = 0.180$ **GeV** $pp \to \{pp\}_s \pi^0$

Influence of off-shell effects in $\pi N\Delta$ -verices via \sqrt{Z}

$$-Z^{3/2}, \ pp \to \{pp\}_s \pi^0$$

Off-shell $Z^{3/2}$ -factor in $\Gamma(k)$ and in $\pi N\Delta$ - vertices improves the shape of $d\sigma/d\Omega$ at T > 0.6 GeV but disproves at T < 0.6 GeV

Summary & Outlook

• Joint study of the d- and $\{pp\}_s$ - channels is instructive.

• Δ is suppressed in the $\{pp\}_{s}$ - channel by spin-parity and isospin conservation but is still very important.

• The box-diagram with Δ in $\mathbf{pp} \to {\mathbf{pp}}_s \pi^0$ allows one to some extent explain E-dependence of $d\sigma/d\Omega(0^\circ)$ as in $pp \to d\pi^+$, but completely fails with angular dependence and $A_y(\theta)$.

• Is the observed resonance structure caused solely by the Δ -isobar or by specific $\Delta - N$ interaction? Dibaryons contrtibution? (${}^{3}P_{0}s$, ${}^{3}P_{2}d$?) Work is in progress with $pp \rightarrow \{pp\}_{s}\pi^{0}...$ THANK YOU!