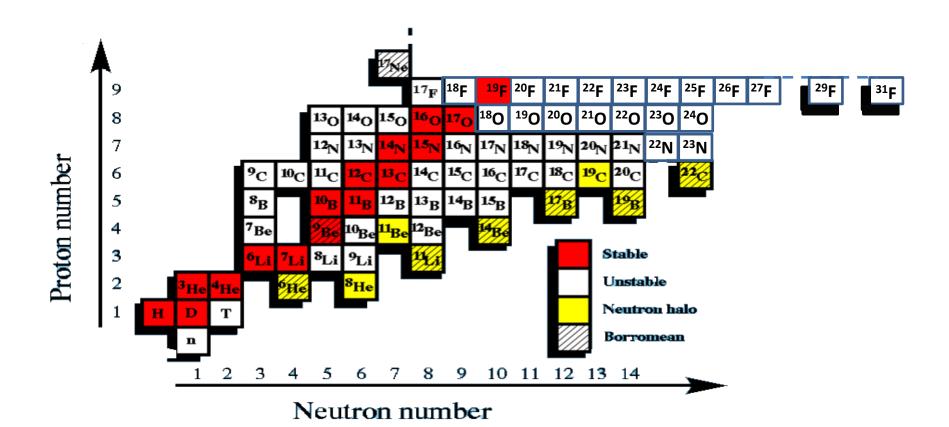
11th APCTP-BLTP JINR-PINP NRC KI-SbSU Joint Workshop
Modern problems in nuclear and elementary particle physics
July 25 -31, St. Petersburg, Russia

S. N. Ershov

Joint Institute for Nuclear Research

Cluster structure of light nuclei: the ²²C example



²²C was first observed to be bound in 1986

$$\beta$$
-decay half-lives $t_{1/2} = 6.1^{+1.4}_{-1.2} \text{ ms in } 2003$

(evaluation, 2003)
$$S_{2n} = 420 \pm 940 \; \mathrm{keV}$$

Reaction cross sections (σ_R) for 19,20,22 C + p at E = 40A MeV

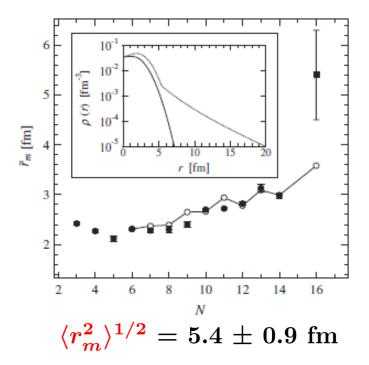
(direct time-of-flight measurement, 2012)

$$S_{2n} = 0^{+320}_{-0} \text{ keV}$$

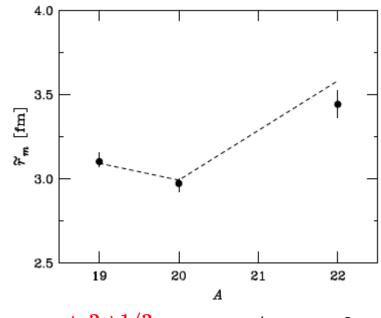
Interaction cross sections (σ_I) for $^{19,20,22}\mathrm{C}+\mathrm{C}$ at $\mathrm{E}=(235\text{-}307)\mathrm{A}$ MeV

\mathbf{A}	19	20	22
$\sigma_R \; (ext{mb})$	$\boxed{754\pm22}$	$\boxed{791 \pm 34}$	1338 ± 274

${f A}$	19	20	22
$\sigma_I \; (ext{mb})$	$\boxed{1125\pm25}$	1111 ± 8	1280 ± 22



K. Tanaka et al., PRL 104, 062701 (2010)



$$\langle r_m^2 \rangle^{1/2} = 3.44 \pm 0.08 \text{ fm}$$

Y. Togano et al., PLB 761, 412 (2016)

 S_{2n} of $^{22}\mathrm{C}$ has large uncertainty properties of unbound $^{21}\mathrm{C}$ and $^{23}\mathrm{C}$ are not well known

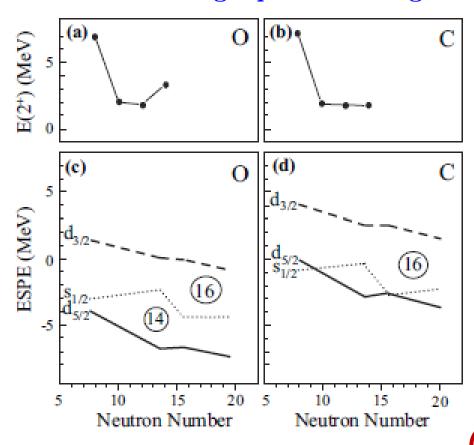
parallel momentum distribution of ²⁰C following two-neutron neutron removal reactions from ²²C



N. Kobayashi et al., PRC 86, 054604 (2012)

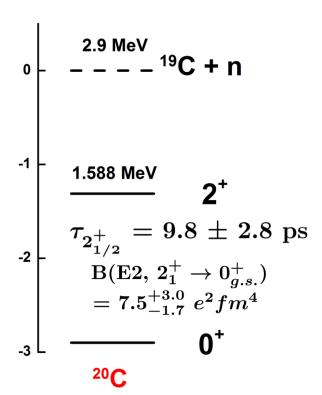
the spectroscopy of the neutron-rich C isotopes till ^{20}C

Evolution of the 2⁺ energies and effective single-particle energies



N = 14 subshell gap is no longer present in the C isotopic chain

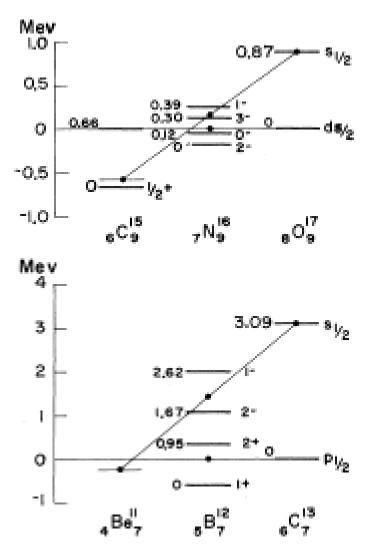
M. Stanoiu et al., PRC 78, 034315 (2008)

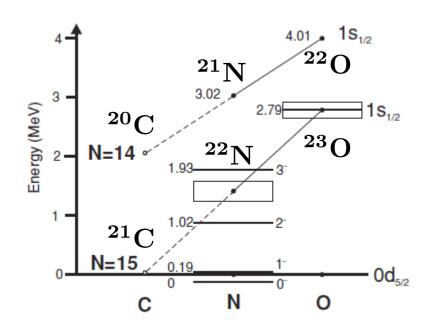


configuration mixing in C nuclei is large the ground state as well as the $\mathbf{2}_{1}^{+}$ state in $^{16,18,20}\mathrm{C}$ are dominated by $(d_{5/2},\,s_{1/2})^{2,4,6}$ configurations

close spacing between $s_{1/2}$ and $d_{5/2}$:
possibility of many halo configurations
in C isotopes related
to the loosely bound $s_{1/2}$ orbital

evolution of a shell gap with neutron number N can be extracted from the single particle or single hole levels in the N - 1 or N + 1 nuclei





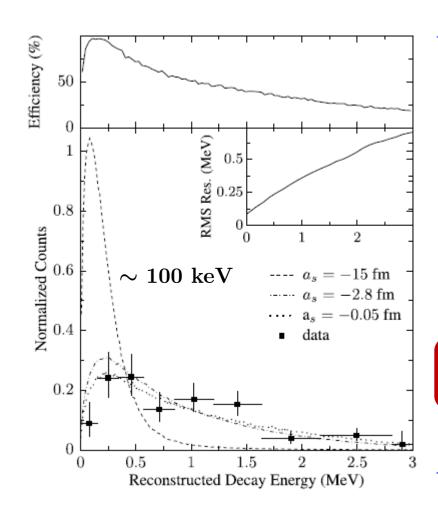
disappearance of the gap $\nu 1s_{1/2}$ - $\nu 0d_{5/2}$ and even a level inversion of the $(\nu 1s_{1/2}, \nu 0d_{5/2})$ levels in the nucleus ²¹C seems likely

I. Talmi, I. Unna, PRL 4, 469 (1960)

M. J. Strongman et al., PRC 80, 021302(R) (2009)

A search for the neutron-unbound nucleus ²¹C

²¹C had been shown to be unbound in 1985



S. Mosby et al., NPA 909, 69 (2013)

the single-proton removal reaction from a beam of ^{22}N at $68~{\rm MeV/u}$

No evidence for a low-lying state the ^{20}C + n decay-energy spectrum could be described with an *s*-wave line shape with a scattering length limit of -2.8 fm $< a_s < 0$ fm

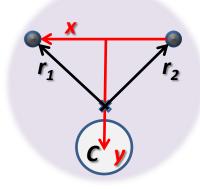
the l=2 states are not populated by the reaction mechanism

the search for 21 C should concentrate on populating the d wave state

the first case:

the two-body subsystem of a Borromean two-neutron halo nucleus does not have a low-lying virtual state or resonance below 1 MeV

FEW-BODY CLUSTER MODELS



The Schrodinger equation

$$H_{A}\Psi(\mathbf{r}_{1},\cdots,\mathbf{r}_{A})=E\Psi(\mathbf{r}_{1},\cdots,\mathbf{r}_{A})$$

Total hamiltonian of the three-body cluster models $(A = A_C + 2)$

$$H_{m{A}} = H_{m{A_C}} + T_{m{x},m{y}} + V(r_1,r_2) + \sum_{i=1}^{A_C} V(r_1,r_i) + \sum_{i=1}^{A_C} V(r_2,r_i)$$

wave function is factorized into a sum of products from two parts

$$\Psi(\mathbf{r}_1,\cdots,\mathbf{r}_A) = \sum_{i} \phi_i(\mathbf{r}_1,\cdots,\underline{\mathbf{r}}_{A_C}) \, \psi_i(\mathbf{x},\mathbf{y})$$

The sum may include core excitations

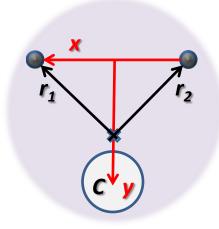
$$H_{A_C} \phi_i(\mathbf{r}_1, \cdots, \mathbf{r}_{A_C}) = \epsilon_i \phi_i(\mathbf{r}_1, \cdots, \mathbf{r}_{A_C})$$

Calculations of the bound states and continuum wave functions

Borromean nature of halo nuclei

(no bound states between pairs of clusters)

one type of the wave function asymptotic behaviour

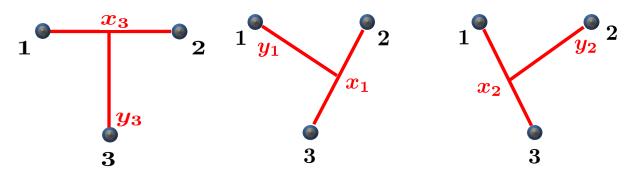


$$egin{aligned} oldsymbol{
ho}^2 &= \mu_x ar{\mathbf{x}}^2 + \mu_y ar{\mathbf{y}}^2 \ oldsymbol{lpha_{
ho}} &= rctan(rac{\sqrt{\mu_x} \, oldsymbol{x}}{\sqrt{\mu_y} \, oldsymbol{y}}) \ oldsymbol{\Omega_5^{
ho}} &= \{lpha_{
ho}, \hat{oldsymbol{x}}, \hat{oldsymbol{y}}\} \end{aligned}$$

$$\{\bar{\mathbf{x}}, \bar{\mathbf{y}}\} \Rightarrow \{\rho, \Omega_5^{\rho}\}$$

$$\{ar{\mathbf{k}}_{m{x}},\,ar{\mathbf{k}}_{m{y}}\}\Rightarrow\{m{\kappa}\,,\,m{\Omega}_{m{5}}^{m{\kappa}}\}$$

 $\{\rho,\kappa\}$ are independent of the Jacobi system



The bound state wave function $(\gamma = \{K, l_x, l_y, L, S, I, j\})$

$$\Psi_{JM}(\mathbf{r}_1,\cdots,\mathbf{r}_A) = rac{1}{
ho^{5/2}} \sum_{\gamma} oldsymbol{\chi}_{\gamma}^{J}(
ho) \, \left[oldsymbol{\Upsilon}_{KL}^{l_x l_y}(\Omega_{5}^{
ho}) \otimes \left[\chi_s \otimes oldsymbol{\phi_{nI}}
ight]_{j}
ight]_{JM}$$

The continuum wave function at the positive energy

$$egin{aligned} \Psi_{s
u IM_{I}}^{(\pm)}(\mathbf{k_{x},k_{y}};\mathbf{r}_{i}) &= \sum_{\gamma} \imath^{K} \left(s
u IM_{I} \mid jm_{j}
ight) \left(LM_{L} \, jm_{j} \mid JM_{J}
ight) \Upsilon_{KL}^{l_{x}l_{y}*}(\Omega_{5}^{\kappa}) imes \ & imes rac{1}{
ho^{5/2}} \sum_{\gamma'} oldsymbol{\chi}_{\gamma',\gamma}^{J}(\kappa,oldsymbol{
ho}) \, \, \left[\Upsilon_{K'L'}^{l_{x}'l_{y}'}(\Omega_{5}^{
ho}) \otimes \left[\chi_{s'} \otimes \phi_{n'I'}
ight]_{j'}
ight]_{JM} \end{aligned}$$

Set of coupled Schrödinger equations for radial wave functions

$$\left(-\frac{\hbar^2}{2\mu}\left[\frac{d^2}{d\rho^2}-\frac{(K+3/2)(K+5/2))}{\rho^2}\right]+\epsilon_{\gamma}-E\right)\boldsymbol{\chi}_{\boldsymbol{\gamma},\boldsymbol{\gamma'}}^{\boldsymbol{J}}(\rho)=-\sum_{\boldsymbol{\gamma''}}V_{\boldsymbol{\gamma},\boldsymbol{\gamma''}}^{\boldsymbol{J}}(\rho)\,\boldsymbol{\chi}_{\boldsymbol{\gamma''},\boldsymbol{\gamma'}}^{\boldsymbol{J}}(\rho)$$

Hyperspherical harmonics $\Upsilon^{l_x,l_y}_{KLM}(\Omega_5)$ $(K=2n+l_x+l_y)$

$$egin{aligned} oldsymbol{\Upsilon}_{KLM}^{l_x,l_y}(\Omega_5^
ho) &= \psi_K^{l_x,l_y}(lpha_
ho) \left[Y_{l_x}(\hat{x}) \otimes Y_{l_y}(\hat{y})
ight]_{LM} \ \psi_K^{l_x,l_y}(lpha) &= N_K^{l_x,l_y} \left(\sinlpha
ight)^{l_x} \left(\coslpha
ight)^{l_y} P_n^{(l_x+1/2,l_y+1/2)}(\cos2lpha) \ oldsymbol{\Upsilon}_{KLM}^{l_x',l_y'}(\Omega_5') &= \sum_{l_x,l_x} \left\langle l_x,l_y \mid l_x',l_y'
ight
angle_{KL} oldsymbol{\Upsilon}_{KLM}^{l_x,l_y}(\Omega_5) \end{aligned}$$

boundary condition of the radial wave function at the origin

$$\chi_{\gamma}^{J}(
ho
ightarrow 0)
ightarrow 0$$

asymptotic behaviour of the bound state radial wave function

$$m{\chi_{\gamma}^{J}}(
ho
ightarrow0)
ightarrow\exp(-\kappa_{n}\,
ho),\;\;\kappa_{n}=\sqrt{2m\mid E_{n}-\epsilon_{\gamma}\mid/\hbar^{2}}$$

asymptotic behaviour of the continuum radial wave function

$$egin{aligned} oldsymbol{\chi_{\gamma',\gamma}^{J}}(\kappa,
ho o\infty) &
ightarrow rac{\imath}{\sqrt{2\pi}}rac{1}{\sqrt{k_{\gamma}\;k_{\gamma'}}}\left(H_{K+2}^{(-)}(k_{\gamma}\;
ho)\;\delta_{\gamma,\gamma'}-H_{K'+2}^{(+)}(k_{\gamma'}\;
ho)\;S_{\gamma',\gamma}
ight) \ k_{\gamma} &= \sqrt{2m\;|\;E-\epsilon_{\gamma}\;|\;/\hbar^2} \end{aligned}$$

In collisions we explore the transition properties of nuclei from ground state to continuum states

$$\langle oldsymbol{\Psi^{(-)}(ar{k}_x,ar{k}_y)} \mid\mid \sum_p rac{\delta(r-r_p)}{rr_p} \left[Y_L(\hat{r}_p) imes \sigma_p
ight]_J \mid\mid oldsymbol{\Psi}_{gr.st.}
angle$$

model with a frozen ²⁰C core

only the ground 0^+ core state is taken into account

neutron interaction potential with ²⁰C

$$V(r) = V_c(r) + V_{ls}(r)(l \cdot s) + \frac{V_{core}^l(r)}{r}$$

potential V(r) has no bound states for d-waves

for s, p waves the repulsive core V_{core}^{l} (r) is added to eliminate Pauli forbidden orbits and fixed by the condition $|a_s| < 2.8$ fm

$S_{2n} (\text{keV})$	$W_Y(l=0)$ %	$W_Y(\mathrm{l}=2)~\%$	R_m (fm)
66	48	38	3.50
108	40	39	3.43
170	37	41	3.39
224	34	43	3.34

 $W_Y(l)$ is weight of the *l*-component of wave function in (Cn)-n system

model with an unfrozen ²⁰C core

the ground 0⁺ and excited 2⁺ (1.588 MeV) core states are taken into account

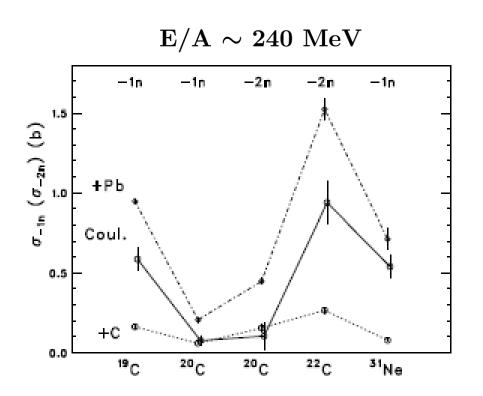
the 2^+ core state is considered as a vibration excitation with coupling

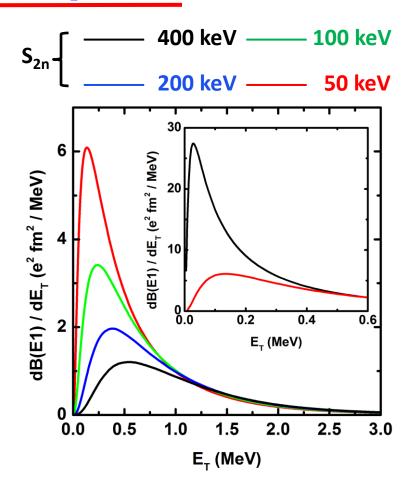
$$V_{\Delta n}(r) = V_I(r) \left(Y_I(\hat{r}) \cdot Y_I(\hat{z}_C) \right) \left(c_{I0}^\dagger + c_{I0} \right)$$

$S_{2n} (\text{keV})$	$W_Y(l=0)$ %	$W_Y(\mathrm{l}=2)~\%$	R_m (fm)
60	35	43	3.39
133	32	47	3.32
219	29	49	3.28
319	27	50	3.25

inclusion of core excitation increases the role of quadrupole waves and, respectively, decreases spatial extension

inclusive Coulomb breakup of ²²C





T. Nakamura, J. Phys. CS 381, 012014 (2012)

the exclusive Coulomb breakup experiment would be desired

Conclusion

The challenge to the microscopic theory is to understanf and reliably calculate properties of both bound and continuum states in nuclei in vicinity of driplines

The few-body cluster models present a natural and transparent way to describe specific features of nuclear structure specified by the cluster degrees of freedom

The quantitative understanding of the ²²C halo nuclear structure is still open question.

To clarify this open question the new experimental measurements are urgently called for.