11th APCTP-BLTP JINR-PINP NRC KI-SPbSU Joint Workshop "Modern problems in nuclear and elementary particle physics" Hotel "New Petergof", Petergof, St. Petersburg, Russia, July 24-28, 2017

Overview of Recent pPb Results from CMS at LHC

Byungsik Hong (Korea University)

for the CMS Collaboration

Exciting New Results from RUN II Data

- Azimuthal anisotropy in pp, pPb, and PbPb
- Charge separation signals from pPb
- Gluon parton distribution function in Pb nucleus
- □ Flavor dependence of heavy-flavored jets

CMS detector

pA for Azimuthal Anisotropy

Hydrodynamics Flow in AA

□ Azimuthal angle distribution is fitted by: $dN/d\phi \propto 1 + 2\sum_n [v_n(p_T, \eta) \cos(n(\phi - \Psi_n))]$ □ Coefficients, v_n , depends on

- Initial-state geometry and its fluctuation
- Medium transport coefficients (e.g., η/s , ...)
- \Box Diagonal terms (v_n^2) understood well in AA with hydrodynamics

How to study non-diagonal terms?

Symmetric Cumulants (SC)

SC Results from CMS

- → Nice agreement between CMS and ALICE in PbPb
- Similar pattern for SC in all systems (pp, pPb and PbPb)
- No energy dependence in pPb
- Normalization needed for the comparison across collision systems from pp to PbPb

Normalized SC from CMS

CMS-PAS-HIN-16-022

pA for Chiral Anomalies

Anomalous Chiral Effects

- Topological fluctuation of the QCD vacuum generates (cf. Prof. Andrianov's talk yesterday)
 - Vector chemical potential μ ≠ 0: More positive or negative charges
 ⇒ Local P and CP-odd domains
 - Chiral chemical potential $\mu_5 \neq 0$: More *R*- or *L*-handed particles
 - \Rightarrow Local net charge domains

[Ref.] Derek Leinweber (Univ. of Adelaide)

- □ High-energy heavy-ion collisions
 - Formation of strong *B*-field
 - Chiral anomalies may manifest themselves in such *B*-field
- How do we measure them in experiments at LHC & RHIC?

Chiral Magnetic Effect (CME)

 \Box Electric current along an external **B** field: $J = \sigma_5 B$

- $\sigma_5 = \frac{(Qe)^2}{2\pi^2} \mu_5$: chiral magnetic conductivity
- μ_5 : axial chemical potential

(> 0: more right-handed, < 0: more left-handed quarks) \Box Examples for right-handed quarks/antiquarks when $\mu_5 > 0$

Chiral Separation Effect (CSE)

- \Box Axial current along an external **B** field: $J_5 = \sigma_s B$
 - $\sigma_s = \frac{(Qe)^2}{2\pi^2} \mu$: chiral separation conductivity
 - μ : vector chemical potential
 - (> 0: more positive, < 0: more negative particles)
- $\hfill\square$ Examples for positive quarks/antiquarks when $\mu>0$

Chiral Magnetic Wave (CMW) CMW = CSE \otimes CME

How can pA help to investigate the various chiral anomalies?

 \Box How does the *B* field in pPb compared to that in PbPb?

- *B*(PbPb) > *B*(pPb) *in a similar multiplicity bin*
- De-correlation between Ψ_B and Ψ_{EP} in pPb

How can pA help to investigate the various chiral anomalies?

 \Box How does the *B* field in pPb compared to that in PbPb?

- *B*(PbPb) > *B*(pPb) *in a similar multiplicity bin*
- De-correlation between Ψ_B and Ψ_{EP} in pPb

Charge separation by the Parity-odd sine terms: $dN/d\phi \propto 1 + 2\sum_n \left[v_n \cos(n(\phi - \Psi_{RP})) + a_n \sin(n(\phi - \Psi_{RP})) \right]$ Azimuthal correlator for a_1 , proposed by Voloshin [PRC 70, 057901 (2004)]: $\gamma \equiv \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_2) \rangle = \langle \cos \Delta \phi_{\alpha} \cos \Delta \phi_{\beta} \rangle - \langle \sin \Delta \phi_{\alpha} \sin \Delta \phi_{\beta} \rangle$ $= (\langle v_{1,\alpha}v_{1,\beta}\rangle + B_{in}) - (\langle a_{1,\alpha}a_{1,\beta}\rangle + B_{out})$ where $\Delta \phi_{\alpha(\beta)} = \phi_{\alpha(\beta)} - \Psi_2$, $\alpha = \beta$ for same sign and $\alpha \neq \beta$ for opposite sign, $\langle v_{1,\alpha} v_{1,\beta} \rangle \cong 0$ in the region symmetric w.r.t. midrapidity, $B_{in} - B_{out}$ suppresses correlations not related to RP PRL110, 012301 (2013) \Box Dominant term to be $-\langle a_{1,\alpha}a_{1,\beta}\rangle$ 0.6 ×10⁻³ opp. ALICE Pb-Pb @ $\sqrt{s_{NN}}$ = 2.76 TeV < 0 for the same-sign pairs 0.4 STAR Au-Au @ $\sqrt{s_{NN}} = 0.2 \text{ TeV}$ > 0 for the opposite-sign pairs $\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\Psi_{RP}) \rangle$ (ALICE) same+opp. mean 0.2 Charge separation relative to RP observed in AA -0.2 Is this really due to CME? -0.4 Crucial check: the *B* dependence of $\langle \cos(\varphi_{\alpha} + \varphi_{\alpha} - 2\varphi_{\alpha}) \rangle_{\text{HLIING}} / v_{2} \{2\}$

-0.6

0

10

20

the correlation strength (PbPb vs. pPb)

July 24-28, 2017

50

60

70

CME expectation (same charge [13])

30

CMS utilized the three-particle correlation method

Large acceptance (~5 units of pseudorapidity) of CMS
 Large η gap between particles α, β and c is advantageous to reduce the short-range correlation.

CMS, PRL 118, 122301 (2017)

- □ All $\Delta \gamma (OS SS)$'s agree each other as functions of $\Delta \eta$ and multiplicity. In the CMW model, $\Delta \gamma \sim B^2 \langle \cos(2\Psi_B - 2\Psi_2) \rangle$
- □ Charge separation seems not related to the *B* field.

□ Charge asymmetry parameter fluctuating e-b-e: $A_{ch} \equiv (N^+ - N^-)/(N^+ + N^-)$

Expectation for the ϕ distribution due to electric quadrupole deformation in addition to elliptic flow:

$$\frac{dN_{\pm}}{d\phi} \propto 1 \pm A_{ch} [1 - (r_e/2)\cos(2\phi - 2\Psi_2)] \\\times [1 + 2v_{2,\pm}^{base}\cos(2\phi - 2\Psi_2)]$$

$$dN_{\pm}/d\phi \simeq (1 \pm A_{ch}) \left[1 + 2 \left(v_{2,\pm}^{base} \mp r_e A_{ch}/2 \right) \cos(2\phi - 2\Psi_2) \right]$$

CMS-PAS-HIN-16-017

□ Alternative interpretation: Local Charge Conservation (LCC)

[Bzdak & Bozek, PLB726, 239 (2013)]

□ Limited detector acceptance creates A_{ch} , especially, at low p_T region. If A_{ch} becomes large (negatives are out of acceptance at small p_T),

- More h^+ at small $\langle p_T \rangle \Rightarrow$ Smaller v_2 for h^+
- Less h^- at small $\langle p_T \rangle \Rightarrow$ Larger v_2 for h^-
- The data indicate both $v_2 \& v_3$ are proportional to p_T at small p_T .
- □ Same p_T dependence for v_2 and v_3 in LCC \Leftrightarrow Flat for v_3 in CMW

CMS-PAS-HIN-16-017

CMS-PAS-HIN-16-017

PbPb 5.02 TeV

- Normalized v_2 and v_3 slopes are very similar in all centrality ranges in PbPb
- \Rightarrow Supports LCC, Challenges to CMW
- No interpretation yet for larger intercept for v_3

pfl for nPDf

Nuclear Parton Distribution Function (nPDF)

□ EPS09 & nCTEQ15: Gluon (anti-)shadowing

DSSZ: Modified parton to pion fragmentation (vacuum-like gluon PDF)

R_{pA} of Charged Particles at 5 TeV

R_{pA} and *R_{AA}* analyzed with high statistics pp reference data.
 pPb data imply possible anti-shadowing and hadronization effects
 Similar suppression at 2.76 and 5 TeV in PbPb

R_{pA} of Charmonia at 5 TeV

CMS, EPJC 77, 269 (2017)

□ Suppression at low p_T in forward rapidities (or the low-x region) ⇒ Hints some cold nuclear matter effects in Pb

R_{pA} of Charmonia at 5 TeV

CMS-PAS-HIN-16-015 pPb 34.6 nb⁻¹, pp 28.0 pb⁻¹ √s_{NN} = 5.02 TeV 1.6 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ pPb 34.6 nb⁻ CMS 10^{4} 1.4 reliminary '1) CMS Data — Total fit Preliminary 1.2 Events/ (0.05 GeV/c²) --- Background Ţ. $4 < p_{_{T}} < 6.5 \text{ GeV/c}$ $-2.4 < y_{CM} < -1.93$ J/ψ н БрРь 0.8 10³ $\psi(2S)$ 0.6 $6.5 < p_{_{\rm T}} < 10~GeV/c$ 0.4 Prompt J/ ψ (HIN-14-009) ıb(2S) Prompt $\psi(2S)$ 0.2 3.2 3.4 3.6 3.8 2.6 3 4 2.8 4.2 2.2 2.4 $m_{\mu\mu}$ (GeV/c²) -2 -1 2 3 0 УСМ

□ Larger suppression of ψ(2S) in Pb-going side accompanied with higher dN_{ch}/dy
 □ Indicate the final state effects from comover absorption?

Dijet Pseudorapidity Distribution at 5 TeV

- □ J/ψ in UPC in PbPb □ $Q^2 \sim 2.4 \text{ GeV}^2$
- Evidence of nuclear modification
 of gluon PDF at $x \sim 8 \times 10^{-3}$

- □ Dijet's average- η distribution □ $Q^2 \sim 20,000 \text{ GeV}^2$
- Inconsistent between DSSZ and nCTEQ15
- Evidence of gluon anti-shadowing and modification in the EMC region with x > 0.3

R_{pA} of Heavy-Flavored Jets at 5 TeV

□ c- and b-jet distributions are dominated by gluon PDF
 ⇔ Inclusive dijet distributions are convoluted by quark PDF

- All jet data are consistent with each other in pPb
- No indication of favor
 dependent nPDF
 within uncertainties

[CMS Results] Incl. jet: EPJC 76, 372 (2016) *b*-jet: PLB 754, 59 (2016) *c*-jet: Submitted to PLB

Summary

- Symmetric cumulant (SC) analysis indicates to similar initial state fluctuation, but different transport properties among pp, pPb, and PbPb.
- Charge-separation signals in pPb impose a big challenge to the CME and CMW interpretations of AA data.
- □ Possible influence of commoving hadrons exists in the $\psi(2S)$ production in pPb.
- Dijet data indicate the gluon (anti-)shadowing and EMC effects in the Pb nucleus.
- No indication of favor dependence for nPDF in the jet production.
- □ Public results:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN