PION FORM FACTORS FROM SEPARABLE KERNEL

Artem Bekzhanov, Serge Bondarenko, Valery Burov Joint Institute for Nuclear Research, Dubna, Russia

11th APCTP-BLTP JINR-PNPI NRC KI-SPbU Joint Workshop "Modern problems in nuclear and elementary particle physics", July 24 - 28, 2017, Peterhof, St. Petersburg, Russia

Outlook

In the report we discuss the interaction of the two-quarks system with the photon: construct the electromagnetic current of the system in general form including the generalized $\gamma q\bar{q}$ -vertex and interaction current.

The influence of the interaction current and anomalous magnetic moment of the quark in the phenomenological separable model for pion is discussed.

Bethe-Salpeter equation for the fermion-antifermion T matrix

$$T(k',k;p) = V(k',k;p) + \frac{i}{(2\pi)^4} \int d^4k'' V(k',k'';p) S_2(k'';p) T(k'',k;p)$$

 $k^{\prime\prime}$, k^{\prime} , p - the relative four-momenta, p - the total four-momentum

V(k', k; p) - the interaction kernel

$$S_2^{-1}(k;p) = \left(k\cdot\gamma + \frac{1}{2}\,p\cdot\gamma - m\right)^{(1)} \left(k\cdot\gamma - \frac{1}{2}\,p\cdot\gamma - m\right)^{(2)}$$
 free two-particles Green function

Bethe-Salpeter equation for the fermion-antifermion vertex function

The bound state in the channel gives the simple pole at the mass ${\cal M}_B$ in the ${\cal T}$ matrix

$$T(k',k;p) = \frac{\Gamma(k';p)\bar{\Gamma}(k;p)}{p^2 - M_P^2} + Reg(k',k;p)$$

BS equation for the vertex function

$$\Gamma(k;p) = \frac{i}{(2\pi)^4} \int d^4k'' \, V(k',k'';p) \, S_2(k'';p) \, \Gamma(k'';p)$$

BS amplitude

$$\Psi(k;p) = S^{(1)}(k+p/2)\Gamma(k;p)S^{(2)}(k-p/2)$$

Separable kernel of the interaction

The separable kernels of the interaction are widely used in the calculations.

One-rank separable ansatz for the kernel

$$V_{\alpha_1\alpha_2,\beta_1\beta_2}(k',k;p) = \lambda g(k'^2) g(k^2) \Omega_{\alpha_1\alpha_2} \bar{\Omega}_{\beta_1\beta_2}$$

 $\Omega_{\alpha_1\alpha_2}$ - constant matrix, does not depend on momenta. Solution of the BS equation

$$\Gamma(k; p) = \mathcal{N}q(k^2) \Omega$$

with normalization constant N. Noting that

$$V(k', k; p) = \frac{\lambda}{N^2} \Gamma(k') \bar{\Gamma}(k)$$

the eigenvalue equation becomes

$$1 = i \frac{\lambda}{N^2} \int \frac{d^4k}{(2\pi)^4} \{ \bar{\Gamma}(k) S(k + p/2) \Gamma(k) S(k - p/2) \}.$$

Equation connects constant $\lambda,$ pion m_π and quark m_q masses, parameters of q-function.

The 11th Joint Workshop, July 24 - 28, 2017, Peterhof, St. Petersburg, Russia

Model for pion

$$\Omega_{\alpha\beta} = \gamma_{\alpha\beta}^5$$

$$q(k^2) = 1/D(k^2),$$
 $D(k^2) = k^2 - \Lambda^2$

 Λ is parameter of the model.

The weak pion decay constant is

$$f_{\pi} = (-i) \frac{m_q}{2\sqrt{2}} \sqrt{n_c} \mathcal{N} \int \frac{d^4k}{(2\pi)^4} \frac{1}{D(k^2)[(k+p/2)^2 - m_q^2][(k-p/2)^2 - m_q^2]}$$

The pion charge radius is

$$\langle r_{\pi}^2 \rangle = -6 \frac{d}{dq^2} F_{\pi}(q^2)|_{q^2=0}$$

Parameters of the model and static observables

	m_q (GeV)	Λ (GeV)	r_{π} (fm)	f_{π} (GeV)
Set I	0.3	0.5	0.64	0.108
Set II	0.3	0.75	0.55	0.123
Set III	0.2	0.5	0.84	0.0819
Experiment			0.663 ± 0.006	0.13041 ± 0.00020

Introduction of the electromagnetic interaction

$$\partial_i^{\mu} \to \partial_i^{\mu} + ie_i \int d^4 \xi \, f_1^{(i)}(x_i - \xi) \, A^{\mu}(\xi) - ie_i \, \frac{i\sigma_{\alpha\beta}}{8m_q} \gamma^{\mu} \int d^4 \xi \, f_2^{(i)}(x_i - \xi) \, \partial_i^{\beta} A^{\alpha}(\xi)$$

term in red is minimal substitution, term in blue is minimal substitution, e_i are charge of the quarks, A is electromagnetic field.

Functions $F_{1,2}^{(i)}(q^2)=\int d\xi\, f_{1,2}^{(i)}(\xi)\,\exp{(-iq\xi)}$ are the Dirac and Pauli form factors of quarks

$$F_1(0) = 1$$

$$F_2(0) = \kappa \, m_q / m_N$$

 κ is quark anomalous magnetic moment in nucleon magnetons $e\hbar/2m_N$.

Introduction of the electromagnetic interaction

BS equation in operator form

$$(i\partial_1 \cdot \gamma - m_a)(i\partial_2 \cdot \gamma - m_a)\Psi - V(\partial_1, \partial_2)\Psi = 0$$

First term gives one-body current (relativistic impulse approximation, RIC), second term - two-body current (interaction current, INT),

Relativistic impulse approximation

$$J_{\text{RIA}}^{\mu}(k',k;p',p) =$$

$$-ie_1(2\pi)^4 \delta^4(k'-k-q/2) \left(\gamma^{\mu} F_1^{(1)}(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m_q} F_2^{(1)}(q^2) \right)^{(1)} S^{(2)^{-1}}(k-p/2)$$

$$-ie_2(2\pi)^4 \delta^4(k'-k+q/2) \left(\gamma^{\mu} F_1^{(2)}(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m_q} F_2^{(2)}(q^2) \right)^{(2)} S^{(1)^{-1}}(k+p/2)$$

Interaction current

If Ω is constant and $g = g(k^2)$ then

$$\begin{split} J_{\text{INT}}^{\mu}(k',k;p',p) &= \\ -e_1 \left(l_{+}^{\mu} F_{1}^{(1)}(q^2) - \frac{i\sigma^{\mu\alpha}q_{\alpha}}{8m_q} \, l_{+} \cdot \gamma \, F_{2}^{(1)}(q^2) \right) / (l_{+}q) \left[V(k',k_{+};p') - V(k',k;p) \right] \\ +e_1 \left(l_{-}^{\prime \mu} F_{1}^{(1)}(q^2) - \frac{i\sigma^{\mu\alpha}q_{\alpha}}{8m_q} \, l_{-}^{\prime} \cdot \gamma \, F_{2}^{(1)}(q^2) \right) / (l_{-}^{\prime}q) \left[V(k'_{-},k;p) - V(k',k;p) \right] \\ &\qquad \qquad ((1) \longleftrightarrow (2)) \end{split}$$

 $l_{\pm}^{(')}=k^{(')}\pm q/4,~k_{\pm}^{(')}=k^{(')}\pm q/2,~p'=p+q.$ The techniques is based on the paper by *Hiroshi Ito, W.W. Buck, Franz Gross* Phys.Rev. C45 (1992) 1918-1934.

Gauge invariance

Using identity

$$a_{\mu}\gamma^{\mu} = S^{-1}(k+p/2+q) - S^{-1}(k+p/2)$$

and Bethe-Salpeter equation one has for RIA

$$\begin{split} q_{\mu} \int \frac{d^4k'}{(2\pi)^4} \int \frac{d^4k}{(2\pi)^4} \{ \bar{\Psi}(k',p') J^{\mu}_{\text{RIA}}(k',k;p',p) \Psi(k,p) \} = \\ + e_1 \, F_1^{(1)}(q^2) \, \int \frac{d^4k'}{(2\pi)^4} \int \frac{d^4k}{(2\pi)^4} \bar{\Psi}(k',p') [V(k',k_+;p') - V(k',k;p)] \Psi(k,p) \\ - e_2 \, F_1^{(2)}(q^2) \, \int \frac{d^4k'}{(2\pi)^4} \int \frac{d^4k}{(2\pi)^4} \bar{\Psi}(k',p') [V(k'_-,k;p) - V(k',k;p)] \Psi(k,p) \end{split}$$

Gauge invariance

From another hand one has for INT

$$\begin{split} q_{\mu} \int \frac{d^4k'}{(2\pi)^4} \int \frac{d^4k}{(2\pi)^4} \{ \bar{\Psi}(k',p') J^{\mu}_{\text{INT}}(k',k;p',p) \Psi(k,p) \} = \\ -e_1 \, F_1^{(1)}(q^2) \, \int \frac{d^4k'}{(2\pi)^4} \int \frac{d^4k}{(2\pi)^4} \bar{\Psi}(k',p') [V(k',k_+;p') - V(k',k;p)] \Psi(k,p) \\ +e_2 \, F_1^{(2)}(q^2) \, \int \frac{d^4k'}{(2\pi)^4} \int \frac{d^4k}{(2\pi)^4} \bar{\Psi}(k',p') [V(k'_-,k;p) - V(k',k;p)] \Psi(k,p) \end{split}$$

So in sum

$$q_{\mu} \int \frac{d^4k'}{(2\pi)^4} \int \frac{d^4k}{(2\pi)^4} \{ \bar{\Psi}(k', p') (J_{\text{RIA}}^{\mu}(k', k; p', p) + J_{\text{INT}}^{\mu}(k', k; p', p)) \Psi(k, p) \} = 0$$

Pion form factor

$$F_{\pi}(q^2)(p'+p)^{\mu} = \int \frac{d^4k'}{(2\pi)^4} \int \frac{d^4k}{(2\pi)^4} \{ \Psi(k',p') J^{\mu}(k',k;p',p) \Psi(k,p) \}$$
$$J^{\mu}(k',k;p',p) = J^{\mu}_{\text{RIA}}(k',k;p',p) + J^{\mu}_{\text{INT}}(k',k;p',p)$$

Calculations are performed by using the Cauchy theorem and numerical integration in the Briet frame

$$q = (0, \mathbf{q})$$
 $p = (E_q, -\mathbf{q}/2)$ $p' = (E_q, \mathbf{q}/2)$ $E_q = \sqrt{\mathbf{q}^2 + m_\pi^2}$

Pion form factor $(F_1 = 1, F_2 = 0)$

The 11th Joint Workshop, July 24 - 28, 2017, Peterhof, St. Petersburg, Russia

Pion form factor (RIA+INT) ($F_1 = 1, F_2 = \kappa$)

The 11th Joint Workshop, July 24 - 28, 2017, Peterhof, St. Petersburg, Russia

Conclusion

- the pion charge form factor is calculated in the Bethe-Salpeter approach with separable kernel of quark-quark interaction
- the interaction current contribution is found to be negative and large for the high momentum transfer $(Q^2>6-8~{\rm GeV}^2)$ for point-like quarks
- the quark anomalous magnetic moment is introduced and estimated to be rather small (in nucleon magnetons $e\hbar/2m_N$) and negative (about -0.1). Important! The quark form factors will change the behaviour of the pion form factor.

Nearest plans

• estimation of the quark form factors contribution