Cluster approach to the structure of heavy nuclei

T.M. Shneidman¹,

G.G. Adamian¹, N.V. Antonenko¹, R.V. Jolos¹, H. Hua², Shan-Gui Zhou³

¹ Joint Institute for Nuclear Research, Dubna, R ussia
 ² State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing. China
 ³ Institute of Theoretical Physics, CAS, Beijing, China

Content:

Introduction

Application of the Model

- Parity splitting and dipole transitions in actinides and rare-earth nuclei

-Multiple reflection-asymmetric type bands structure

-Excitation spectra of fission isomers

Conclusion

Clusters in nuclei

Light nuclei : ξ is fixed, dynamics in R

$$\psi_{ijk}\left(\vec{r}_1,\ldots,\vec{r}_{A_0},\vec{R}\right) = \hat{A}\left[\phi_i\left(A_1\right)\phi_j\left(A_2\right)\chi_k\left(\vec{R}\right)\right]$$

Heavy nuclei: R is fixed in touching, dynamics in ξ

$$\Psi(\vec{r}_{1},...,\vec{r}_{A_{0}}) = \sum_{h} \sum_{ijk} a^{h}_{ijk} \psi^{h}_{ijk}(\vec{r}_{1},...,\vec{r}_{A_{0}},\vec{R}_{touch})$$

Driving potential for ²³²U

The potential energy of the DNS

$$V(\xi) = E_1(\xi) + E_2(\xi) + V_N(R,\xi) + V_C(R,\xi)$$

Mass quadrupole moments of the DNS

$$Q_2(\xi, R) = 2m_0 \frac{A_1A_2}{A_1 + A_2}R^2 + Q_2(A_1) + Q_2(A_2)$$

(nuclear deformations from S.Raman et al., At. Data and Nuclear Data tables, Vol. 78, 2001)

Reflection Asymmetric Deformation

Intrinsic states $\Psi(\beta_{30})$ and $\Psi(-\beta_{30})$ are physically equivalent.

Excitation spectrum of nucleus with R.-A. deformation

Dinuclear system model and motion in mass asymmetry

$$\Psi_{p,IMK} = \sqrt{\frac{2I+1}{16\pi^2}} \left(\Phi_{n,K}(\xi) D^I_{MK} + p(-1)^{I+K} \Phi_{n,\overline{K}}(\xi) D^I_{M,-K} \right)$$

Wave function in ξ defined by the equation:

$$\left(-\frac{\hbar^2}{2B_{\xi}}\frac{d^2}{d\xi^2} + U(\xi) + \frac{\hbar^2}{2\Im(\xi)}I(I+1)\right)\Psi_{n,K}(\xi) = E_{n,K}\Psi_{n,K}(\xi),$$

where

$$\Im(\xi) = 0.85(\Im_1^r + \Im_2^r + m_0 \frac{A_1 A_2}{A} R^2)$$

Exitation spectra:

 $I^{p}(\text{ for } K = 0) = 0^{+}, 1^{-}, 2^{+}...$ $I^{p}(\text{ for } K \neq 0) = K^{\pm}, (K+1)^{\pm}...$

Parity splitting in alternating parity bands

Angular momentum dependence of the parity splitting

Hamiltonian in mass asymmetry

$$H(\xi,L) = -\frac{\hbar^{2}}{2B} \frac{1}{\xi^{3/2}} \frac{\partial}{\partial \xi} \xi^{3/2} \frac{\partial}{\partial \xi} + U_{0}(\xi) + \frac{\hbar^{2}L(L+1)}{2J(\xi)}$$

$$\xi = 0;$$

$$U(\xi,L) = U(\xi,L=0) + \frac{\hbar^{2}}{2} \frac{L(L+1)}{J_{h}}$$

$$\xi = 1;$$

$$U(\xi,L) = U(\xi,L=0) + \frac{\hbar^{2}}{2} \frac{L(L+1)}{J_{tot}}$$

$$\xi$$

As a result the parity splitting decreases with angular momentum.

 $|J_{tot} > J_h|$

Electromagnetic transition in ²⁴⁰Pu

(I. Wiedenhöver et al., Phys. Rev. Lett. 83, Number 11, (1999))

Ratio of transition dipole and quadrupole moments extracted from the *E1* and *E2* branchings $E1(I^- \longrightarrow (I-1)^+)/E2(I^- \longrightarrow (I-2)^-)$ as a function of the initial spin *I*.

Reflection-asymmetric correlations in ¹²³Ba

Odd-Mass Nuclei: illustrative Example (D.M. Brink *et al.*, J. Phys. G: Nucl. Phys. 13 (1987))

Assumptions:

- Coriolis and recoil terms are neglected

- only two single-particle states with positive and negative parity:

$$\chi_{{}_{+K}}(\vec{r}), \chi_{{}_{-K}}(\vec{r})$$
 corresponding energies: $\mathcal{E}_{{}_{+K}}, \mathcal{E}_{{}_{-K}}$

- only two core states with positive and negative parity:

$$\varphi_{+K}(\xi), \varphi_{-K}(\xi)$$
 corresponding energies: $0, \delta E(I)$

Simplified Hamiltonian

$$H = H_{core} + \frac{\hbar^2}{2J(\xi)} (I^2 - I_3^2)$$

 $+ \varepsilon_{_{+K}}a_{_{+K}}^{^{+}}a_{_{+K}} + \varepsilon_{_{-K}}a_{_{-K}}^{^{+}}a_{_{-K}} + g(\xi)(a_{_{+K}}^{^{+}}a_{_{-K}} + a_{_{-K}}^{^{+}}a_{_{+K}})$

Odd-Mass Nuclei: illustrative Example (D.M. Brink *et al.*, J. Phys. G: Nucl. Phys. 13 (1987))

Smallest eigenvalues of positive and negative parities (without rotational energy):

$$\mathcal{E}_{+K}(I) = \frac{1}{2} \left(\delta E(I) + \mathcal{E}_{+K} + \mathcal{E}_{-K} \right) - \frac{1}{2} \sqrt{\left(\delta E(I) + \left(\mathcal{E}_{+K} - \mathcal{E}_{-K} \right) \right)^2 + 4g^2}$$

$$\mathcal{E}_{-K}(I) = \frac{1}{2} \left(\delta E(I) + \mathcal{E}_{+K} + \mathcal{E}_{-K} \right) - \frac{1}{2} \sqrt{\left(\delta E(I) - \left(\mathcal{E}_{+K} - \mathcal{E}_{-K} \right) \right)^2 + 4g^2}$$

Parity splitting at the limits:

 $\mathcal{E}_{-K} - \mathcal{E}_{+K} << \delta E(I), g << 1 \quad S(I) = \mathcal{E}_{-K}(I) - \mathcal{E}_{+K}(I) \approx \mathcal{E}_{-K} - \mathcal{E}_{+K}$

 $\delta E(I) << \mathcal{E}_{-K} - \mathcal{E}_{+K}, g << 1 \qquad S(I) = \mathcal{E}_{-K}(I) - \mathcal{E}_{+K}(I) \approx \delta E(I)$

PES for ^{123,125}Ba

Calculations have been performed in the frame of MDC-RMF model.

Although the minimum of the nuclear potential energy corresponds to the reflection-symmetric shape, PES for ^{123,135}Ba are very soft with respect to the reflection-asymmetric deformation.

Using the DNS model one can estimate the critical value of angular momentum at which the stable reflection-asymmetric is developed.

 $I_{crit} \approx 13\hbar$ - for ¹²³Ba, $I_{crit} \approx 12\hbar$ - for ¹²⁵Ba.

Parity splitting of ^{123,125,145} Ba

B(E1)/B(E2)-values for ^{123,125,145} Ba

Experimental example: ²²⁸Th

(from www.nndc.bnl.gov/ensdf)

Degrees of freedom of dinuclear system model

The dinuclear system (A,Z) consists of a configuration of two touching nuclei (clusters) (A_1,Z_1) and (A_2,Z_2) with $A = A_1 + A_2$ and $Z = Z_1 + Z_2$, which keep their individuality.

DNS has totally 15 collective degrees of freedom which govern its dynamics.

• Relative motion of the clusters • Relative motion of the clusters • Rotation of the clusters • Intrinsic excitations of the clusters • Nucleon transfer between the clusters Mass asymmetry $\xi = \frac{2A_2}{A_1+A_2}$. Charge asymmetry $\xi_Z = \frac{2Z_2}{Z_1+Z_2}$

Hamiltonian of the DNS model

The kinetic energy operator of the DNS then becomes

$$\begin{split} \hat{T} &= -\frac{\hbar^2}{2B(\xi_0)} \frac{1}{\mu^{3/2}(\xi)} \frac{\partial}{\partial \xi} \mu^{3/2}(\xi) \frac{\partial}{\partial \xi} - \frac{\hbar^2}{2\mu(\xi)} \frac{1}{R^2} \frac{\partial}{\partial R} R^2 \frac{\partial}{\partial R} \\ &+ \frac{\hbar^2}{2\mu(\xi)R^2} \hat{l}_0^2 + \frac{\hbar^2}{2} \sum_{n=1}^2 \sum_{k=1}^3 \frac{\hat{l}_{(n)k}^2}{I_k^{(n)}(\beta_n, \gamma_n)} \qquad \left(\equiv \hat{T}_{rot}\right) \\ &- \frac{\hbar^2}{2} \sum_{n=1}^2 \frac{1}{D_n(\xi_0)} \left(\frac{1}{\beta_n^4} \frac{\partial}{\partial \beta_n} \beta_n^4 \frac{\partial}{\partial \beta_n} + \frac{1}{\beta_n^2} \frac{1}{\sin 3\gamma_n} \frac{\partial}{\partial \gamma_n} \sin 3\gamma_n \frac{\partial}{\partial \gamma_n} \right) \\ &\left(\equiv \hat{T}_{intr}\right) \end{split}$$

The potential energy of the DNS is

 $V(\xi) = E_1(\xi, \beta_1, \gamma_1) + E_2(\xi, \beta_2, \gamma_2) + V_N(R, \xi, \beta_{\{1,2\}}, \gamma_{\{1,2\}}, \Omega_{\{1,2\}}) + V_C(R, \xi, \beta_{\{1,2\}}, \gamma_{\{1,2\}}, \Omega_{\{1,2\}})$

Ground-State Well (²⁴⁰Pu)

(Exp. data are taken from: http://www.nndc.bnl.gov/ensdf/)

Ground-State Well (240Pu) –continued

(Exp. data are taken from: http://www.nndc.bnl.gov/ensdf/)

Electromagnetic Transition in ²⁴⁰Pu

(Exp. Data are from *M. Spieker et al., Phys. Rev.* C88, 041303(R), (2013))

2-oct 1-oct $0_{2^{+}}$ 5_{1}^{-} **E1** 31 **E2** GS 6_{1}^{+}

Experimental B(E1)/B(E2) ratios (R_{exp}) are compared to the calculation of our model for the low-spin members of the $K\pi = 0^+_2$ rotational band in ²⁴⁰Pu.

I_i^{π}	$I_{f,E1}^{\pi}$	$I_{f,E2}^{\pi}$	R_{exp}	R_{DNS}
	•		$(10^{-6} \text{ fm}^{-2})$	$(10^{-6} \text{ fm}^{-2})$
0^+_2	1^{-}_{1}	2^+_1	13.7(3)	19.17
2^{+}_{2}	1_{1}^{-}	0_{1}^{+}	99(15)	99.95
2^{+}_{2}	1_{1}^{-}	2_{1}^{+}	26(2)	39.15
2^{+}_{2}	1_{1}^{-}	4_{1}^{+}	5.9(3)	8.57
2^{+}_{2}	3^{-}_{1}	0_{1}^{+}	149(22)	165.60
2^{+}_{2}	3^{-}_{1}	2^+_1	39(2)	64.9
$2\overline{2}^{+}$	3^{-}_{1}	4_{1}^{+}	8.9(5)	14.2
4^{+}_{2}	3^{-}_{1}	6_{1}^{+}	4.4(11)	6.9
4^{\mp}_2	5^{-}_{1}	6^{\mp}_1	4.7(13)	10.59

Driving Potential for ²³²U

The potential energy of the DNS

$$V(\xi) = E_1(\xi) + E_2(\xi) + V_N(R,\xi) + V_C(R,\xi)$$

Mass quadrupole moments of the DNS

$$Q_2(\xi, R) = 2m_0 \frac{A_1A_2}{A_1 + A_2}R^2 + Q_2(A_1) + Q_2(A_2)$$

(nuclear deformations from S.Raman et al., At. Data and Nuclear Data tables, Vol. 78, 2001)

 $^{236}U \longrightarrow ^{102}Zr + ^{134}Te$

Characteristics of HD minima in U isotopes

Exp: L. Csige et al., Journal of Physics: CS312 (2011) 092022

Nucleus	²³² U	²³⁴ U	236U	238U
DNS	⁹⁴ Sr+ ¹³⁸ Xe	⁹⁶ Sr+ ¹³⁸ X e	⁹⁶ Sr+ ¹⁴⁰ Xe	⁹⁸ Sr+ ¹⁴⁰ X e
Energy (MeV)	3.06 (3.2±0.2)	2.6 (3.1±0.4)	2.81 (2.7±0.4)	3.49
Rot. Const. (keV)	1.825 (1.96±0.11)	1.772 (2.1±0.2)	1.751 (2.4±0.4)	1.697
Q_2 (10 ² e fm ²)	92.37	93.021	93.466	96.772
Q_3 (10 ³ e fm ³)	29.96	28.48	29.92	27.84

EPJ WC, 38, 07001 (2012)

Conclusion:

- We suggested a cluster interpretation of the multiple negative parity bands in actinides and rare-earth nuclei assuming collective oscillations of nucleus in mass-asymmetry degree of freedom.
- The angular momentum dependence of the parity splitting and electromagnetic transition probabilities B(E1) and B(E2) are described. The results of calculations are in good agreement with experimental data.
- To take care of non-axially symmetric reflection asymmetric modes, the rotational and vibrational degrees of freedom of the heavy DNS fragment are considered.
- The excited 0⁺ bands of reflection-asymmetric nature are explained as a bands built on the first exited state in mass asymmetry degrees of freedom.

Excitation Spectrum of ²³²U in the HD well

EPJ WC, 38, 07001 (2012)

$\Delta L = \Delta J = 3$ or clustering

The value of α -particle preformation factor obtained from the experiment as:

 $S_{\alpha}^{exp} = T_{1/2}^{exp} / T_{1/2}^{\alpha}$

 $T^{\alpha}_{1/2}$ -half-life of α -particle dinuclear system.

Energies of $E(1^{-})$ states as a function of neutron number.

$\Delta L = \Delta J = 3$ or clustering

-

-

.....

1

FIG. 4. Nuclear spherical single-particle levels. The most important octupole couplings are indicated.