Cluster approach to the structure of heavy nuclei

T.M. Shneidman ${ }^{1}$,

G.G. Adamian ${ }^{1}$, N.V. Antonenko ${ }^{1}$, R.V. Jolos ${ }^{1}$, H. Hua², Shan-Gui Zhou ${ }^{3}$

${ }^{1}$ Joint Institute for Nuclear Research, Dubna, R ussia
${ }^{2}$ State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing. China
${ }^{3}$ Institute of Theoretical Physics, CAS, Beijing, China

Content:

Introduction

Application of the Model

- Parity splitting and dipole transitions in actinides and rare-earth nuclei
-Multiple reflection-asymmetric type bands structure
-Excitation spectra of fission isomers

Conclusion

Clusters in nuclei

Light nuclei : ξ is fixed, dynamics in R

$$
\psi_{i j k}\left(\vec{r}_{1}, \ldots, \vec{r}_{A_{0}}, \vec{R}\right)=\hat{A}\left[\phi_{i}\left(A_{1}\right) \phi_{j}\left(A_{2}\right) \chi_{k}(\vec{R})\right]
$$

Heavy nuclei: R is fixed in touching, dynamics in ξ

$$
\Psi\left(\vec{r}_{1}, \ldots, \vec{r}_{A_{0}}\right)=\sum_{h} \sum_{i j k} a_{i j k}^{h} \psi_{i j k}^{h}\left(\vec{r}_{1}, \ldots, \vec{r}_{A_{0}}, \vec{R}_{\text {touch }}\right)
$$

Driving potential for ${ }^{232} \mathrm{U}$

The potential energy of the DNS
$V(\xi)=E_{1}(\xi)+E_{2}(\xi)+V_{N}(R, \xi)+V_{C}(R, \xi)$

Mass quadrupole moments of the DNS
$Q_{2}(\xi, R)=2 m_{0} \frac{A_{1} A_{2}}{A_{1}+A_{2}} R^{2}+Q_{2}\left(A_{1}\right)+Q_{2}\left(A_{2}\right)$
(nuclear deformations from S.Raman et al., At. Data and Nuclear Data tables, Vol. 78, 2001)

Reflection Asymmetric Deformation

Intrinsic states $\Psi\left(\beta_{30}\right)$ and $\Psi\left(-\beta_{30}\right)$ are physically equivalent.

Excitation spectrum of nucleus with R.-A. deformation

Dinuclear system model and motion in mass asymmetry

$$
\Psi_{p, I M K}=\sqrt{\frac{2 I+1}{16 \pi^{2}}}\left(\Phi_{n, K}(\xi) D_{M K}^{I}+p(-1)^{I+K} \Phi_{n, \bar{K}}(\xi) D_{M,-K}^{I}\right)
$$

Wave function in ξ defined by the equation:

$$
\left(-\frac{\hbar^{2}}{2 B_{\xi}} \frac{d^{2}}{d \xi^{2}}+U(\xi)+\frac{\hbar^{2}}{2 \Im(\xi)} I(I+1)\right) \Psi_{n, K}(\xi)=E_{n, K} \Psi_{n, K}(\xi)
$$

where

$$
\Im(\xi)=0.85\left(\Im_{1}^{r}+\Im_{2}^{r}+m_{0} \frac{A_{1} A_{2}}{A} R^{2}\right)
$$

Exitation spectra:

$$
\begin{aligned}
& I^{p}(\text { for } K=0)=0^{+}, 1^{-}, 2^{+} \ldots \\
& I^{p}(\text { for } K \neq 0)=K^{ \pm},(K+1)^{ \pm} \ldots
\end{aligned}
$$

Parity splitting in alternating parity bands

$$
S\left(I^{-}\right)=E\left(I^{-}\right)-\frac{(I+1) E_{(I-1)}^{+}+I E_{(I+1)}^{+}}{2 I+1}
$$

EPJ WC 107, 03009, (2016)

Angular momentum dependence of the parity splitting

Hamiltonian in mass asymmetry

$$
\begin{aligned}
& H(\xi, L)=-\frac{\hbar^{2}}{2 B} \frac{1}{\xi^{3 / 2}} \frac{\partial}{\partial \xi} \xi^{3 / 2} \frac{\partial}{\partial \xi}+U_{0}(\xi)+\frac{\hbar^{2} L(L+1)}{2 J(\xi)} \\
& \xi=0 ; \\
& U(\xi, L)=U(\xi, L=0)+\frac{\hbar^{2}}{2} \frac{L(L+1)}{J_{h}} \\
& \xi=1 ; \\
& U(\xi, L)=U(\xi, L=0)+\frac{\hbar^{2}}{2} \frac{L(L+1)}{J_{\text {tot }}}
\end{aligned}
$$

As a result the parity splitting decreases with angular momentum.

Electromagnetic transition in ${ }^{240} \mathbf{P u}$

(I. Wiedenhöver et al., Phys. Rev. Lett. 83, Number 11, (1999))

Ratio of transition dipole and quadrupole moments extracted from the $E 1$ and $E 2$ branchings $E 1\left(I \longrightarrow(I-1)^{+}\right) / E 2\left(I \longrightarrow(I-2)^{-}\right)$ as a function of the initial spin I.

Reflection-asymmetric correlations in ${ }^{123} \mathbf{B a}$

PRC94, 021301(R) (2016)

Odd-Mass Nuclei: illustrative Example (D.M. Brink et al., J. Phys. G: Nucl. Phys. 13 (1987))

Assumptions:

- Coriolis and recoil terms are neglected
- only two single-particle states with positive and negative parity:

$$
\chi_{+K}(\vec{r}), \chi_{-K}(\vec{r}) \quad \text { corresponding energies: } \quad \mathcal{E}_{+K}, \mathcal{E}_{-K}
$$

- only two core states with positive and negative parity:

$$
\varphi_{+K}(\xi), \varphi_{-K}(\xi) \text { corresponding energies: } \quad 0, \delta E(I)
$$

Simplified Hamiltonian

$$
\begin{aligned}
& H=H_{\text {core }}+\frac{\hbar^{2}}{2 J(\xi)}\left(I^{2}-I_{3}^{2}\right) \\
& +\varepsilon_{+K} a_{+K}^{+} a_{+K}+\varepsilon_{-K} a_{-K}^{+} a_{-K}+g(\xi)\left(a_{+K}^{+} a_{-K}+a_{-K}^{+} a_{+K}\right)
\end{aligned}
$$

Odd-Mass Nuclei: illustrative Example (D.M. Brink et al., J. Phys. G: Nucl. Phys. 13 (1987))

Smallest eigenvalues of positive and negative parities (without rotational energy):

$$
\begin{aligned}
& \widetilde{\varepsilon}_{+K}(I)=\frac{1}{2}\left(\delta E(I)+\varepsilon_{+K}+\varepsilon_{-K}\right)-\frac{1}{2} \sqrt{\left(\delta E(I)+\left(\varepsilon_{+K}-\varepsilon_{-K}\right)\right)^{2}+4 g^{2}} \\
& \widetilde{\varepsilon}_{-K}(I)=\frac{1}{2}\left(\delta E(I)+\varepsilon_{+K}+\varepsilon_{-K}\right)-\frac{1}{2} \sqrt{\left(\delta E(I)-\left(\varepsilon_{+K}-\varepsilon_{-K}\right)\right)^{2}+4 g^{2}}
\end{aligned}
$$

Parity splitting at the limits:

$$
\varepsilon_{-K}-\varepsilon_{+K} \ll \delta E(I), g \ll 1 \quad S(I)=\widetilde{\varepsilon}_{-K}(I)-\widetilde{\varepsilon}_{+K}(I) \approx \varepsilon_{-K}-\varepsilon_{+K}
$$

$$
\delta E(I) \ll \varepsilon_{-K}-\varepsilon_{+K}, g \ll 1 \quad S(I)=\widetilde{\varepsilon}_{-K}(I)-\widetilde{\varepsilon}_{+K}(I) \approx \delta E(I)
$$

PES for ${ }^{123,125 B a}$

Calculations have been performed in the frame of MDC-RMF model.

Although the minimum of the nuclear potential energy corresponds to the reflection-symmetric shape, PES for ${ }^{123,135} \mathrm{Ba}$ are very soft with respect to the reflection-asymmetric deformation.

Using the DNS model one can estimate the critical value of angular momentum at which the stable reflection-asymmetric is developed.

$$
\begin{aligned}
& I_{c r i t} \approx 13 \hbar \quad-\text { for }{ }^{123} \mathrm{Ba}, \\
& I_{c r i t} \approx 12 \hbar \quad-\text { for }{ }^{125} \mathrm{Ba} .
\end{aligned}
$$

Parity splitting of ${ }^{123,125,145} \mathbf{B a}$

PRC94, 021301(R) (2016)

$B(E 1) / B(E 2)$-values for ${ }^{123,125,145} \mathbf{B a}$

PRC94, 021301(R) (2016)

Experimental example: ${ }^{228} \mathrm{Th}$

$\underset{\substack{\text { (E) } K \pi=1-\\ \text { octupole-vibrational } \\ \text { band head }}}{\text { (}}$
band head

(from www.nndc.bnl.gov/ensdf)

Degrees of freedom of dinuclear system model

The dinuclear system (A, Z) consists of a configuration of two touching nuclei (clusters) $\left(A_{1}, Z_{1}\right)$ and $\left(A_{2}, Z_{2}\right)$ with $A=A_{1}+A_{2}$ and $Z=Z_{1}+Z_{2}$, which keep their individuality.

DNS has totally 15 collective degrees of freedom which govern its dynamics.

- Relative motion of the clusters $\mathbf{R}=\left(R, \theta_{R}, \phi_{R}\right)$
- Rotation of the clusters

$$
\Omega_{1}=\left(\phi_{1}, \theta_{1}, \chi_{1}\right), \Omega_{2}=\left(\phi_{2}, \theta_{2}, \chi_{2}\right)
$$

- Intrinsic excitations of the clusters
- Nucleon transfer between the clusters

Mass asymmetry $\xi=\frac{2 A_{2}}{A_{1}+A_{2}} . \quad$ Charge asymmetry $\xi_{Z}=\frac{2 Z_{2}}{Z_{1}+Z_{2}}$

Hamiltonian of the DNS model

The kinetic energy operator of the DNS then becomes

$$
\begin{aligned}
\hat{T}= & -\frac{\hbar^{2}}{2 B\left(\xi_{0}\right)} \frac{1}{\mu^{3 / 2}(\xi)} \frac{\partial}{\partial \xi} \mu^{3 / 2}(\xi) \frac{\partial}{\partial \xi}-\frac{\hbar^{2}}{2 \mu(\xi)} \frac{1}{R^{2}} \frac{\partial}{\partial R} R^{2} \frac{\partial}{\partial R} \\
& +\frac{\hbar^{2}}{2 \mu(\xi) R^{2}} \hat{l}_{0}^{2}+\frac{\hbar^{2}}{2} \sum_{n=1}^{2} \sum_{k=1}^{3} \frac{\hat{l}_{(n) k}^{2}}{I_{k}^{(n)}\left(\beta_{n}, \gamma_{n}\right)} \quad\left(\equiv \hat{T}_{\text {rot }}\right) \\
& -\frac{\hbar^{2}}{2} \sum_{n=1}^{2} \frac{1}{D_{n}\left(\xi_{0}\right)}\left(\frac{1}{\beta_{n}^{4}} \frac{\partial}{\partial \beta_{n}} \beta_{n}^{4} \frac{\partial}{\partial \beta_{n}}+\frac{1}{\beta_{n}^{2}} \frac{1}{\sin 3 \gamma_{n}} \frac{\partial}{\partial \gamma_{n}} \sin 3 \gamma_{n} \frac{\partial}{\partial \gamma_{n}}\right) \\
& \left(\equiv \hat{T}_{\text {intr }}\right)
\end{aligned}
$$

The potential energy of the DNS is
$V(\xi)=E_{1}\left(\xi, \beta_{1}, \gamma_{1}\right)+E_{2}\left(\xi, \beta_{2}, \gamma_{2}\right)+V_{N}\left(R, \xi, \beta_{\{1,2\}}, \gamma_{\{1,2\}}, \Omega_{\{1,2\}}\right)+V_{C}\left(R, \xi, \beta_{\{1,2\}}, \gamma_{\{1,2\}}, \Omega_{\{1,2\}}\right)$

Ground-State Well ($\left.{ }^{240} \mathrm{Pu}\right)$

(Exp. data are taken from: http://www.nndc.bnl.gov/ensdf/)

Ground-State Well $\left({ }^{240} \mathrm{Pu}\right)$-continued
(Exp. data are taken from: http://www.nndc.bnl.gov/ensdf/)

Electromagnetic Transition in ${ }^{240} \mathrm{Pu}$

(Exp. Data are from M. Spieker et al., Phys. Rev. C88, 041303(R), (2013))

Driving Potential for ${ }^{232} \mathrm{U}$

The potential energy of the DNS
$V(\xi)=E_{1}(\xi)+E_{2}(\xi)+V_{N}(R, \xi)+V_{C}(R, \xi)$

Mass quadrupole moments of the DNS
$Q_{2}(\xi, R)=2 m_{0} \frac{A_{1} A_{2}}{A_{1}+A_{2}} R^{2}+Q_{2}\left(A_{1}\right)+Q_{2}\left(A_{2}\right)$
(nuclear deformations from S.Raman et al., At. Data and Nuclear Data tables, Vol. 78, 2001)

$$
{ }^{236} \mathrm{U} \longrightarrow{ }^{96} \mathrm{Sr}+{ }^{140} \mathrm{Xe}
$$

Characteristics of HD minima in \mathbf{U} isotopes

Exp: L. Csige et al., Journal of Physics: CS312 (2011) 092022

Nucleus	232 O	234 U	236 U	238 U
DNS	${ }^{94} \mathrm{Sr}+{ }^{138} \mathrm{Xe}$	$\begin{gathered} { }^{96} \mathrm{Sr}^{138} \mathrm{X} \\ \mathrm{e} \end{gathered}$	${ }^{96} \mathrm{Sr}+{ }^{140} \mathrm{Xe}$	$\begin{gathered} { }^{98} \mathrm{Sr}+{ }^{140} \mathrm{X} \\ \hline \end{gathered}$
Energy (MeV)	$\begin{gathered} 3.06 \\ (3.2 \pm 0.2) \end{gathered}$	$\begin{gathered} 2.6 \\ (3.1 \pm 0.4) \end{gathered}$	$\begin{gathered} 2.81 \\ (2.7 \pm 0.4) \end{gathered}$	3.49
Rot. Const. (keV)	$\begin{gathered} 1.825 \\ (1.96 \pm 0.11 \\) \end{gathered}$	$\begin{gathered} 1.772 \\ (2.1 \pm 0.2) \end{gathered}$	$\begin{gathered} 1.751 \\ (2.4 \pm 0.4) \end{gathered}$	1.697
$\mathrm{Q}_{2} \quad\left(10^{2} \mathrm{e} \mathrm{fm}{ }^{2}\right)$	92.37	93.021	93.466	96.772
$\mathrm{Q}_{3}\left(10^{3} \mathrm{efm}{ }^{3}\right)$	29.96	28.48	29.92	27.84

EPJ WC, 38, 07001 (2012)

Conclusion:

- We suggested a cluster interpretation of the multiple negative parity bands in actinides and rare-earth nuclei assuming collective oscillations of nucleus in mass-asymmetry degree of freedom.
- The angular momentum dependence of the parity splitting and electromagnetic transition probabilities $B(E 1)$ and $B(E 2)$ are described. The results of calculations are in good agreement with experimental data.
- To take care of non-axially symmetric reflection asymmetric modes, the rotational and vibrational degrees of freedom of the heavy DNS fragment are considered.
- The excited 0^{+}bands of reflection-asymmetric nature are explained as a bands built on the first exited state in mass asymmetry degrees of freedom.

Excitation Spectrum of ${ }^{232} \mathrm{U}$ in the HD well

EPJ WC, 38, 07001 (2012)

$\Delta \mathrm{L}=\Delta \mathrm{J}=\mathbf{3}$ or clustering

The value of α-particle
 preformation factor obtained from the experiment as:

$$
S_{\alpha}^{e x p}=T_{1 / 2}^{e x p} / T_{1 / 2}^{\alpha}
$$

$T_{1 / 2}^{\alpha}$-half-life of α-particle dinuclear system.

Energies of $E\left(1^{-}\right)-$ states as a function of neutron number.

$\Delta \mathrm{L}=\Delta \mathrm{J}=\mathbf{3}$ or clustering

FIG. 4. Nuclear spherical single-particle levels. The most important octupole couplings are indicated.

