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Introduction

The mean field theory of the nucleonic
interaction plays a role of a microscopic
reference theory. It, is therefore , of
fundamental importance for the whole field
of nuclear structure physics to discover,
examine and use the consequences of the
underlying symmetries of the mean field, even
if they are approximate.



Introduction

Symmetries imply existence of the
characteristic multiplet structures. From the
physics point of view, however, the fact that
nuclear excited state multiplets exist in the
realistic spectra is an intriguing result.

Indeed, let us recall that the nuclear
mean field is a potential corresponding to
averaging of the nucleon-nucleon interaction
over many occupied single-nucleonic
configurations. And if at the end it resembles
any simple-looking function it is either
incidental or the result of a symmetry.



Pseudospin

e 48 years ago a quasidegeneracy was
observed, at first, for spherical nuclei
(Arima, Harvey,... and Hecht, Adler —
1969):

Single-particle states with J=1+1/2
and J=(1+2)-1/2 lie very close in energy.

It is convenient to label them as
pseudospin doublets.
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At small deformations the geometrical
characteristics such as nucleonic
probability distribution in space are
very different from those at moderate
and large deformations. However, the
small energy spread of the pseudospin

multiplets is nearly independent of
deformation.
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Figure 5-2 Proton orbits in prolate potential (50< Z<82). The spectra in this and the
following figures (Figs. -2 to 5-5) are taken from C. Gustafson, 1. L. Lamm, B. Nilsson, and
S. G. Nilsson, Arkio Fysik 36, 613 (1967). The orbits are labeled by the asymptotic quantum
numbers [NmyAQ]. Levels with even and odd parity are drawn with solid and dashed lines,

;lespec;wdy(&nm. The orbit [301 3/2] is incorrectly labeled {301 1/2] at bottom of
gure,



Interrelation between the pseudospin
symmetry and microscopic mean field
approach

* J.Meng, H.Toki, S.G.Zhou, S.Q.Zhang,
W.H.Long, L.S.Geng, Prog.Part.Nucl.Phys.,
57, 470 (2006).

* J.Meng, JY.Guo, J.Li, Z.P.Li, et al., Prog.Phys.
31, 199 (2011).

e J.Meng, S.G.Zhou, J.Phys. G, 42, 093101
(2015).



Supersymmetry

* The idea of supersymmetry was invented in particle
physics. However, actual examples of supersymmetry
were found in the spectra of nuclei.
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Fig. 3. Observed levels of the ground-state band of 1™ Hi
and experimental and calculated states of *™Hf that form
supermultiplets. The energies are given in keV. Experi-
mental data were taken from [ 17—19].

Fig. 4. As in Fig. 3, but for ¥ Pt. Experimental data
were taken from [ 17, 20, 21].



These figures display rotational bands belonging to odd
deformed or nearly deformed nuclei. In both cases the
bandheads are 1/2- states. These bands consist of weakly
splited doublets whose centers of gravity are close to the
energies of the corresponding rotational states of the
neighboring even-even nuclei. Doublets are: (3/2-, 5/2°),
(7/2-, 9/2- ), and so on. This means that the angular
momenta of the states of the odd nuclei belonging to the
multiplets can be treated as the result of the vector
coupling of the orbital momenta L=0, 2, 4,... of the even-
even core and the fermion momentum j=1/2. The
fermion momentum is decoupled from the interaction. It
is assumed that it is pseudospin. Because of the
approximate pseudospin symmetry, a pseudospin-orbit
interaction is weak.



Superdeformed bands
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Fig. 5. Observed states of the identical superdeformed

bands of *Gd and *! Th. The energies are given in keV,
Experimental data were taken from [22].

Fig. 6. Observed states of the identical superdeformed

bands of ** Dy and **!Th. The energies are given in keV,
Experimental data were taken from [22].



Example 1.

The model describing a system of s and d
posons and the fermions occupying single
narticle states with angular momenta

i=1/2,3/2,5/2.

This model is based on the U(6/12) graded
algebra.
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The superoperator commuting with the
Hamiltonian is:
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Together with the corresponding eigen states of the
even-even nucleus, these states form
supersymmetric multiplets. Since the operator P sy,
has the angular momentum j=1/2, we obtain
doublets of the states with angular momenta

J = L4 1/2 in the odd nucleus.



The superoperator P/, together with its
Hermitian conjugate and the operators:

Ng=N°®+ N®%, N =N _o+ N,
Sln:\/B/zz Cl/2m1/2m' 1@ 11 1/2m Ay 1/2m

form a graded Lie algebra U(1/2)



Example 2
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The relative weakness of the pseudospin-orbit
coupling implies that pseudoorbital angular
momenta of the quasiparticles are strongly coupled
to the deformation, forming together with the core
a rotating system with angular momentum
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The operators azy l/za(lh,; 120 L Do,

a: 1/2aDmU' ap, 1/ngmo form a graded Lie algebra.

The superoperator
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The superoperator P 5, acting on the eigenstates
of the even-even nucleus produces the eigenstates of
the neighboring odd nucleus.

The level energies in the odd nucleus are shifted by
a constant Ey with respect to the energies of the
corresponding eigenstates of the even-even nucleus.
hus the ~-transition energies of the corresponding
states in both nuclei are equal.




Dirac equation: I
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scalar potential S(r)
vector potential (time-like) V(r)

vector potential (space-like) 17(1-)



Elimination of large components: (€ — m+€)

1 A1V -
G?‘ Is + W, — Zm}f(r) = ¢, f (1)

or

For V=S is W=0, i.e. pseudo-spinorbit spitting vanishes

J.N.Ginocchio, PRL 78 (1997) 436

QCD-sum rules: V=S Furnstahl et al, PRC 46 (1992) 1507




Space-reflection asymmetric modes of nuclear
excitation and Supersymmetric Quantum
Mechanics

The Hamiltonian of the model used can be presented as
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The numerical solution of the Schrodinger equation with the
Hamiltonian shown above with different variants of the two-
center potential having very small or very large distances
between two minima have shown that the wave function of
the positive parity state belonging to the ground state
alternating parity band can be approximated to a good
accuracy by the sum of two Gaussians:
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Having a parameterized wave function we can

substitute it into the Schrodinger equation and

obtain the potential:

which gives us
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Examples of the potentials

240Pu, 1=24
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FIG. 3. The potentials V}” as a function of fs; calculated with
I = 22 using the Legendre ansatz (L) and the Gauss ansatz (G) for
the wave functions of the ground state band. The straight solid line
indicates the position of the first excited negative parity state. Dashed
line indicates position of the lowest positive parity states. Dot-dashed
line indicates position of the second excited positive parity states. The
level energies are obtained using the Legendre ansatz.
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The problem is to find the wave functions of the negative
parity states of the lowest alternating parity band. In order to
do this and to calculate the parity splitting, i.e. the shift of the
energies of the negative parity states with respect to the
positive parity states it is convenient to follow the prescription
of the supersymmetric quantum mechanics and to introduce
the supersymmetric partner potential:
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FIG. 1. The supersymmetric partner potentials V;"' = V1 and
(2) . - _
V™ = V2 as functions of Bsg/ B (1) = Pao/ B calculated for [ = 14
with the parameters fixed for ***Pu. The potential energy is counted
o . . - - P
from the excitation energy of the 147 state of **’Pu.



FIG. 2. The supersymmeltric partner potentials V}” = V1 and
(2 . . . .
V} ' = V2 as functions of B>/ Bu(l) = B/ B calculated for [ =
20 with the parameters fixed for **"Pu. The potential energy is counted
from the excitation energy of the 207 state of *0py,



The mathematical technique of the supersymmetric
guantum mechanics simplify calculations significantly.
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Interacting Boson Model
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Boson representation of the SU(6)

algebra
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Dyson boson representation
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Dynamical symmetries
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Collective Hamiltonian
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Conclusion.

- Pseudospin symmetry.

This symmetry is supported by the
experimental data and justified theoretically.

- The mathematical technique of the
Supersymmetric Quantum Mechanics simplify
significantly a solution of the nuclear structure
problems with double minimum potentials.

- The Interacting Boson Model which is based
on the SU(6) group is introduced to describe
collective nuclear properties.



