Создание экспериментального комплекса передней мюонной станции установки Компактный мюонный соленоид

Каржавин В.Ю.

Специализированный семинар «Релятивистская ядерная физика и поляризационные явления им. А.М. Балдина» № 786. ОИЯИ 5 ноября 2020 г.

Компактный мюонный соленоид (CMS)

Мюонная система состоит из 3 типов субдетекторов

В цилиндрической части (|η|<1,3):

4 слоя из 250 дрейфовых камер (DT) и 480 камер с резистивными пластинами (RPC)

В торцевой части (0.9<η<2.4):

4 мюонные станции ME1- ME4 из 468 катодно-стриповых камер (**CSC**) и 432 камер с резистивными пластинами (**RPC**)

Передняя мюонная станция МЕ1/1

36 камер с катодным считыванием (72 камеры на 2 торцевых частях)

Условия эксплуатации

- Сильное аксиальное маг. поле ~ 4 Т
- Наивысшие в мюонной системе загрузки
 - ~1 кГц/см² (~100 кГц на канал электроники)
- Высокий уровень радиационного фона:
 - нейтронный флюенс ~ 10^{12} Гц/см²
 - интегральная доза облучения ~ 15 кРад
- Высокая степень интеграции на камере
- Сложный доступ для обслуживания и замены детектора

Основные требования CMS к детекторам ME1/1

- Пространственное разрешение $\sigma_x \le 75$ мкм (≤ 185 мкм на плоскость)
- Временное разрешение $\sigma_t \le 4ns$
- Прецизионное совпадение восстановленной координаты трека с внутренним треккером
- Возможность выработки локального триггера
- Идентификация локального трека с моментом взаимодействия пучков в коллайдере
- Детекторы и электроника должны обладать способностью противостоять высокому радиационному фону и необходимой защитой от процессов старения

Камеры с катодным считыванием

Камеры с катодным считыванием выбраны в качестве базовых детекторов торцевой мюонной системы, поскольку они сочетают в себе следующие необходимые свойства:

- точное измерение координаты частицы до 40мкм
- временное разрешение ~3 нс
- наличие быстрого сигнала для триггирования
- загрузочная способность до 3 кГц/см²
- возможность работы в сильном магнитном поле ~ 4 Т

7 trapezoidal panels forming 6 gas gaps

- Камера состоит из 6 газовых зазоров, в которых натянуты анодные проволочки (под напряжением ~ 3.0 кВ)
- Информация с радиальных катодных стрипов дает *φ* координату
- Координата трека определяется распределением заряда на стрипах и сигналом с проволочек

(а) сечение камеры перпендикулярно анодным проволочкам;(б) сечение камеры перпендикулярно катодным стрипам.

Создан ряд прототипов катодно-стриповых камер и электроники считывания мюонной станции МЕ1/1

Параметры прототипов камер

Прототип	P0	P1	P2	P3	P4
Количество плоскостей, шт.	4	6	6	6	6
Зазор, мм	2.5	2.5	2.5	2.8	3.5
Шаг стрипов (верх/низ), мм	5	5	5	7.8/3.15	5.8/4.1
Шаг проволочек, мм	2.5	2.5	2.5	2.5	2.5
Диаметр проволочек, мкм	30	30	30	30	30
Рабочее напряжение, кВ.	2.8	2.8	2.8	2.9	3.0
Угол наклона проволочек, град.	-		25	22	29
Размер плоскости, м	0,5 x 0,5	0.9×0.65×0.45 1.705×0.663×0.34 1.62×0.61×0.3		1.62×0.61×0.301	
Форма катодных стрипов	Прямоугольная	Радиальная			

Проведены комплексные методические исследования Экспериментально изучено:

- координатное и временное разрешение детекторов;
- влияние магнитного поля на характеристики детекторов;
- триггерные свойства камер с катодным считыванием информации;
- влияние электромагнитного сопровождения, индуцируемого мюонами и вероятность образования δ-электронов в плоскости камеры;
- загрузочная способность камер и быстродействие электроники
- оптимизированы параметры и конструкция камер.

Предложены и экспериментально доказаны методы компенсации эффектов, влияющих на деградацию характеристик камер

- Влияние неоднородного аксиального магнитного поля <4 Т компенсировано поворотом анодных проволочек на угол относительно вертикальной оси камеры
- Для работы в условиях высокого уровня фоновых загрузок ~1 кГц/см² стрипы разделены по вертикали на 2 части и считываются с 2 сторон
- показано, что наличие 6 плоскостей в мюонных камерах является оптимальным для эффективной реконструкции трека мюона при наличии электромагнитного сопровождения

Создана электронная аппаратура для исследований характеристик прототипов детекторов

- Совместно с Национальным центром физики частиц высоких энергий (НЦФЧВЭ) г. Минск, разработаны и изготовлены специализированные интегральные схемы для считывания анодной, катодной и триггерной информации
- Параметры микросхем оптимизированы с учетом особенностей конструкции камеры и условий ее эксплуатации в установке CMS
- На базе изготовленного комплекта интегральных схем создана электронная аппаратура для исследований характеристик прототипов детекторов мюонной станции ME1/1

Регистрация информации с катодных стрипов

КАТОД 1 - 16-канальный предусилитель-формирователь с регулировками коэффициента усиления и компенсации длинной компоненты токового сигнала с камеры

buffer LLL /Gain/ /Tail/ /Ref/	
Количество каналов	16
Коэффициент преобразования	(1÷5) мВ/фК
Шум (ENC r.m.s)	2400+12 э/пФ
Время пика сигнала (Сдет = 150пФ)	100 нс
Время базовой линии сигнала	600нс
Наводка с канала на канал	<u>≤1</u> %
Нелинейность	1 %; (0 ÷1.5) B
Потребление по питанию	25мВт/канал

 Форма Гаусса небольшим С отрицательным выбросом, что работе хорошей говорит 0 длинной схемы компенсации компоненты сигнала с камеры

Форма выходного сигнала ИС КАТОД 1 (РЗ, мюоны 225 ГэВ) Время формирования: 100 нс

(б) - уровень шумов канала ИС КАТОД-1

Регистрация информации с анодных проволочек

АНОД- 8-ми канальный предусилитель-формирователь-дискриминатор (T_ф=15 нс) с регулировками порога и длительности выходного импульса

Количество каналов	8
Коэффициент преобразования	10 мВ/фК
Шум (ENC r.m.s)	1600+20 э/пФ
Время формировки	15 нс
Время распространения сигнала	7нс
Длительность выходного сигнала	30 ÷150 нс
Двух импульсное разрешение	100 нс
Порог дискриминатора	5÷50 мВ
Потребление по питанию	25мВт/канал

Временные спектры анодных сигналов, последовательно приходящих с 6 плоскостей камеры

Первый и второй сигналы могут использоваться в логике локального триггера и служить временной меткой события, а мажоритарное совпадение сигналов с 6 плоскостей обеспечит идентификацию трека с временем взаимодействия пучков в коллайдере за время < 30 нс

Вывод триггерной информации с катодных стрипов

КАТОД 3 - 16-ти канальный формирователь - дискриминатор быстрого канала, (T_d=30 нс) с регулировками порога и длительности выходного импульса.

Количество каналов	16
Шум (ENC <u>r.m.s</u>)	7000 э
Время формировки	30 нс
Время распространения сигнала	15 нс
Длительность выходного сигнала	30 ÷80 нс
Порог дискриминатора	2 ÷50 мВ
Потребление по питанию	30мВт/канал

Типичный вид события, зарегистрированного при облучении прототипа РЗ на пучке Н2 ЦЕРН

Результаты экспериментальных исследований характеристик прототипа Р4

Данные получены с электроникой регистрации, разработанной на основе специализированных ИС КАТОД 1, КАТОД 3 и АНОД.

Газовая смесь Ar+CO₂+CF₄ (30/50/20) Высокое напряжения на камере U=2.9 кВ

• Газовое усиление:

G~ 7×10⁴ *(*U=2.9 кВ*)*

- Координатная точность 1 плоскости камеры:
 σ_x ~ 80 мкм
- Эффективность реконструкции мюонных треков: не хуже ε ~ 96%
- Временное разрешение анодного канала:
 σt ~3 нс при эффективности регистрации ε~100%
- Временное разрешение быстрого катодного канала: σ_t ~4 нс при эффективности регистрации ε~97%

Исследование загрузочной способности прототипа Р4

Устойчивость работы детектора и электроники считывания информации при фоновых загрузках ~100 кГц/стрип - одно из важнейших условий СМS для мюонной станции ME1/1

При фоновых загрузках 100 кГц/стрип

- Координатное разрешение плоскости ~ 70 мкм
 При увеличении загрузок до 500кГц/стрип (фактор 5), разрешение деградирует ~ 100 мкм (в пределах допустимого для камер ME1/1)
- Эффективность восстановления трека по 4 плоскостям, при загрузках ~100 кГц/стрип, составляет ~96%
- Эффективность регистрации треков с точностью 1/2 ширины стрипа, с помощью быстрого катодного канала, не менее 95%

Экспериментально измеренные параметры предсерийного прототипа Р4 полностью соответствуют требованиям CMS к мюонной станции ME1/1, что позволило принять решение начать серийное изготовление детекторов

Изготовление камер мюонной станции МЕ1/1

- Камера ME1/1 имеет трапецеидальную форму и представляет собой сектор arphi=10°
- Стрипы образуют естественную систему координат по φ , проволочки дают радиальную координату
- Для уменьшения загрузки катодных каналов регистрации стрипы камер станции МЕ1/1 разделены по вертикали на 2 части и считываются независимо с двух сторон камеры

 Для компенсации влияния магнитного поля анодные проволочки повернуты на угол α (угол Лоренца) относительно вертикальной оси камеры.

Для камер ME1/1 оптимальный угол α = 29° (B< 4T)

Под действием магнитного поля электроны, дрейфующие к анодной проволоке, сносятся, что приводит к потере координатной точности

Конструкция и параметры камер МЕ1/1

- Основа камеры самоподдерживающиеся панели с сотовым заполнением из листов фольгированного стеклотекстолита толщиной 0,8 мм (покрытие меди одностороннее 18мкм)
- 6 зазоров (7 мм) образованы двумя катодными электродами – сплошной и стрипованный (стрипы на поверхности фольгированного стеклотекстолита)

Основные параметры камеры ME1/1

Камера	Кол-во плоскостей		6
	Внутренний радиус	м	0.965
	Внешний радиус	м	2.665
	Количество катодных каналов		480
	Количество анодных каналов		288
	Газовый объем	л	25
	Вес с электроникой	КГ	135
Плоскость	Расстояние анод-катод	MM	3.5
	Высота	м	1620
	Ширина нижней части	м	0.301
	Ширина верхней части	м	0.610
	Толщина	ММ	15
	Площадь	м ²	0.73
	Чувствительная зона	м ²	0.52
Катодные стрипы	Форма стрипов		Радиальная
	Кол-во каналов в верх. части		64
	Кол-во каналов в нижней части		48
	Шаг стрипа в верхней части	мрад	2.33
	Шаг стрипа в нижней части	мрад	3.88
	Длина стрипа в верх. части	MM	1065
	Длина стрипа в нижней части	MM	440
Анодные проволочки	Диаметр проволочки	МКМ	30
	Кол-во проволочек		587
	Шаг проволочек	ММ	2.5
	Кол-во каналов		48
	Проволок в канале (кроме 1 и 48)		11
	Угол наклона проволочек	град	29

Изготовление катодного электрода

- Для "нарезки" стрипов на плоскости катодного электрода был специально спроектирован и изготовлен автоматизированный фрезерный станок
- Радиальная форма стрипов фрезерована алмазным диском толщиной 0,35 мм

Параметры катодного электрода

Параметр	Bepx CSC	Низ CSC
Форма стрипа	Радиальная	Радиальная
Длинна стрипа	1065 мм	440 мм
Количество стрипов	80	48
Угол стрипов	2.33 мрад	3.88 мрад
Ширина стрипа	6.0 мм	4.1 мм
Ширина пропила между стрипами	0.4±0.05 мм	
Глубина пропила между стрипами	0.2 мм	
Плоскостность электрода	≤0.1мм	
Максимальное смещение стрипа	50 мкм	

Контроль разброса толщин панелей

В.Ю. К.,

- Номинальное значение толщины панели 15 мм
- Разброс относительно среднего значения ~19 мкм
- Максимальное смещение стрипа 50 мкм
- Всего измерено 273 панели (по 35 точек на каждой).

Контроль качества нарезки стрипов

• Качество нарезки стрипов и расстояние между стрипами контролировалось с помощью измерения емкости между ними

Разброс емкости между стрипами для верхней и нижней частей панели

 Значение емкости первого и последнего стрипов увеличивается по причине влияния заземления по контуру камеры.

Конструкция анодного электрода

- Анодный электрод (анодные проволочки) размещен в середине газового зазора
- Диаметр анодных проволочек 30 мкм
- Чтобы уменьшить количество каналов электроники считывания, анодные проволочки объединены в группы по 11 (кроме 1 и 48 канала) шириной 2.5÷5,2 см
- Предел упругости проволок 125 г
- Натяжение на разрыв ~160 г
- Рабочее значение натяжения проволоки 80±5 г

Изготовление анодного электрода

- Рабочее значение натяжения проволоки обеспечивается специальной намоточной машиной
- Рамы для переноса проволочного массива с намоточной машины на анодный электрод камеры
- Прецизионный сепаратор для позиционирования проволочек массива на середину ламелей при распайке (шаг 2,5 мм, с точностью ± 25 мкм)

Сборка камеры МЕ1/1

Точность сборки

- На каждой панели имеются 4 референсных отверстия, в которые вставлены прецизионные втулки с отверстиями диаметром Ø=10^{+0.016}мм
- Точность расположения референсных втулок, относительно оси симметрии камеры, не превышает 10 мкм
- В референсные втулки вставлен прецизионный штифт диаметром Ø=10^{-0.01}мм, обеспечивающий выравнивание плоскостей камеры

Проверка камер после сборки

- Герметичность газовых систем всех камер проверена методом заполнения газом. Согласно техническому проекту, при избыточном давлении газа 10 мбар, утечка не должна превышать 0,44% от общего потока газа <0.25 см³/мин
- Герметичность систем охлаждения проверялась:
 - на заводе-изготовителе водой под давлением ~25 бар
 - после установки на камеру при давлении 10 мбар (полное отсутствие утечки)
- Все камеры проходили тренировку с высоким напряжением 3.0 кВ, с газовой смесью Ar/CO₂ (40:60) 17

Установка систем охлаждения и кабелей на камеру

Система охлаждения электроники считывания

Разводка катодных и анодных кабелей

После монтажа системы охлаждения и кабелей, на камеру устанавливались платы считывания информации

Монтаж электроники считывания

96-канальных плат считывания информации с катодных стрипов (CFEB) 5 32-канальных плат считывания информации с анодных проволок (AFEB) 18 288-канальная плата анодного локального триггера (ALCT) плата распределения низковольтного напряжения (LVDB)

Высокая степень интеграции на камере МЕ1/1

- ограниченная площадь поверхности камеры
- жесткие ограничения на габаритные размеры

rigger Motherboard

DAQ Motherboard

(DAQ data)

Slow-Control

Detector Dependent Uni

Peripheral crate

Muon Port Card

Clock Control Board

Muon Sector Receiver Level-1 Trigger

Trigger-Timing-Control

LV System

Проверка работоспособности камер и электроники считывания

Каждая камера проходила стандартный набор тестовых испытаний, который подразделялся на 2 основные группы *

- 1. Проверка работоспособности электроники (без высокого напряжения):
 - проверка функций медленного контроля (управление коммутацией низковольтного питания электроники, чтение токов и напряжений);
 - снятие шумовых характеристик анодных и катодных каналов;
 - проверка работы компараторной логики;
 - измерение порогов регистрации (тестовый сигнал).

2. Тесты с высоким напряжением на камере:

- снятие шумовых характеристик;
- проверка работоспособности электроники в тестах с космическими мюонами;
- контроль коэффициента газового усиления и эффективности регистрации камеры.

Автоматизированный стенд для проверки характеристик камер ME1/1

Стенд для тестирования камер ME1/1 с космическими мюонами 20

Тесты для проверки характеристик детекторов и электроники считывания*

Номер теста	Название	Краткое описание		
9	Управление и контроль питания электроники	Проверка коммутации низковольтного питания электроники на камере, чтение токов и напряжений (с LVDB через LVMB).		
11	Шумовая характеристика каналов AFEB	Поиск шумящих проволочек и коротких замыканий при триггировании с одной плоскости.		
12	Проверка контактов и наводки с канала на канал AFEB	Срабатывание на всех группах проволочек при подаче сигнала на стрип.		
13	Пороги и аналоговый шум AFEB	Срабатывание при изменении порога для 2 амплитудах тестового импульса.		
14	Задержка сигнала ALCT-AFEB	Настройка задержек прихода сигналов с AFEB на ALCT.		
15	Пьедесталы и шум CFEB	Набор данных со случайным триггером для изучения шумов и пьедесталов CFEB		
16	СFEВ проверка контактов	Подача однократного импульс на все проволочки и проверка отклика на стрипах.		
17	Калибровка аналоговых каналов CFEB.	Подается сигнал на входы СFEB и сканируется форма выходного сигнала при изменении задержки. Контроль наводки с канала на канал.		
17b	Контроль усиления CFEB	Подается сигнал на CFEB с изменяющейся амплитудой для измерения коэф. усиления.		
19	Калибровка каналов компараторов. Тест порога и аналогового шума.	Измерение порога и шумов компаратора при изменении порога при 2 амплитудах тестового импульса.		
21	Тест логики компараторов	Для проверки логики полу-стрипа подается сигнал на триплеты стрипов.		
25	Тригтер ALCT	Проверка частоты ALCT тригтера для разных уровней совпадения: 1,2,3,4,5 и 6 плоскостей		
27	Набор статистики на космике	Статистика на космике, для исследования координатной точности, эффективности, газового усиления и т. д.		

*) более подробная информация о тестах приведена в резервных слайдах

Сборка комплекса мюонной станции МЕ1/1

Два слоя ME1/1 камер и один слой RPC камер, оснащённых электроникой, кабелями и сервисными коммуникациями, расположены в зазоре 70 см между адронным калориметром HE и железным диском YE1

Расположение ME1/1 определяет жесткие ограничения на геометрические размеры камер, а также специальные требования к интеграции всех субдетекторов в районе расположения мюонной станции ME1/1

Расположение камер мюонной станции МЕ1/1 в экспериментальной установке

Для монтажа детекторов и доступа к ним во время обслуживания разработаны:

- специальные треи, позволяющих проложить кабели и коммуникации вокруг слотов для установки камер МЕ1/1;
- коммутационные панели для разъединения разъемов кабелей и газовых и водяных труб.

Общий вид разводки кабелей в зоне расположения камер ME1/1

На каждой части торцевой мюонной станции установлено по 18 панелей 23

Субсистемы комплекса мюонной станции МЕ1/1

Система охлаждения

Один канал - 2 CSC Всего - 36 каналов Рабочее давление Р ~ 4 бар Температура T=19±2°C

Высоковольтная система

Всего 432 канала 2 крейта SY1527 CAEN 16 источников (28 кан.) 1733BP U=1÷4000 B, I= 1÷200 мкА

16 источников MARATON (P=3.6 кВт. I=10÷600 A 216 CSC включая 72 ME1/1 24 периферийных крейта

Газовая система

Низковольтная система

Сборка мюонной станции МЕ1/1

Разработаны специальные устройства для монтажа детекторов

- При монтаже камер в верхнюю часть мюонной станции ME1/1 «загрузочная машина» с детектором подавалась краном вертикально
- Для монтажа камер в нижнюю часть мюонной станции МЕ1/1 применена балка с компенсирующим противовесом

Проверка работоспособности камер после инсталляции

Работоспособность камер проверена с помощью мобильного автоматизированного стенда

Результаты тестирования показали стабильность характеристик после инсталляции в экспериментальную установку

Шум каналов анодной (AFEB), катодной (CFEB) электроники и величина пика заряда кластера (газовое усиление) для 72 CSC до и после монтажа

Тест субдетекторов CMS с космическими частицами в магнитном поле после сборки в наземном зале (МТСС)

Торцевая мюонная система:

детекторы 4 станций ME1/1, ME1/2, ME1/3, ME1/4, входящие в 60⁰ сектор (1/12 CMS)

Пространственное разрешение камер ME1/1 (магнитное поле 4T)

σ=118 мкм на одну плоскость (средняя величина для 6 камер)

Результаты теста МТСС

Зависимость координатной точности камеры МЕ1/1 от радиуса.

Результаты теста МТСС совпадают с, полученными ранее на пучке и с моделированием.

Отличие на 10 мкм для МТСС - меньшее высокое напряжение (2.95 кВ)

Зависимость координатной точности плоскости МЕ1/1 камеры от величины магнитного поля

- Лучшая координатная точность 118 мкм, соответствует значению магнитного поля 2.7 Т
- Координатная точность во всем диапазоне изменения магнитного поля 0–2.4 Т, не превышает условие проекта 185 мкм

Проверка работы детекторов мюонной станции ME1/1 после окончательной сборки в подземном зале (тест CRAFT)

 Перед запуском установки характеристики камер ME±1/1b проверены с космическими частицами при рабочем значении магнитного поля ~4 Т

После сборки в экспериментальном зале установка CMS перешла в состояние готовности к работе с протон-протонными столкновениями на БАК

Результаты теста CRAFT

Пространственное разрешение плоскости от величины магнитного

Пространственное разрешение по радиусу

Пространственное разрешение плоскости по азимуту (4 области)

- В области СFEB 3 σ~ 113 мкм (угол наклона анодной проволоки оптимальный для компенсации сдвига дрейфа электронов
- Деградация пространственного разрешения, связанного с изменением угла анодных проволочек относительно стрипов по азимуту, незначительна, что подтверждает оптимальный выбор конструкции камер.

Среднее значение пространственного разрешения камер ME1/1b для 2 торцевых частей мюонной станции (72 камеры) составляет ~50 мкм (проектное значение σ ≤ 75 мкм)

Результаты, полученные в период сеанса CRAFT, показали готовность мюонной системы CMS, включая комплекс передней мюонной станции ME1/1, к работе с протон-протонными столкновениями на БАК.

Физический запуск CMS

1 этап набора данных с протон-протонными взаимодействиями БАК

Энергия в системе центра масс √s = 7 ТэВ. Интегральная светимость 29.4 fb⁻¹ Пиковая светимость в конце сеанса 7.7 10³³ см⁻²с⁻¹ Эффективность регистрации событий ~98.5%.

Количество работающих детекторов в подсистемах СМS в первом наборе данных

Характеристики мюонной станции МЕ1/1

Временное распределение трек-сегментов в камере для мюонов с *p*T ≥ 20 GeV/*c*.

Фитирование распределения функцией Гаусса дает величину среднеквадратичного отклонения σ_t = 3нс

Entries 3431466 SI2Res_11b_Fit5_Q150 4.054e-05 Mean 120 RMS 0.03282 χ^2 / ndf 5763 / 42 100 Constant 1.102e+05 ± 8.595e+01 7.169e-05 ± 1.502e-05 Mean Sigma 0.02272 ± 0.00002 80 60 40 20

Пространственное разрешение 66 мкм

Распределение отклонения, измеренного значения координаты мюона от расчетной координаты сегмента трека в плоскости.

0

0.05

0.1

0.15

Strip width units

0.2

Пространственное разрешение плоскости: σ_I = rms x ширину стрипа = 0.03282 x 5мм = 164 мкм. Для камеры из 6 плоскостей:

$$\sigma_{\rm ME1/1} = \frac{\sigma_l}{\sqrt{6}} = 66 \text{ MKM}$$

Временное разрешение 3нс и пространственное разрешение 66мкм, измеренные с протон-протонными взаимодействиями БАК, полностью удовлетворяют проектным условиям для детекторов ME1/1

-8.2

-0.15

-0.1

-0.05

Результат 1 этапа набора данных

Одним из фундаментальных достижений в выполнении физической программы эксперимента CMS, в период первого набора экспериментальных данных, явилось открытие новой частицы бозона Хиггса.

Пример «золотого» события распада бозона Хиггса, с 4-мя мюонами в конечном состоянии.

- Ключевую роль в прецизионных измерениях координат трека мюона играют детекторы передней мюонной станции МЕ1/1, которые обладают уникальным характеристикам.
- Максимально близкое расположение мюонной станции МЕ1/1 к точке взаимодействия пучков, которое обеспечивает сшивку частей трека, восстановленных в мюонной системе и трекере, а также его экстраполяцию в точку взаимодействия. 34

В.Ю. Каржавин. Семинар Релятивистская ядерная физика и поляризационные явления им. А.М. Балдина № 786. 5 ноября 2020 г.

Программа модернизации БАК

Программа модернизации БАК нацелена на повышение интегральной светимости

	LHC	HL-LHC	HL-LHC
Параметр	проектная	повышенная	предельная
	светимость	светимость	светимость
Пик светимости (10 ³⁴ см ⁻² с ⁻¹)	1.0	5.0	7.5
Интегральная светимость (фб-1)	300	3000	4000
Пайлап	~30	~140	~200

В режиме HL-LHC

Интегральная светимость возрастет в10 раз Пайлап возрастет в 5 раз

 дополнительные требования к быстродействию детекторов и электроники считывания

Модернизация в периоды LS1 и LS2 нацелена на надежную и эффективную работу в проектном режиме при работе БАК с полной энергией до √s = 14 ТэВ и пиковой светимостью L= 1÷ 2x10³⁴см⁻²c⁻¹.

Модернизация в период LS3 нацелена на надежную и эффективную работу в режиме высокой светимости БАК L= 5x10³⁴см⁻²с⁻¹ при интегральной светимости 3000 фб⁻¹.

Прогнозируемая эволюция мгновенной и интегральной светимости

Задачи модернизации торцевой мюонной системы (LS1)

Изготовление 72-х камер мюонной станции МЕ4/2

- Расширение мюонной системы (4 станции) диапазоне: 0.9 < η < 2.4
- Повышение эффективности регистрации в диапазоне 1.2 < η < 1.8

Оснащение мюонной станции МЕ1/1 новой электроникой

- Функционирование без мертвого времени
- Эффективная регистрация событий при больших загрузках 2.1<| η |<2.4
- Эффективное триггирование в области 2.1<| η |<2.4

Демонтаж, модернизация камер, установка новой электроники и проверка работоспособности камер

Мотивация модернизации МЕ1/1

Первоначальный проект мюонной станции МЕ1/1 был сокращен – уменьшено количество катодных плат СFEB на камере МЕ1/1а

- 3 стрипа объединено на один канал считывания (1 плата считывания CFEB вместо 3), что привело к 3 кратной неоднозначности при реконструкции треков.
- Каждый мюон дает 1 реальный трек-сегмент и 2 ложных
- Занятость каналов считывания МЕ1/1а возросла в ~ 3 раза

Новая цифровая катодная плата для камер МЕ1/1

CFEB: мертвое время при высоких загрузках – запись в аналоговую память. Скорость чтения ~280 Мбит/с. **DCFEB (Digital Cathode Front End Board):** АЦП и аналоговая память заменены на АЦП прямого преобразования и цифровую память

- Все 96 каналов непрерывно оцифровываются (без мультиплексирования). Скорость чтения ~1÷2.4 Гбит/с. - фактически без мертвого времени

Необходима замена модулей в периферийных крейтах станции ME1/1: ODMB, TMB, ALCT мезонин карта, LVDB7, LVMB7

Модернизация электроники в периферийных крейтах мюонной станции ME1/1

<u>DMB</u> → ODMB (Optical DAQ Mother Board)

 замена FPGA (Virtex 6) для поддержки 7-ми DCFEB, оптические линии передачи данных

<u>TMB</u> → OTMB (Optical Trigger Mother Board)

- новая мезонин-карта с новой FPGA улучшает триггерную логику.
- оптические линии передачи данных

Мезонин платы ALCT (Anod Local Charge Track board)

 замена FPGA (Spartan-6) в 10 раз больше логики и в 2 раза больше быстродействие

LVDB→ LVDB7 (Low Voltage Distribution Board)

 плата распределения низкого напряжения (LVDB7) обеспечивает 26 напряжений для питания 7 DCFEB и 1 ALCT

Модернизации мюонной станции ME1/1 (SX5 ЦЕРН)

МЕ1/1 камеры в SX5

Стенд для проверки камер после сборки

Стенд для длительной проверки камер

- 72 МЕ1/1 камеры извлечены, переоборудованы, проверены и повторно установлены
- Перед установкой камеры полностью проверены со стандартным набором тестов, включая длительный тест с высоким напряжением

Проверка работоспособности камер МЕ1/1 после модернизации

✓ Во втором периоде набора данных модернизированные камеры показали более стабильную работу

Радиальные пробелы означают, что детекторы или отдельные катодные платы (CFEB) отключены по питанию.

Результаты модернизации мюонной станции МЕ1/1

- ✓ Более чем в 3 раза уменьшена шумовая загрузка канала катодной электроники считывания. В области больших загрузок 2.1<η <2.4 обеспечена эффективность восстановления координаты трека >96% и эффективность триггера > 90%
- ✓ Экспериментально измерено значение пространственного разрешения камер ME1/1а после модернизации σ = 51 мкм
- Причина повышения точности восстановления пространственной координаты определяется уменьшением входной емкости канала регистрации (устранено объединение 3 стрипов)

Пространственное разрешение модернизированных камер МЕ1/1а

Заключение

- Создан и введён в эксплуатацию уникальный комплекс передней мюонной станции CMS. Конструкция детекторов мюонной станции ME1/1 оптимизирована для эффективной работы в неоднородном магнитном поле до 4 Т при фоновых загрузках до 3 кГц/см².
- 2. Достигнуты рекордные параметры комплекса МЕ1/1:
 - точность реконструкции координаты мюона <75 мкм;
 - эффективность реконструкции треков >96%;
 - временное разрешение ~ 3 нс;
 - время идентификации локального заряженного трека <50 нс с эффективностью >99%;
- 3. В процессе создания комплекса передней мюонной станции с непосредственным участием автора диссертации решены важные методические проблемы:
 - проведены комплексные методические исследования, результатом которых явилась разработка конструкции и технологии изготовления прецизионных катодно-стриповых камер для мюонной станции ME1/1, удовлетворяющих требуемым параметрам эксперимента CMS;
 - в ОИЯИ создан участок серийного изготовления камер, изготовлено 76 шестислойных камер для мюонной станции ME1/1;
 - произведён монтаж передней мюонной станции ME1/1, состоящий из 72 камер и систем, обеспечивающих их функционирование;
 - проведена экспериментальная проверка основных характеристик комплекса мюонной станции ME1/1 в реальном магнитном поле с помощью космических частиц, показано, что физические характеристики мюонной станции ME1/1соответствуют проектным.

- Успешно завершён первый этап набора экспериментальных данных на установке CMS. Впервые с протон-протонными взаимодействиями БАК измерены основные характеристики детекторов мюонной станции ME1/1: временное разрешение 3нс и пространственное разрешение 66 мкм, которые полностью удовлетворяют проектным условиям CMS.
- 5. Успешно реализован первый этап плана модернизации комплекса передней мюонной станции установки CMS, нацеленный на обеспечение надёжной и эффективной регистрации событий и триггирования в области псевдобыстрот 2.1< η <2.4, в режиме работы БАК с полной энергией в системе центра масс √s = 14 ТэВ и светимостью L=1÷ 2 x10³⁴ см²с⁻¹.

В результате модернизации камер МЕ1/1 в области больших загрузок:

- устранена неоднозначность определения координаты частицы и более чем в 3 раза уменьшена шумовая загрузка канала электроники считывания, что позволило обеспечить эффективность определения координаты трека >96% и эффективность триггера >90%;
- более чем на 20% улучшено пространственное разрешение камер ME1/1a (σ=51 мкм).

Резервные слайды

Шумовая характеристика CFEB

Среднеквадратичные отклонения величин пьедесталов каналов CFEB (шумовая характеристика).

Относительно равномерная картина подтверждает отсутствие внешних наводок или генерации каналов.

Проверка работоспособности каналов CFEB

Дисплей событий проверки работоспособности каналов CFEB тестовые сигналы подавались попарно на анодные группы плоскостей

Наличие сигнала в стриповом канале свидетельствует о его работоспособности

Тест логики компараторов CFEB

Дисплей события теста логики компараторов CFEB.

Теста логики компараторов CFEB

Подавались сигналы, имитирующие реальный кластер (3 соседних сработавших стрипа) с различным соотношением амплитуд в триаде

Алгоритм обнаружения центра кластера работает правильно, за исключением положений, где не может быть полноценной триады: крайних каналов и каналов на разделе CFEB4 - CFEB5.

Калибровка аналоговых каналов и каналов компараторов CFEB

Подача тестовых сигналов на каждый канал последовательно при изменении величин порогов регистрации

Аналоговые сигналы изображены красным, срабатывание компараторов отмечено полосой под аналоговым сигналом

Шумовая характеристика каналов AFEB

Проверка каналов работоспособности СFEB с космическими мюонами

Гистограмма шумов каналов AFEB при наличии высокого напряжения на камере

Гистограмма загрузки каналов CFEB при наборе данных с космическими мюонами для одной плоскости камеры [а]

Дисплей события при наборе статистики с космическими мюонами (б)

Счетная характеристика анодного (ALCT) и катодного (CLCT) триггеров в зависимости от напряжения на камере

Распределение величины заряда кластера на стрипах камеры ME1/1 (единицы АЦП)

Выход характеристик на счетное плато указывает на начало рабочего режима работы камеры по напряжению

По положению пика распределения контролируется стабильность газового усиления в зазоре анод-катод