

André Sopczak IEAP CTU in Prague

JINR Dubna

22 February 2017

Outline

- Introduction
- Signal and Background
- Multi-lepton Final States
- Two Same-sign Light Leptons and Hadronic Tau Decay
- Tau-Lepton Purity
- Specific Analysis Results
- Combination with other Multi-lepton Channels
- Combination with other ATLAS ttH Channels
- Combination of ATLAS and CMS ttH Results
- Conclusions and Outlook

>>> LHC Higgs Boson Physics <<<*

3

Focus on Higgs Boson Production in Association with a Top-Quark Pair

An important motivation of the ttH research is the fact that at present the only quantity which can help us to get an idea about the scale of New Physics is the top Yukawa coupling." Fedor Bezrukov, Mikhail Shaposhnikov

ZhETF, 2015, Vol. 147, No. 3, p. 389[arXiv:1411.1923]

Recall: \Box Yukawa coupling g(ffH) ~ m_f $\Box m_{top}/m_{bottom} = 173/5 \approx 35$

Run-1 ttH Summary State of the Art

LHC Run-2: recorded 35.9 fb⁻¹ and Analysis of 13.2 fb⁻¹ Presented Here

A.Sopczak 22 Feb. 2017

Indirect (loop) & Direct (Tree-level)

- □ Highest rate gg→H though loop, however, effects of ttH coupling not distinguishable from new physics contribution.
- □ Tree-level direct measurement: pp→ttH, very sensitive to physics beyond the Standard Model. $\sigma(t\bar{t}H) \propto g_{t\bar{t}H}^2$

- NLO accuracy in QCD using MG5_aMC with the NNPDF2.3 PDF with NLO electroweak corrections
- □ interfaced to Pythia8 to provide parton showering, hadronisation and multiple parton interactions, using the A14 parameter set.

Physics Prague

pplied

ttH Higgs and Top-Pair Decay Modes

Four ATLAS ttH Multi-leptons Channels

Characterization by number of light leptons (electrons or muons) and number of hadronically decaying tau leptons

A.Sopczak 22 Feb. 2017

Four ATLAS ttH Multi-leptons Channels

□ Monte Carlo truth study shows enhanced $H \rightarrow \tau \tau$ selection in the two same-sign light leptons and one hadronically decaying tau final state

	Higgs boson decay mode					
Category	WW^*	au au	ZZ^*	Other		
$2\ell0 au_{ m had}$	77%	17%	3%	3%		
$2\ell 1 au_{ m had}$	46%	51%	2%	1%		
3ℓ	74%	20%	4%	2%		
4ℓ	72%	18%	9%	2%		

Two Same-sign Leptons and One Hadronic Tau Final State

Main background: ttbar Fake background estimate determined from data

A.Sopczak 22 Feb. 2017

ttH Candidate (Multi-leptons) Same-sign e and μ and Tau-jet

ATLAS ttH (Multi-leptons)

Institute of Experimental and Applied Physics Czech Technical University in Prague

	$2\ell 0 au_{ m had}~ee$	$2\ell 0 au_{ m had} \ e\mu$	$2\ell 0 au_{ m had}\ \mu\mu$	$2\ell 1 au_{ m had}$	3ℓ	4ℓ
$t\bar{t}W$	3.2 ± 0.9	10.4 ± 2.9	7.4 ± 1.8	1.0 ± 0.5	6.5 ± 1.5	
$t ar{t} (Z/\gamma^*)$	1.53 ± 0.29	4.3 ± 0.9	2.6 ± 0.6	1.7 ± 0.4	11.3 ± 1.9	1.08 ± 0.20
Diboson	0.40 ± 0.26	2.6 ± 1.5	0.8 ± 0.5	0.21 ± 0.15	1.9 ± 1.0	0.04 ± 0.04
Non-prompt leptons	9 ± 4	11 ± 4	8.9 ± 3.3	1.9 ± 1.6	15 ± 4	0.17 ± 0.10
Charge misreconstruction	7.2 ± 1.4	7.6 ± 1.8		0.25 ± 0.03		
Other	0.83 ± 0.16	2.3 ± 0.6	1.5 ± 0.4	0.66 ± 0.16	3.4 ± 0.8	0.12 ± 0.05
Total background	22.2 ± 3.4	39 ± 5	21 ± 4	5.7 ± 1.7	39 ± 5	1.42 ± 0.24
$t\bar{t}H$ (2.5 × SM)	5.3 ± 1.8	13 ± 4	7.6 ± 2.5	4.0 ± 1.2	16 ± 5	1.5 ± 0.5
Data	26	59	31	14	46	0
		A.Sopo	zak 22 Feb. 2017			16

ATLAS ttH (Multi-leptons) Simultaneous Fit Results $\mu = 2.5^{+1.3}_{-1.1}$

ATLAS ttH (Multi-leptons) 95% CL Limit µ<4.9 (2.3 Expected)

Institute of Experimental and Applied Physics Czech Technical University in Prague

Other ttH Final States

A.Sopczak 22 Feb. 2017

20

A.Sopczak 22 Feb. 2017

Physics

Applied

Institute of Experimenta

A.Sopczak 22 Feb. 2017

ttH (H→bb)

CMS

2.6 (3.6)

ttH (H \rightarrow bb) Run-1 and Run-2

and Applied Physics University in Prague Institute of Experimental Czech Technical

27

ATLAS ttH (Multi-lepton, γγ, bb) Results

ATLAS Preliminary vs=13 TeV, 13.2-13.3 fb⁻¹ -stat. (tot.) (stat., syst.) —total **-0.3** $^{+1.2}_{-1.0}$ ($^{+1.2}_{-1.0}$, $^{+0.2}_{-0.2}$) ttH(H→γγ) (13 TeV 13.3 fb⁻¹) **- 2.5** $^{+1.3}_{-1.1}$ $\begin{pmatrix} +0.7 \\ -0.7 \end{pmatrix}$ $\begin{pmatrix} +1.1 \\ -0.9 \end{pmatrix}$ $t\bar{t}H(H\rightarrow WW/\tau\tau/ZZ)$ (13 TeV 13.2 fb⁻¹) **2.1 +1.0** (+0.5 +0.9 -0.9 (-0.5 , -0.7 ttH(H→bb) (13 TeV 13.2 fb⁻¹) **1.8** $^{+0.7}_{-0.7}$ ($^{+0.4}_{-0.4}$, $^{+0.6}_{-0.5}$) ttH combination (13 TeV) **+0.8** (+0.5 +0.7 -0.8 (-0.5 , -0.6 1.7 ttH combination (7-8TeV, 4.5-20.3 fb⁻¹ 2 6 10 4 8 $\left(\right)$ best fit μ_{IIII} for m_{H} =125 GeV

A.Sopczak 22 Feb. 2017

Analytic functions and fit to the data sidebands to estimate continuum background.

Non-prompt background (heavy-flavour). Mis-reconstruction of el. charge. Irreducible bckg (diboson, ttW, ttZ simulation).

Run-1 ttH multi-lepton final state: number of events (CMS) JHEP 09 (2014) 087

	ee	$\mathrm{e}\mu$	$\mu\mu$	3ℓ	4ℓ
$t\overline{t}H,H\rightarrow WW$	1.0 ± 0.1	3.2 ± 0.4	2.4 ± 0.3	3.4 ± 0.5	0.29 ± 0.04
$t\overline{t}H,H\to ZZ$		0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.09 ± 0.02
t T H, H $\rightarrow \tau \tau$	0.3 ± 0.0	1.0 ± 0.1	0.7 ± 0.1	1.1 ± 0.2	0.15 ± 0.02
$t\overline{t}W$	4.3 ± 0.6	16.5 ± 2.3	10.4 ± 1.5	10.3 ± 1.9	
$t\overline{t}Z/\gamma^*$	1.8 ± 0.4	4.9 ± 0.9	2.9 ± 0.5	8.4 ± 1.7	1.12 ± 0.62
ttWW	0.1 ± 0.0	0.4 ± 0.1	0.3 ± 0.0	0.4 ± 0.1	0.04 ± 0.02
$t\overline{t}\gamma$	1.3 ± 0.3	1.9 ± 0.5		2.6 ± 0.6	
WZ	0.6 ± 0.6	1.5 ± 1.7	1.0 ± 1.1	3.9 ± 0.7	
ZZ		0.1 ± 0.1	0.1 ± 0.0	0.3 ± 0.1	0.47 ± 0.10
Rare SM bkg.	0.4 ± 0.1	1.6 ± 0.4	1.1 ± 0.3	0.8 ± 0.3	0.01 ± 0.00
Non-prompt	7.6 ± 2.5	20.0 ± 4.4	11.9 ± 4.2	33.3 ± 7.5	0.43 ± 0.22
Charge misidentified	1.8 ± 0.5	2.3 ± 0.7			
All signals	1.4 ± 0.2	4.3 ± 0.6	3.1 ± 0.4	4.7 ± 0.7	0.54 ± 0.08
All backgrounds	18.0 ± 2.7	49.3 ± 5.4	27.7 ± 4.7	59.8 ± 8.0	2.07 ± 0.67
Data	19	51	41	68	1

Run-2 ttH multi-lepton final state: number of events (CMS) CMS-PAS-HIG-16-022

	μμ	ee	еµ	3ℓ
tīW	18.3 ± 0.9	6.8 ± 0.6	24.5 ± 1.1	12.2 ± 0.7
$t\bar{t}Z/\gamma^*$	5.8 ± 0.6	7.4 ± 0.6	15.3 ± 1.3	22.6 ± 1.0
Di-boson	1.4 ± 0.2	1.1 ± 0.2	2.6 ± 0.3	5.7 ± 0.4
tttt	0.8 ± 0.2	0.4 ± 0.1	1.5 ± 0.2	1.2 ± 0.1
tqZ	0.2 ± 0.3	0.4 ± 0.4	0.6 ± 0.6	2.7 ± 0.8
Rare SM bkg.	1.6 ± 0.3	0.5 ± 0.1	1.8 ± 0.1	0.3 ± 0.1
Charge mis-meas.		6.7 ± 0.1	10.0 ± 0.1	
Non-prompt leptons	33.4 ± 1.2	23.1 ± 1.1	-61.9 ± 1.7	51.0 ± 1.8
All backgrounds	61.5 ± 1.7	46.4 ± 1.5	118.0 ± 2.5	95.7 ± 2.3
$t\bar{t}H (H \rightarrow WW^*)$	6.3 ± 0.2	2.6 ± 0.1	8.5 ± 0.2	8.0 ± 0.2
tīH (H $\rightarrow \tau \tau$)	1.6 ± 0.1	0.7 ± 0.1	2.5 ± 0.1	2.1 ± 0.1
$t\bar{t}H (H \rightarrow ZZ^*)$	0.2 ± 0.0	0.1 ± 0.0	0.3 ± 0.0	0.5 ± 0.0
Data	74	45	154	105
Category	Obs.	limit Exp.	limit $\pm 1\sigma$ I	Best fit $\mu \pm 1\sigma$
Same-sign dileptons	4	.6 1.7	+0.9 -0.5	$2.7^{+1.1}_{-1.0}$
Trileptons	3	.7 2.3	$+1.2_{-0.7}$	$1.3^{+1.2}_{-1.0}$
Combined categories	3	.9 1.4	$^{+0.7}_{-0.4}$	$2.3^{+0.9}_{-0.8}$
Combined with 2015 data	3	.4 1.3	+0.6 - 0.4	$2.0^{+0.8}$ $_{-0.7}$

Run-2 CMS: up to August 2016 data **CMS** *Preliminary* 2.3+12.9 fb⁻¹ (13 TeV) $m_{\rm H} = 125 \text{ GeV}$ combined μ = 2.0 $^{+0.8}_{-0.7}$ ttH, H \rightarrow multilepton +0.831 $\mu(ttH) = 2.0$ $\mu = 2.5^{\,+1.4}_{\,-1.2}$ 21, $1\tau_{\rm h}$ $\mu = 0.0^{+1.4}$ -1.2 ee, no τ_{h} $\mu = 1.2^{+2.4}$ -2.3 ttH, H→γγ $\mu\mu$, no τ +1.5 $\mu = 2.6^{+1.3}$ -1.1 eµ, no τ_{h} $\mu(ttH) = 1.9$ $\mu = 2.4^{+1.3}$ Best fit $\mu = \sigma/\sigma$ -2 5 6 0 __1 SM A.Sopczak 22 Feb. 2017

and Applied Physics **University in Prague** Institute of Experimental Czech Technical

Combined ATLAS and CMS ttH Results

Recall Run-1: The ATLAS and CMS Collaborations, JHEP 08 (2016) 045

Run-2: work in progress

Institute of Experimental and Applied Physics

Czech Technical

University in Prague

Run-1&2 Summary of ttH Coupling and Applied Physics University in Prague $\mu(ttH)$ **Run-1** Run-2 **ATLAS** +0.7echnical $1.8_{-0.7}$ +0.7Czech $2.3_{-0.6}$ CMS +0.8 $2.0_{-0.7}$

Institute of Experimental

+0.42Deviation from 1: 2.7σ Simple combination $\mu(ttH) = 2.03_{-0.38}$ Deviation from 0: 5.3σ

A.Sopczak 22 Feb. 2017

Interpretation pMSSM

- Idea: testing pMSSM scenarios for overlapping signature with ttH analyses (example ttH multileptons)
- □ G. Aad et al. [ATLAS Collaboration], "Summary of the ATLAS experiments sensitivity to supersymmetry after LHC Run 1 interpreted in the phenomenological MSSM," JHEP 1510 (2015) 134.) $q = \frac{\nu/\ell}{q}$
- Two pMSSM scenarios identified (same-charge dilepton and tau) which could mimic ttH events. Significant efficiencies.

One scenario similar to the one described in
 P. Huang, A. Ismail, I. Low and C. E. M. Wagner,
 "Same-Sign Dilepton Excesses and Light Top Squarks,"
 Phys. Rev. D 92 (2015) 7, 075035.

Conclusions and Outlook

- ttH direct measurement is the key reaction to determine top Yukawa coupling independent of new physics in the gluon-Higgs sector.
- □ Multiple analysis channels contribute sensitivity.
- Excellent LHC Run-2 operation and ATLAS data recording.
- □ About 36 fb⁻¹ recorded and 13 fb⁻¹ analysed at 13 TeV.
- □ Increased sensitivity with initial Run-2 data compared to Run-1 results. Focus on systematics and new techniques.
- $\Box \mu = 2.0\pm0.4$ (simple comb.) Run-1 and 13 fb⁻¹ Run-2 data Outlook:
- Excellent prospects for establishing ttH signal.
- Strong exclusion of models predicting non-SM ttH rates or observing new physics.
- □ Interest in experimental/theory collaboration for ttH.

Acknowledgement

The project is supported by the Ministry of Education, Youth and Sports of the Czech Republic under projects number LG 15052 and LG 2015058

ttH (Multi-leptons) Tight and Loose

	Lo	ose	Tight		
	e	μ	e	μ	
Track isolation	99% eff.	99% eff.	$< 0.06 \times p_{\rm T}$ (*)	$< 0.06 \times p_{\rm T}$ (*)	
Calorimeter isolation	99% eff.	99% eff.	$< 0.06 \times p_{\rm T}$ (*)	99% eff. (*)	
Identification working point	Loose	Loose	Tight	Loose	
Transverse impact parameter $ d_0 /\sigma_{d_0}$	< 5	< 3	< 5	< 3	
$z \text{ impact parameter } \Delta z_0 \sin \theta_\ell $	$< 0.5 \ \mathrm{mm}$	$< 0.5 \ \mathrm{mm}$	$< 0.5 \ \mathrm{mm}$	$< 0.5 \ \mathrm{mm}$	

Selections for tight leptons are applied on top of the selections for loose leptons

ttH (Multi-leptons) Selection Signal (SR) and Validation Regions (VR)

SR/VR	Channel	Selection criteria
SR	$2\ell 0 au_{ m had}$	Two tight light leptons with $p_{\rm T} > 25, 25 \text{ GeV}$
		Sum of light lepton charges ± 2
		Any electrons must have $ \eta_e < 1.37$
		Zero $\tau_{\rm had}$ candidates
		$N_{\rm jets} \ge 5 \text{ and } N_{b- m jets} \ge 1$
\mathbf{SR}	$2\ell 1 au_{ m had}$	Two tight light leptons, with $p_{\rm T} > 25$, 15 GeV
		Sum of light lepton charges ± 2
		Exactly one τ_{had} candidate, of opposite charge to the light leptons
		m(ee) - 91.2 GeV > 10 GeV for ee events
		$N_{\rm jets} \ge 4 \text{ and } N_{b- m jets} \ge 1$
\mathbf{SR}	3ℓ	Three light leptons; sum of light lepton charges ± 1
		Two same-charge leptons must be tight and have $p_{\rm T} > 20 {\rm ~GeV}$
		$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs
		$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$
		$N_{\text{jets}} \ge 4 \text{ and } N_{b-\text{jets}} \ge 1, \text{ or } N_{\text{jets}} = 3 \text{ and } N_{b-\text{jets}} \ge 2$
\mathbf{SR}	4ℓ	Four light leptons; sum of light lepton charges 0
		All leptons pass "gradient" isolation selection
		$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs
		$100 \text{ GeV} < m(4\ell) < 350 \text{ GeV} \text{ and } m(4\ell) - 125 \text{ GeV} > 5 \text{ GeV}$
		$N_{\rm jets} \ge 2 \text{ and } N_{b-\rm jets} \ge 1$
\overline{VR}	Tight ttZ	3ℓ lepton selection % and trigger selection
		At least one $\ell^+\ell^-$ pair with $ m(\ell^+\ell^-) - 91.2 \text{ GeV} < 10 \text{ GeV}$
		$N_{\rm jets} \ge 4 \text{ and } N_{b-\rm jets} \ge 2$
$\overline{\mathrm{VR}}$	Loose ttZ	3ℓ lepton selection % and trigger selection
		At least one $\ell^+\ell^-$ pair with $ m(\ell^+\ell^-) - 91.2 \text{ GeV} < 10 \text{ GeV}$
		$N_{\text{jets}} \ge 4 \text{ and } N_{b-\text{jets}} \ge 1, \text{ or } N_{\text{jets}} = 3 \text{ and } N_{b-\text{jets}} \ge 2$
$\overline{\mathrm{VR}}$	WZ + 1 b-tag	3ℓ lepton selection % and trigger selection
		At least one $\ell^+\ell^-$ pair with $ m(\ell^+\ell^-) - 91.2 \text{ GeV} < 10 \text{ GeV}$
		$N_{\rm jets} \ge 1 \text{ and } N_{b-\rm jets} = 1$
VR	ttW	$2\ell 0\tau_{\rm had}$ lepton selection % and trigger selection
		$2 \le N_{\text{jets}} \le 4 \text{ and } N_{b-\text{jets}} \ge 2$
		$H_{\rm T,jets} > 220 {\rm ~GeV}$ for ee and $e\mu$ events
		$E_{\rm T}^{\rm miss} > 50 \text{ GeV}$ and $(m(ee) < 75 \text{ or } m(ee) > 105 \text{ GeV})$ for ee events
		A.Sopczak 22 Feb. 2017

ttH (Multi-leptons) Signal and Main Background Pre-fit

	$2\ell 0 au_{ m had}~ee$	$2\ell 0 au_{ m had} \ e\mu$	$2\ell 0 au_{ m had}\ \mu\mu$	$2\ell 1\tau_{\rm had}$	3ℓ	4ℓ
$t\bar{t}W$	2.9 ± 0.7	9.1 ± 2.5	6.6 ± 1.6	0.8 ± 0.4	6.1 ± 1.3	
$t\bar{t}(Z/\gamma^*)$	1.55 ± 0.29	4.3 ± 0.9	2.6 ± 0.6	1.6 ± 0.4	11.5 ± 2.0	1.12 ± 0.20
Diboson	0.38 ± 0.25	2.5 ± 1.4	0.8 ± 0.5	0.20 ± 0.15	1.8 ± 1.0	0.04 ± 0.04
Non-prompt leptons	12 ± 6	12 ± 5	8.7 ± 3.4	1.3 ± 1.2	20 ± 6	0.18 ± 0.10
Charge misreconstruction	6.9 ± 1.3	7.1 ± 1.7		0.24 ± 0.03		
Other	0.81 ± 0.22	2.2 ± 0.6	1.4 ± 0.4	0.63 ± 0.15	3.3 ± 0.8	0.12 ± 0.05
Total background	25 ± 6	38 ± 6	20 ± 4	4.8 ± 1.4	43 ± 7	1.46 ± 0.25
$t\bar{t}H$ (SM)	2.0 ± 0.5	4.8 ± 1.0	2.9 ± 0.6	1.43 ± 0.31	6.2 ± 1.1	0.59 ± 0.10
Data	26	59	31	14	46	0

Other" backgrounds include tZ, tWZ, tHqb, tHW, tttt, ttWW, and triboson production

A.Sopczak 22 Feb. 2017

ttH (Multi-leptons) Effects of Systematic Uncertainties on μ

Uncertainty Source	$\Delta \mu$		
Non-prompt leptons and charge misreconstruction	+0.56	-0.64	
Jet-vertex association, pileup modeling	+0.48	-0.36	
$t\bar{t}W ext{ modeling}$	+0.29	-0.31	
$t\bar{t}H ext{ modeling}$	+0.31	-0.15	
Jet energy scale and resolution	+0.22	-0.18	
$t\bar{t}Z$ modeling	+0.19	-0.19	
Luminosity	+0.19	-0.15	
Diboson modeling	+0.15	-0.14	
Jet flavor tagging	+0.15	-0.12	
Light lepton (e, μ) and τ_{had} ID, isolation, trigger	+0.12	-0.10	
Other background modeling	+0.11	-0.11	
Total systematic uncertainty	+1.1	-0.9	

Due to correlations between the different sources of uncertainties, the total systematic uncertainty can be different from the sum in quadrature of the individual sources.

pMSSM scenarios-1 (dilepton+tau channel)

$\mu = (0.5+1.3)/0.5 = 3.6$ (Run-1)

A.Sopczak 22 Feb. 2017

pMSSM scenarios-2 (dilepton+tau channel)

