Results of the first experiments with the ACCULINNA-2 fragment separator: ⁷H case

Vratislav Chudoba for ACCULINNA-2 collaboration

as the first results of series on ⁷H, ⁶H, ⁷He, ⁹He and ¹⁰Li

object of interest: 7H

- the heaviest conceivable hydrogen isotope
- the largest A/Z = 7 ratio
- special stability of ⁷H due to the closed $p_{3/2}$ neutron subshell
- "true" five-body core+4n decay channel of the g.s.
- extremely long-living g.s. of ⁷H expected
 - candidate for 4n radioactivity if $E_{\tau} < 100-300$ keV
 - small width of g.s. (0.1-10 keV) expected even for E_{τ} = 2 MeV
- anticipated specific correlations of fragments for core+4n decay

50-year-long quest

- predicted in 1972
 - A. I. Baz' et al., "Light and intermediate nuclei near the border of nuclear stability" (Nauka, Moscow, Moscow, **1972**).
- $^{7}\text{Li}(\pi^{-},\pi^{+})$
 - K. Seth, "Pionic probes for exotic nuclei," (1981);
 - V. Evseev et al., Nuclear Physics A 352, 379 (1981);
- ²⁵²Cf ternary fission
 - D. Aleksandrov et al., Yad. Fiz. 36, 1351 (1982);
- d(⁸He,⁷H)
 - M. S. Golovkov et al., Phys. Lett. B 588, 163 (2004);
- ¹¹B(π⁻,p ³He)
 - Y. Gurov et al., The EPJ A 32, 261 (2007);
 - Y. Gurov et al., PPN 40, 558 (2009);

50-year-long quest: recent data

p(⁸He,2p)⁷H

A. A. Korsheninnikov, PRL 90, 082501 (2003)

- missing mass only \rightarrow 90% of background
- many events with negative MM energy
- 1.9 MeV MM resolution

- missing mass with ³H coincidences
- no channel identification: ⁵H, ⁶H, or ⁷H

50-year-long quest: recent data

²H(⁸He,³He)⁷H

S. Fortier et al., AIP CP 912, 3 (2007)

- missing mass only \rightarrow 70% of background
- many events with negative MM energy
- low energy cutoff (E_{τ} < 5 MeV)

²H(⁸He,³He)⁷H

- E.Yu. Nikolskii et al., Phys. Rev. C 81, 064606 (2010)
- missing mass with ³H coincidences
- some events with negative MM energy
- 1.9 MeV MM resolution

Prerequisites for successful search of ⁷H

- reliable channel identification
- suppression of background
- high energy resolution

⁸He

3**H**

key advantage: ³H momentum reconstruction

⁸He(d,³He)⁷H

in inversion

kinematics

³He

Experiment 1, 2018 2 weeks

Channel identification

Si detectors

Calibration reaction

¹⁰Be(d,³He)⁹Li

- ¹⁰Be at 42 AMeV
- Independent MM calibration with ¹⁰Be beam
- MC simulations validated by the comparison ⁹Li data

MM spectrum: Exp1

- kinematical "triangle" cuts reduce the backgrounds
- ground state at 1.8(5) MeV
- excited state at 6.5(5) MeV
 - possibly 5.5-7.5 MeV doublet
- some evidence for ⁷H excited state at 11 MeV

Bezbakh et al., **Phys.Rev.Lett.** 124, 022502 (2020)

MM spectrum: Exp2

- ⁷H ground state at 2.2(5) MeV
- ⁷H excited state at 5.5(3) MeV (possibly doublet at 5.5-7.5 MeV)
- peak at 11(3) MeV
- reaction c.m. angle cutoff θ_{cm} <18° provides especially safe result for the ⁷H g.s.

Muzalevskii et al., https://arxiv.org/abs/2010.09655, submitted to **Physical Review C**

MM spectra

- consistent results in 2 independent JINR experiments
- consistent with data of Nikolskii et al.
- level- and decay-scheme for the ⁷H

Reaction angle distributions

- Exp1 second diffraction maximum is populated for the ⁷H g.s.
- Exp2 planned to populate the forward peak for the ⁷H g.s.
- gap in the data from 9 to 14 degrees observed in the second data

- reflection of the specific dynamics of true five-body decay
- obtained in independent way

Both patterns consistent with correlated emission of tritons expected for **true five-body** decay

Our team

I.A. Muzalevskii,^{1,2,*} A.A. Bezbakh,^{1,2} E.Yu. Nikolskii,^{3,1} V. Chudoba,^{1,2} S.A. Krupko,¹ S.G. Belogurov,^{1,4}
D. Biare,¹ A.S. Fomichev,^{1,5} E.M. Gazeeva,¹ A.V. Gorshkov,¹ L.V. Grigorenko,^{1,4,3} G. Kaminski,^{1,6} O. Kiselev,⁷
D.A. Kostyleva,^{7,8} M.Yu. Kozlov,⁹ B. Mauyey,^{1,10} I. Mukha,⁷ Yu.L. Parfenova,¹ W. Piatek,^{1,6} A.M. Quynh,^{1,11}
V.N. Schetinin,⁹ A. Serikov,¹ S.I. Sidorchuk,¹ P.G. Sharov,^{1,2} N.B. Shulgina,^{3,12} R.S. Slepnev,¹ S.V. Stepantsov,¹
A. Swiercz,^{1,13} P. Szymkiewicz,^{1,13} G.M. Ter-Akopian,^{1,5} R. Wolski,^{1,14} B. Zalewski,^{1,6} and M.V. Zhukov¹⁵

¹Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna, Russia ²Institute of Physics, Silesian University in Opava, 74601 Opava, Czech Republic ³National Research Centre "Kurchatov Institute", Kurchatov sq. 1, 123182 Moscow, Russia ⁴National Research Nuclear University "MEPhI", 115409 Moscow, Russia ⁵Dubna State University, 141982 Dubna, Russia ⁶Heavy Ion Laboratory, University of Warsaw, 02-093 Warsaw, Poland ⁷GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany ⁸II. Physikalisches Institut, Justus-Liebiq-Universität, 35392 Giessen, Germany ⁹Laboratory of Information Technologies, JINR, 141980 Dubna, Russia ¹⁰Institute of Nuclear Physics, 050032 Almaty, Kazakhstan ¹¹Nuclear Research Institute, 670000 Dalat. Vietnam ¹²Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia ¹³AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Krakow, Poland ¹⁴Institute of Nuclear Physics PAN, Radzikowskiego 152, 31342 Kraków, Poland ¹⁵Department of Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden

Conclusions

- A long-term problem of quest for ⁷H g.s. investigated
- complicated experiment, extremely low cross section and low statistics

However

- consistent results from 2 independent beamtimes.
- reliable channel identification, low background, high energy resolution
- calibrations confirmed by ¹⁰Be(²H,³He)⁹Li reaction
- missing mass spectrum analysis additionally supported by
 - reaction angular distribution
 - correlated ³H energy and angular distributions

Major results

- confident identification of the ⁷H ground state at 2.2 MeV (14 events)
- identification of excited state at 5.5 (or 5.5-7.5 MeV doublet)
- true 4n decay reliably observed for the first time

