



# Progress report on the SOLCRYS laboratory construction at SOLARIS synchrotron

#### Norbert Kučerka, Alexander Kuklin, Evgeny Lukin, Maciej Kozak

Frank Laboratory of Neutron Physics at Joint Institute for Nuclear Research in Dubna National Synchrotron Radiation Centre Jagiellonian University in Krakow

53nd (video)meeting of the PAC for CMP at JINR Dubna: January 25, 2021







- SOLARIS machine and beamlines
- SOLCRYS laboratory for Condensed Matter Research
- Synchrotron radiation source
- Experimental hall extension
- JINR beamlines





#### **SOLARIS machine** (2015)







#### **SOLARIS beamlines**









## **SOLCRYS** main activities









- SOLARIS machine and beamlines
- SOLCRYS laboratory for Condensed Matter Research
- Synchrotron radiation source
- Experimental hall extension
- JINR beamlines



#### Super-Conducting Wiggler for energy 5-20 keV



- Technical dialogue, conceptual design, external consultations on technical specification – 2019
- Tender offer submitted in June 2020





# FLNP

### Source activities schedule



#### Contract signed







#### **Source activities**

- Tender offer for SCW submitted by BINP
- Cryo-coolers not included
- Tender for cryo-coolers (December 2020)
- Offer by Sumitomo

| Item                                    | Price (EUR)                | Price (USD)            | Project (USD)    |
|-----------------------------------------|----------------------------|------------------------|------------------|
| SCW                                     | 985 000                    | 1 103 200              |                  |
| Cryocoollers                            | 110 970                    | 125 000                |                  |
| Transfer of cryocoolers &<br>issurances | 20 000                     | 22 500                 |                  |
| Vaccum equipment                        | 120 000                    | 135 000                |                  |
| TOTAL<br>TOTAL (incl. taxes - VAT)      | 1 235 970 1<br>1 520 243 1 | L 390 466<br>L 705 473 | <u>1 316 000</u> |





#### **Budget adjustment**

# Support from Polish government

Agreement with the Ministry of Science and Higher Education (01/07/2020).

For 2020-2021 we received a support for construction of extended experimental hall, upgrade of cooling water system.

TOTAL: 18 100 000 PL ~ 4 M€







- SOLARIS machine and beamlines
- SOLCRYS laboratory for Condensed Matter Research
- Synchrotron radiation source
- Experimental hall extension
- JINR beamlines





#### **Experimental hall extension design**







## **Experimental hall extension design** Liquid nitrogen transfer line for SOLCRYS







## **Experimental hall extension design** Compressed air transfer line for SOLCRYS







#### **Experimental hall extension design**











#### **Extension hall schedule**

| Stage                                     |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   | tir | me  | sca | le |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
|-------------------------------------------|----|---|---|---|------|----|---|----|-----|---|---|---|----|-----------|----|-----|------|----|---|-----|-----|-----|----|---|----|------|-----|----|----|-----|---|---|---|----|---|------|--------|-------|---|
| Preparation of initial documentation      |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      | 1   |    |    |     |   |   |   |    |   |      |        |       |   |
| Conceptual project - FIBAT                |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     | 4   |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Preparation tender documentation          |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Zer des fan en en tier mei est en en tred |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Executive project                         |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Preparation of tender for construction    |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Tender for hall construction, contract    |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Construction site organization            |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Spadework, demolition works               |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Hall construction - an open shell         |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Hall construction - a closed raw state    |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Lieculear minastructure                   |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Water, sanitary and sewage infrastructure |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Cooling water infrastructure              | L  |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Ventilation and air conditioning systems  |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| LN2 system                                |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Other internal works                      |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Internal finishing works                  |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| External finishing works                  |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Roads, parking places etc                 |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| Tests, acceptance                         |    |   |   |   |      |    |   |    |     |   |   |   |    |           |    |     |      |    |   |     |     |     |    |   |    |      |     |    |    |     |   |   |   |    |   |      |        |       |   |
| months                                    | IV | ۷ | V | V | IVII | IX | х | XI | XII | T | Ш | Ш | IV | v         | VI | VII | VIII | IX | х | XI  | XII | T   | Ш  | ш | IV | v٧   | VII | IX | XI | XII | 1 | Ш | Ш | IV | V | VI V | /II VI | III D | : |
| years                                     |    |   |   |   | 20   | 19 |   |    |     |   |   |   |    | 2020 2021 |    |     |      |    |   |     |     |     |    |   |    | 2022 |     |    |    |     |   |   |   |    |   |      |        |       |   |

involved: P. Bulira & his team; NCPS IT group, M. Kozak, T. Kołodziej, J. Sławek, G. Gazdowicz, TEAM sc & co-workers

**Financial support from MSHE** 







- SOLARIS machine and beamlines
- SOLCRYS laboratory for Condensed Matter Research
- Building extension design
- Superconducting wiggler tender
- JINR beamlines







#### **Beamlines schedule**

| Stage                                           |    |      |    |     |      |    |   |    |     | T |   |   |    |   |    |      |       |      |    |     | tir | me  | sca | ale  |     |    |     |     |     |     |    |      |     |      |     |      |     |     |    |    |    |           |      |    |
|-------------------------------------------------|----|------|----|-----|------|----|---|----|-----|---|---|---|----|---|----|------|-------|------|----|-----|-----|-----|-----|------|-----|----|-----|-----|-----|-----|----|------|-----|------|-----|------|-----|-----|----|----|----|-----------|------|----|
| Final selection of BL technical parameters      |    |      |    |     |      |    |   |    |     |   |   |   |    |   |    |      |       |      |    |     |     |     |     |      |     |    |     |     |     |     |    |      |     |      |     |      |     |     |    |    |    |           |      |    |
| Preparation of tender documentation             |    |      |    |     |      |    |   |    |     |   |   |   |    |   | ٩ı | Ter  | nd    | er   | s  | 101 | ıld | st  | ar  | t iı | mr  | me | di  | ate | lv  | af  | te | r si | ico | es   | sfi | ul 1 | ter | nde | er | fo | r  |           |      |    |
| Beam line tender, contract                      |    |      |    |     |      |    |   |    |     |   |   |   |    |   | e  | (pe  | eri   | im   | en | ta  | l h | all | С   | ns   | str | uc | tic | n   |     |     |    |      |     |      |     |      |     |     |    |    |    |           |      |    |
| Preliminary design, project review              |    |      |    |     |      |    |   |    |     |   |   |   |    |   |    |      |       |      |    |     |     |     |     |      |     |    |     |     |     |     |    |      |     |      |     |      |     |     |    |    |    |           |      |    |
| Construction of BL components                   |    |      |    |     |      |    |   |    |     |   |   |   |    |   |    |      |       |      |    |     |     |     |     |      |     |    |     |     |     |     |    |      |     |      |     |      |     |     |    |    |    | $\square$ |      |    |
| Factory Acceptance Tests                        |    |      |    |     |      |    |   |    |     |   |   |   |    |   |    |      |       |      |    |     |     |     |     |      |     |    |     |     |     |     |    |      |     |      |     |      |     |     |    |    |    |           |      |    |
| Construction of infrastructure for BL (Solaris) |    |      |    |     |      |    |   |    |     |   |   |   |    |   |    |      |       |      |    |     |     |     |     |      |     |    |     |     |     |     |    |      |     |      |     |      |     |     |    |    |    |           |      |    |
| Radiation protection calculations               |    |      |    |     |      |    |   |    |     |   |   |   |    |   |    |      |       |      |    |     |     |     |     |      |     |    |     |     |     |     |    |      |     |      |     |      |     |     |    |    |    |           |      |    |
| Hutch tender, contract                          |    |      |    |     |      |    |   |    |     |   |   |   |    |   |    |      |       |      |    |     |     |     |     |      |     |    |     |     |     |     |    |      |     |      |     |      |     |     | Τ  |    | Τ  | $\square$ |      | Γ  |
| Construction of hutch (Solaris)                 |    |      |    |     |      |    |   |    |     |   |   | Γ |    |   |    | Τ    |       |      |    |     |     |     |     |      |     |    |     |     |     | Τ   |    |      |     |      |     |      |     |     | Τ  |    | Τ  | $\square$ |      | Γ  |
| Delivery to Solaris                             |    |      |    |     |      |    |   |    |     |   |   | Γ |    |   |    | Τ    | Τ     |      |    |     |     |     |     |      |     |    | Τ   |     | Τ   | Τ   |    |      |     |      |     |      |     |     | Τ  |    | Τ  | $\square$ |      | Γ  |
| Assembly and integration                        |    |      |    |     |      |    |   |    |     |   |   |   |    |   |    | T    |       |      |    |     |     |     |     |      |     | T  | Τ   | Τ   | Τ   | T   | T  |      |     |      |     |      |     |     |    |    |    | $\square$ |      | Γ  |
| Instalation & commissioning without beam        |    |      |    |     |      |    |   |    |     |   |   |   |    |   |    | T    |       |      |    |     |     |     |     |      |     | Γ  | Τ   | Τ   | Τ   | T   | T  |      |     |      |     |      |     |     |    |    |    | $\square$ |      | Γ  |
| Training of NCPS staff                          |    |      |    |     |      |    |   |    |     |   |   |   |    |   |    | T    |       |      |    |     |     |     |     |      |     | Γ  | Τ   | Τ   | Τ   | T   | T  |      |     |      | T   |      |     |     | ٦  |    |    |           |      |    |
| Comissioning and final tests with beam          |    |      |    |     |      |    |   |    |     |   |   |   |    |   |    |      |       |      |    |     |     |     |     |      |     |    |     |     |     |     |    |      |     |      |     |      |     |     |    |    |    |           |      |    |
| months                                          | IV | ۷    | VI | VII | VIII | IX | X | XI | XII | I | I |   | IN | ۷ | ۷  | II V | /II N | /111 | IX | X   | XI  | XII | I   | I    |     |    | / \ | V   | IV  | IIV |    | X    | ( ) | I X  |     | I    |     |     | IV | ۷  | VI | VII       | VIII | IX |
| years                                           |    | 2020 |    |     |      |    |   |    |     |   |   |   |    |   | 2  | 02   | 1     |      |    |     |     |     |     |      |     |    |     | 2   | 022 | 2   |    |      |     | 2023 |     |      |     |     |    |    |    |           |      |    |





## **Beamlines conceptual design**

- Technical dialogue with FMB Oxford Ltd. (UK), IRELEC (FR), AXILON (DE)
- Beamline splitting by a fixed apperture









#### **Beamline endstations - BioSAXS**







## FLNP

### **Beamline endstations - MX**

Diffractometer for MX endstation



#### SUND Precision

Optional : Helium enclosure for the entire Roadrunner cryst. goniometer

#### High-precision Roadrunner crystallography goniometer for conventional and serial crystallography experiments.

Chi-arc segment for optimal data collection (low symmetry space groups and for phasing experiments); Chi-range: 5 – 35 degree. Automatic sample changing system (Stäubli TX60L



Figure 1: Roadrunner crystallography overview image with overall dimensions (top) and view in beam direction (bottom). The actual design might slightly differ from the version shown here.

🛞 SUND

#### Diffractometer for MX endstation

- pinhole positioning unit providing space for 3 three different pinholes (travel range in x: +/- 3 mm, travel range in y + 3 mm / -12 mm)
- collimator mounted on a positioning unit, mounted on a x,y positioning
- photo-diode positioning unit, carries photodiode for X-ray beam intensity measurements, mounted on a x,z positioning unit, stepper motor operated,
- capillary beamstop for ultra-low background applications, consisting of a telescopic arrangement of different diameter tantalum capillaries as described in Meents et al, pink beam serial crystallography, Nature Comm. 2019,



#### Diffractometer for MX endstation

Roadrunner on-axis sample viewing microscope

- 20x microscope objective, NA = 0.25, working distance: 25 mm
- dual view system providing 2 different field of views: 1000 x 800 μm<sup>2</sup> (high-magnification) and 500 x 400 μm<sup>2</sup> (low magnification).
- alternatively a 10x objective offering a two times larger field of view can be provided.
- includes 2 pcs. GBit Ethernet cameras,





Figure 2: Roadrunner inline sample viewing microscope equipped with two cameras providing two different field of views. Mounted on a 4-axes positioning system. The actual design might slightly differ from the version shown here.

Diffractometer for MX endstation





Figure 4: Roadrunner III goniometer axis for high-speed scanning applications: It consists of a servo motor operated high-precision rotation stage with is equipped with a x,z centering stage to position the sample in the rotation axis. The center of the x,z stage is further equipped with fast linear stage oriented along the rotation axis, which allows for high-speed scanning of the samples with speeds of up to 100 mm/sec. The actual design might slightly differ from the version shown here. X,y,z positioning system is not shown here.





#### **Beamline endstations – HP/LT XRD**

- Adjustable pressure up to 10 GPa
- Diamond windows
- Compatible with DAC chambers
- Weight ~100g



- Adjustable temperature and gas flow
- Cryocooling system compatible with LN2 and LHe
- Temperature range: ~10-300K
- Measurements in helium atmosphere (helium tent)
- Helium recovery system



Oxford Cryosystems - N-HeliX



ColdEdge Technologies – The Stinger







- SOLARIS machine and beamlines
- SOLCRYS laboratory for Condensed Matter Research
- Synchrotron radiation source
- Experimental hall extension
- JINR beamlines
- Endstations and auxiliary equipment







