Experimental studies and multiscale modeling of latent tracks in radiation-resistant insulators

FLNR JINR V.A. Skuratov, R. Rymzhanov, A.E.Volkov, A.Ibrayeva, N.S.Kirilkin

Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic N.Medvedev

Centre for HRTEM, Nelson Mandela University, Port Elizabeth, South Africa J.H.O'Connell, A. Janse van Vuuren, J. Neethling.

Institute of Nuclear Physics, Nur-Sultan, Kazakhstan M.V.Zdorovets

of MINISTRY of ENERGY of the REPUBLIC of KAZAKHSTAN

SHI track: temporal and spatial scales

Too fast, too small, too large excitation levels

Can not be described with macroscopic models

SHI track: temporal and spatial scales

Too fast, too small, too large excitation levels

Can not be described with macroscopic models

Multiscale microscopic model of track excitation

Σ

2. A model of electron-lattice coupling and lattice excitation (10⁻¹² s) Spatial and temporal distributions of energy and momenta transferred into the lattice

3. MD of lattice relaxation (10⁻

⁹ S)

Structure transformations

R.A. Rymzhanov et al., J.PhysD .Appl.Phys. 50 (2017) 475301

Monte Carlo (TREKIS) of the initial electronic kinetics

Time-Resolved Electron Kinetics in SHI Irradiated Solids N.A.Medvedev et al., J. Phys. D Appl. Phys. 48 (2015) 355303

$$t = 10^{-17} \text{ s} - 10^{-14} \text{ s}$$

Event by event simulations

Scattering on spatially and dynamically coupled particles

$$\frac{\partial^2 \sigma}{\partial \Omega \partial(\mathbf{h}\omega)} \sim \left| V(\mathbf{k}) \right|^2 \operatorname{Im}\left(\frac{-1}{\varepsilon(k,\omega)}\right)$$

- SHI passage and generation of fast primary δ-electrons

 Š^{10⁻¹⁷} s
 Špreading of δ-electrons and secondary electron cascading. Creation of secondary electrons and holes
 Kinetics of all next generations of electrons and holes
 Kinetics of deep shell holes ~10⁻¹⁵ s
- **5.** Radiation decay and photons transport

Complex Dielectric Function

e.g. Ritchie and Howie formalism

individual scattering: ionization of the valence band or deep shells
collective scattering: plasmons, phonons etc.

$$\frac{\partial^2 \sigma_{el}}{\partial k \partial (\mathbf{h}\omega)} \sim \operatorname{Im} \left[\frac{-1}{\varepsilon(\omega, q)} \right] = \sum_{i=1}^{n^{os}} \frac{A_i \gamma_i \mathbf{h}\omega}{\left[\mathbf{h}^2 \omega^2 - \left(E_{0i} + \mathbf{h}^2 q^2 / (2m_e)\right)^2\right]^2 + \left(\gamma_i \mathbf{h}\omega\right)^2}$$

N.A.Medvedev et al., J. Phys. D Appl. Phys. 48 (2015) 355303

TREKIS: Verification of model Electronic energy loss of ions and inelastic mean free paths of

MC TREKIS + MD LAMMPS

MD code LAMMPS Plimpton S. J. Comput. Phys. 117 (1995) 1–19

8

Threshold and morphology of tracks in Al₂O₃

167 Mev Xe Crystalline damaged discontinuous track of 1.8 nm diameter after 50 fs

Residual strain of Xe 167 MeV track in Al₂O₃

Lattice deformation:

Radial density of Al₂O₃

Simulations

Experiment

underdense core is surrounded by overdense shell

O'Connell et al NIMB 374 (2015) 97

Recrystallization of tracks in different dielectrics

MgO - only point defects were created
 Al₂O₃ - crystalline discontinuous track of D ~ 2 nm
 YAG - continuous amorphous track of D ~ 6.5 nm

R.A. Rymzhanov et al., Scientific Reports 9 (2019) 3837

Recrystallization plays a crucial role for track formation in MgO, $\rm Al_2O_3$ and YAG

R.A. Rvmzhanov et al., Scientific Reports 9 (2019) 3837

Overlapping of SHI tracks.

Bi 700 MeV in Al₂O₃

- Second ion causes annealing of defects created by the first one
- Ions at longer distances cause partial annealing of older tracks

 Radius of recovery is ~ 6.5 nm (experimental ~ 5.4 nm) corresponding to the track density of ~ 2.7×10¹² CM⁻²

R.A. Rymzhanov, et.al, NIMB 435 (2018), 121-125

Recrystallization during track formation propcess

MgO - only point defects were created around the ion trajectory
 Al₂O₃ - crystalline discontinuous track with the diameter about 2 nm
 YAG - continuous amorphous track of ~6.5 nm in diameter

p-Si₃N₄ + Xe 220 МэВ

Si3N4 +Bi, 700 MeV

$a-Si_3N_4 + Bi 710 M_2B, 5x10^{10} cm^{-2}$

Surface effects of dense ionization in ceramics and oxides

167 MeV Xenon ion induced hillocks in TiO₂

Surface effects of dense ionization in ceramics and oxides

Xe (220 MeV) + TiO₂: Hillock size vs irradiation temperature

Amorphous hillocks in YAG

YAG demonstrates almost no damage recovery: amorphous cylindrical track and amorphous hillock

R.A. Rymzhanov et al., J.App.Phys. 2020, 127(1) 015901

Thank you for your attention!