# Progress on the study of global hyperon polarization at MPD

#### <u>Elizaveta Nazarova<sup>1</sup></u>

#### MPD Polarization Meeting «Vorticity and Polarization in Heavy-Ion Collisions»



01.12.2020

<sup>1</sup> Joint Institute of Nuclear Research, Dubna, Russia





- Dataset for the global polarization study
- Centrality determination
- Event Plane determination
- Outlook

#### Dataset

- <u>Data</u>: MC simulation using PHSD generator<sup>1</sup>
  - > Au-Au,  $\sqrt{s_{NN}} = 7.7$  GeV, ~1.5M MB events
  - > Global  $\Lambda(\bar{\Lambda})$  polarization
    - > Thermodynamical (Becattini) approach<sup>2</sup>
- Track selection criteria for reconstruction:
  - $\succ$  Number of TPC hits:  $\rm N_{hits} > 10$
  - × |η|<1.3

$$\overline{P}_{\Lambda/\bar{\Lambda}} = \frac{8}{\pi\alpha} \frac{1}{R_{\rm EP}^1} \left\langle \sin(\Psi_{\rm EP}^1 - \phi_p^*) \right\rangle$$

 $\longrightarrow$  Need to calculate:  $\Psi_{\rm EP}^1$  and  $R_{\rm EP}^1$ 

01.12.2020

<sup>1</sup>W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3 <sup>2</sup>F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Ann. Phys. 338 (2013) 32

Centrality and EP determination for polarization analysis at MPD

#### **PID** performance for the dataset



Elizaveta Nazarova

Centrality and EP determination for polarization analysis at MPD

- Adapting the technique developed in the flow group
  - https://git.jinr.ru/nica/mpdroot/-/tree/dev/macro/physical\_analysis/Flow
- Centrality determination through TPC:
  - $\stackrel{\scriptscriptstyle }{\scriptstyle \succ }\left\vert \eta \right\vert {<}1.5$
  - $> 0 < p_{_T} < 3$
  - > DCA calibrations
  - > Track multiplicity in TPC  $\rightarrow$  centrality of the event



- Adapting the technique developed in the flow group
  - https://git.jinr.ru/nica/mpdroot/-/tree/dev/macro/physical\_analysis/Flow
- Centrality determination through TPC:
  - $|\eta| < 1.5$
  - $> 0 < p_T < 3$
  - > DCA corrections

Event with multiplicity  $N_{tr} \pm \sigma_{N}$ have impact parameter in range of  $b \pm \sigma_{b}$ 

> Track multiplicity in TPC  $\rightarrow$  centrality of the event



Division into 10-% centrality intervals

- 0 10 % 50 60 %
- 10 20 % 60 70 %
- 20 30 % 70 80 %
- 30 40 % 80 90 %
- 40 50 % • 90 100 %





Impact parameter vs TPC centrality



• 40 - 50 % • 90 - 100 %



 $\frac{10^{2}}{10^{3}} + \frac{10^{2}}{10^{3}} + \frac{10^{2}}{10^{2}} + \frac{1$ 

Impact parameter in centrality classes



Impact parameter vs TPC centrality













N<sub>ch</sub> from TPC centrality



#### **Event plane determination**

- 1-order event plane can be measured as:
  - $\Psi_{\rm EP}^1 = \arctan \frac{Q_y}{Q_x}$  $Q_y = \Sigma_i w_i \sin(\phi_i)$  $Q_x = \Sigma_i w_i \cos(\phi_i)$

$$\mathbf{w}_{i} = \begin{cases} -E_{i}, -p_{\mathrm{T}i} & \text{if } \eta < 0\\ E_{i}, p_{\mathrm{T}i} & \text{if } \eta > 0 \end{cases}$$

- Respectively, within the flow group implementation:
  - $\sim w_i = E_i / E_{\text{total}}$  (for the TPC Event plane)
  - >  $w_i = p_{Ti}/p_{Ttotal}$  (for the FHCal Event plane)
- Event plane resolution can be calculated as:
  - >  $R_{\rm EP}^1 = \left\langle \cos(\Psi_{\rm EP}^1 \Psi_{\rm RP}) \right\rangle$  (w.r.t. reaction plane angle from the model)
  - $R_{\rm EP}^1 = \left< \cos(\Psi_{\rm EP,R}^1 \Psi_{\rm EP,L}^1) \right> \text{ (through sub-event method)}$



## **Event plane determination (ZDC)**



- Centrality is calculated via TPC multiplicity
- > Event Plane angle through ZDC
- > Dependence of R<sup>1</sup> on TPC centrality is shown as TProfile



#### Results with uncorrected multiplicity



#### Multiplicity in TPC



> When using uncorrected multiplicity, biggest problems should arise in peripheral regions

Elizaveta Nazarova

#### **Results with uncorrected multiplicity**







> When using uncorrected multiplicity, most noticeable problems should arise in peripheral regions

Elizaveta Nazarova

## **Event plane determination (ZDC)**



- Centrality is calculated via uncorrected TPC multiplicity
- > Dependence of R<sup>1</sup> on TPC centrality is shown as Tprofile
- > Resolution in peripheral regions drops significantly



- Available technique from the flow group
  - > Centrality estimated via track multiplicity in TPC
  - > Event plane via FHCal w.r.t. centrality from TPC
  - > Event plane via TPC w.r.t. centrality from TPC
- Outlook
  - > Optimize centrality estimation
  - Add centrality calculation through FHCal (possibly combined FHCal + TPC multiplicity)
  - Choose the best method to avoid possible correlations with the analysis





# Thank you for your attention!





#### Polarization from PHSD model



 Mean value of the P<sub>y</sub> component of the polarization vector from the PHSD model (MpdMCTrack)

• Should correspond to  $P_J(P_J = -P_y)$ 

- Uncorrrected TPC centrality was used
- Seems to have correct dependence
- Need to finish the full-scale analysis for the final conclusion

#### Analysis method









• Flow group technique





• Using uncorrected multiplicity





Multiplicity in centrality classes

