PID system for SPD

Alexander Korzenev, JINR/VBLHEP

December 2, 2020 SPD meeting

PID system of SPD

- Time-of-flight detector (+BBC/MCP of inner part)
- Aerogel detector
- Energy loss dE/dx in straw
- EM calorimeter
- Range system (hadron calorimeter)

Table 4.1: Required setup configuration for each point of the SPD physics program. (+++) - absolutely needed, (++) - extremely useful, (+) - useful, (-) - not needed.

Program	Vertex	Straw	PID	Electromagnetic	Beam-beam	Range
	detector	tracker	system	calorimeter	counter	system
Gluon content with:						
charmonia	+	++	-	++	-	+++
open charm	+++	++	++	-	-	+
prompt photons	+	+	-	++	-	-
SSA for π and <i>K</i>	+	++	+++	++	-	-
Light vector meson production	+	++	-	+	-	-
Elastic scattering	+	++	-	-	+++	-
\bar{p} production	+	++	+++	++	-	-
Physics with light ions	++	+++	+	++	+	-

Detector position and dimensions (CDR, end of 2020)

20 cm gap between the straw tubes and the magnet coils

PID system of SPD (possible options)

Time-of-flight (TOF) detector

- Particle Identification
- t_{start} for drift detector (straw)
- Combinatorial background suppression (76ns between bunches)

Two options for the TOF barrel of SPD (σ_t **<70ps)**

Two options for the TOF barrel of SPD (σ_t **<70ps)**

- Chamber size: 35 x 33 x 2.5 cm³,
- 24 strips per chamber, strip: 35 x 1 cm²
- Number of chambers (barrel + 2 x endcap):
 - 160 + 2 x 30 = 220
- Number of channels = 10.6k

- Tile size: 9 x 3 x 0.5 cm³
- 4 SiPMs (3 x 3 mm²) at each end
- Number of tiles (barrel + 2 x endcaps):
 - 7.3 + 2 x 1.4k = 10.1k
- Number of channels = 20.2k

Assembling room for the <u>MRPC</u> barrel of MPD

Mechanics issues of the <u>MRPC</u> option for TOF/SPD

 Module takes 17cm distance radially → no space for another PID detector

- To be removable, the diameter of the TOF end-cap must be smaller than the one of the magnet coil
- Chambers have to be inside the Al box
- Either large dead regions or conflict with coils

Plastic scintillator option for TOF/SPD

Two options for TOF (pros & cons)

MRPC	SciTil	
sophisticated production procedure	assembling is fast and easy	
requires gas flow, HV (trips)	easier to maintain (no gas, only LV)	
takes radially 17cm (MPD), no way for Aerogel	can be squeezed within ~6cm, space for Aerogel	
rectangular shape, large size (inconvenient for round end-caps)	small tile ⇒ can fit cylindrical shape	
rad. length $\approx 0.14X_0$ (MPD)	rad. length $\approx 0.02X_0$	
σ_{t} is independent of l_{strip}	σ_t drops exponentially with l_{tile}	
S = pitch x length = 1.25cm x 40cm = 50cm² N _{channel} ≈ 10k	S = pitch x length = 2.9cm x 9cm = 26cm² N _{channel} ≈ 20k	
not sensitive to radiation	sensitive to radiation	
well established technology (MPD, BM@N)	requires R&D	

Both options are able to provide the resolution of ~60ps

• Applying different options for barrel and end-caps will double expenses/efforts for: DAQ, Power supply, Slow control, calibration & analysis

Aerogel detector

- Particle Identification via Cherenkov radiation
- SPD seminar, E.Kravchenko, INP, Novosibirsk on Oct 12

Система АШИФ детектора КЕДР

Детектор КЕДР, ФЭЧАЯ 2003 m.44 вып.4

Таблица 7. Основные параметры системы АШИФ

Телесный угол системы	$0,96 \times 4\pi$
Число слоев	2
Число счетчиков в слое	80
Показатель преломления аэрогеля	1,05
Диапазон импульсов π/K -разделения, ГэВ/ c	0,6–1,5
Количество вещества для нормальной частицы	$0,24X_0$
Объем аэрогеля, л	1000

- ФЭУ на основе микроканальных пластин (МКП) с мультищелочным фотокатодом. Производители: ОАО "Катод" и ЗАО "Экран ФЭП" (Новосибирск). Н=17мм, Ø=31мм
- Переизлучатель спектра: 150мг BBQ на 1кг ПММА, толщина 3мм. Спектр: (280-450)нм → 500нм
- Среднее число фотоэлектронов после 5 лет работы падает на 34% составляет 6р.е.
- Временное разрешение АШИФ на пионах с p=0.86ГэВ составляет σt=2нс

Рис. 16. Торцевой счетчик

Система АШИФ детектора КЕДР

Детектор КЕДР, ФЭЧАЯ 2003 т.44 вып.4

Рис. 18. Измеренная зависимость длины поглощения в аэрогеле от длины волны света для разных аэрогелей

Рис. 21. Амплитуда сигнала (число фотоэлектронов) от космических мюонов как функция времени

Рис. 20. Измеренная зависимость ложной идентификации пионов и каонов от амплитуды для импульсов P = 0.86 ГэВ/с и P = 1.2 ГэВ/с

Рис. 19. Измеренная вероятность преобразования фотона в фотоэлектрон ($W(\gamma \rightarrow \text{pe})$) шифтера в зависимости от расстояния до фотоприемника и длина ослабления (число рядом с кривой)

Аэрогель в SPD по образу детектора КЕДР

	КЕДР	SPD	
# счетчиков (barrel+endcap)	80+80=160	336+168=504	
# ФЭУ (barrel+endcap)	160	504	
V _{аэрогель}	1.1м ³	3.5м ³	

- Эффективность срабатывания 1-го слоя АШИФ (КЕДР):
 - 2005г: 99% (торцевые), 88% (барель)
 - 2010г: 97% (торцевые), 78% (барель)

Straw detector

- Primary purpose is tracking, $\sigma_x = 150 \mu m$
- Particle identification via energy loss (dE/dx)

Outer pads: $S = 5mm \times 18mm = 90mm^2$

Maximum drift time 30 µs

Maximum drift time 150 ns

Ø=5mm straw: S = 20mm²

dE/dx analysis for Straw/SPD

file with 10k events produced by Andrei Maltsev on Nov 26

<u>Summary</u>: PID analysis in SPD (\pi, K, p)

π/K separation

- Short tracks (R<1m) to be identified by straw up to 0.7 GeV/c
- Long tracks (R>1m) to be identified by straw+TOF up to 1.5 GeV/c
- tracks with p>1.5 GeV/c to be identified by aerogel (and straw?)

Summary: options for PID (TOF, Aerogel, Straw)

- Module takes 17cm radially (no place for other PID detector)
- Choice for TOF end-caps is still opens

- The same choice of TOF for barrel and end-caps
- Lower thickness \rightarrow lower efficiency for Aerogel

- Module takes 17cm radially (no place for other PID detector)
- Missing timing measurements in barrel

- The same choice of TOF for barrel and end-caps
- Improvement of dE/dx via increasing straw layers by 10

backup slides

Tube alignment for straw detector (30 double layers)

Plastic scintillator option for TOF/SPD

- TOF of PANDA
- Tile cross section is 30x5 mm²
- 4 SiPMs 3x3 mm² each
- Fraction of light detected
 - (4x3x3)/(30x5) = 24%
- The resolution is 50 100 ps

Figure 6.13: Time resolution obtained from a position scan of a $90 \times 30 \times 5 \text{ mm}^3$ EJ-232 scintillator tile readout by Hamamatsu SiPMs attached to opposite sides (y-axis), 4 SiPMs in series per side.

NA61/SHINE

Particle identification

