Determination of the phase ϕ_s at LHCb

V. Batozskaya¹ on behalf of LHCb collaboration

 1 National Centre for Nuclear Research, Warsaw, Poland

XXI International Scientific Conference of Young Scientists and Specialists 2-6 October 2017

Determination of ϕ_{ε} at LHCb

V. Batozskaya NCBJ, Poland

 ${\cal CP}$ Violation

CKM matrix Introduction to ϕ .

LHCb Detector

measuremer

Analysis method $B^0 \rightarrow J/\psi K^+ K^-$

 $B_{\mathbf{B}}^{\mathbf{O}} \to J/\psi K^{+} K$ $B_{\mathbf{A}}^{\mathbf{O}} \to J/\psi \pi^{+} \pi^{-}$

 $B^{0} \rightarrow J/\psi \pi^{+} \pi^{-}$ $B^{0} \rightarrow \psi(2S)\phi^{-}$

 $B_s^{\mathbf{O}} \to J/\psi KK \; \mathbf{HM}$

Exp. re

 ϕ_s in future $B^0 \to \eta_s \phi$

onclusion

Outline

\mathcal{CP} Violation

CKM matrix Introduction to ϕ_s

LHCb Detector

ϕ_{ϵ} measurement

Analysis method

$$B_s^0 \rightarrow J/\psi K^+ K^-$$

 $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$
 $B_s^0 \rightarrow \psi(2S)\phi$

 $B_s^0 \to J/\psi KK \text{ HM}$

Experimental results

 ϕ_{s} in future $B_s^0 \to \eta_c \phi$

Conclusion

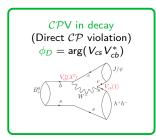
Determination of φ_c at LHCb

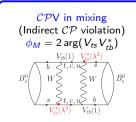
V. Batozskaya NCBJ, Poland

CKM matrix Introduction to ϕ .

Analysis method $B^{0} \rightarrow J/\psi K^{+}K^{-}$ $B^0 \rightarrow J/\psi \pi^+ \pi^-$

 $B^{0} \rightarrow \psi(2S)\phi$ $B^{0} \rightarrow J/\psi KK HM$


 $B^0 \rightarrow \eta_c \phi$


AYSS2017

2/15

Violation of the \mathcal{CP} symmetry

• Main interest in the measurement of the phase ϕ_s in $b \to c\bar{c}s$ processes, $\phi_s^{c\bar{c}s}$:

CPV in interference

between direct decays and decays with mixing

$$|\lambda_f| \equiv \left| \frac{q}{\rho} \frac{A_f}{A_f} \right| \approx 1$$

$$|\lambda_f| \equiv \left| \frac{q}{\rho} \frac{A_f}{A_f} \right| \approx 1$$

$$q/p \qquad A_f \qquad \phi_s \equiv -\arg(\lambda_f) \equiv -\arg\left(\frac{q}{\rho} \frac{A_f}{A_f}\right) \neq 0$$

$$q/p \qquad A_f \qquad \phi_s^{SM} = \phi_{\mathsf{M}} - 2\phi_{\mathsf{D}} \rightarrow \phi_s^{\mathsf{c}\bar{\mathsf{c}}\mathsf{s}} = -2\arg\left(-\frac{V_{\mathsf{ts}}V_{\mathsf{tb}}^*}{V_{\mathsf{cs}}V_{\mathsf{cb}}^*}\right) = -2\beta_s$$

Determination of ϕ_s at LHCb

V. Batozskaya NCBJ, Poland

$\mathcal{C}\mathcal{P}$ Violation

CKM matrix Introduction to ϕ_s

LHCb Detector

measuremer

Analysis method $B_{0}^{0} \rightarrow J/\psi K^{+} K^{-}$ $B_{0}^{0} \rightarrow J/\psi \pi^{+} \pi^{-}$ $B_{0}^{0} \rightarrow \psi(2S)\phi$

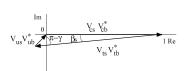
 $B_s^{\mathbf{0}} \to J/\psi KK \; \mathbf{HM}$

Exp. res

 $\phi_{\scriptscriptstyle S}$ in future ${}_{\scriptscriptstyle S}{}^{m 0}
ightarrow \eta_{\scriptscriptstyle c} \phi$

Conclusion

AYSS2017 3 / 15


The Cabibbo-Kobayashi-Maskawa matrix is a 3×3 unitary matrix which consists of information about flavour changing weak decays

$$\begin{pmatrix} u \\ c \\ t \end{pmatrix} \leftrightarrow \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} d \\ s \\ b \end{pmatrix} \qquad \underbrace{i \qquad V_{ij} \qquad j}_{W}$$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \begin{pmatrix} e^0 & \psi(2s)\phi \\ e^0 & \to I/\psi KK \ HM \\ +O(\lambda^4) \Rightarrow 0.22 \quad [PRL 53 \ (1984) \ 1802] \end{pmatrix}$$

$$\lambda \approx 0.22 \quad [PRL 53 \ (1984) \ 1802]$$
Conclusion

6 unitary triangles Triangle (sb): $V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$

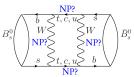
Determination of φ_c at LHCb

V. Batozskava NCBJ, Poland

CKM matrix Introduction to ϕ .

Analysis method

 $B^{0} \rightarrow J/\psi K^{+}K^{-}$


AYSS2017 4 / 15

Introduction to ϕ_s

• SM prediction is very small and precise:

$$\phi_s^{c\bar{c}s} = -2\beta_s = -0.0376^{+0.0008}_{-0.0007} \text{ rad} \\ \text{*Ignoring subleading penguin contributions}$$

• If new particles contribute to "box" diagrams, then value of ϕ_M will be different than SM prediction

$$\begin{aligned} \phi_{M} &= \phi_{M}^{SM} + \Delta \phi_{M}^{NP} \\ \phi_{s}^{c\bar{c}s} &= \phi_{M} - 2\phi_{D} = -2\beta_{s} + \Delta \phi_{M}^{NP} \end{aligned}$$

 $\phi_s^{c\bar{c}s}$ is an excellent probe for possible NP!

ullet ϕ_s is measured by LHCb in the different decay modes

$$B_s^0 \rightarrow J/\psi KK,~B_s^0 \rightarrow J/\psi \pi\pi$$
 $B_s^0 \rightarrow \psi(2S)\phi,~B_s^0 \rightarrow D_sD_s$ $B_s^0 \rightarrow \eta_c\phi$ (with large statistics)

Determination of ϕ_{ε} at LHCb

V. Batozskaya NCBJ, Poland

CP Violation
CKM matrix
Introduction to ϕ_A

.HCb Detector

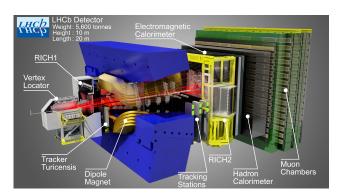
 ϕ_s measurement

Analysis method $B^0 \rightarrow J/\psi K^+ K^ B^0 \rightarrow J/\psi \pi^+ \pi^ B^0 \rightarrow \psi(2s)\phi$ $B^0 \rightarrow J/\psi KK HM$

Exp. re

 $\phi_{\scriptscriptstyle S}$ in future $_{\scriptscriptstyle B_s^{m 0}}
ightarrow \eta_{\scriptscriptstyle c} \phi$

Conclusio



AYSS2017 5 / 15

Large Hadron Collider beauty Detector

[JINST 3 (2008) S08005]

- Single-arm forward spectrometer, covering $2 < \eta < 5 \ (10 < \theta < 300 \ (250) \ mrad)$
- Momentum resolution: $\Delta p/p = 0.5\%$ at 5 GeV/c to 1.0% at 200 GeV/c
- Impact parameter resolution: 20 μ m for high p_T tracks
- Decay time resolution: \sim 45 fs
- Invariant mass resolution: $\sim 8 \text{ MeV/c}^2$ for $B \to J/\psi X$ decays with J/ψ mass constraint
- $\mathcal{L} = 3 \text{ fb}^{-1}$ collected in Run I at $\sqrt{s} = 7-8 \text{ TeV}$

Determination of φ_c at LHCb

V. Batozskava NCBJ, Poland

CKM matrix Introduction to ϕ .

LHCb Detector

Analysis method $B^{0} \rightarrow J/\psi K^{+}K^{-}$

 $B^0 \rightarrow I/\psi \pi^+ \pi^ B^{0} \rightarrow \psi(2S)\phi$

 $B^0 \rightarrow J/\psi KK HM$

 $B^0 \rightarrow \eta_c \phi$

AYSS2017 6/15

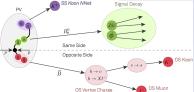
Analysis method

Time dependent angular flavour tagged analysis:

$$\frac{d^4\Gamma(B_s^0\to J/\psi\phi)}{dtd\Omega}\propto \sum_{k=1}^N h_k(t)f_k(\theta_K,\theta_I,\phi)$$

- $h_k(t)$ time dependent part: $\phi_s, \Delta\Gamma_s, \Gamma_s, \Delta m_s, A_i, \delta_i (i = 0, \perp, \parallel, S)$
- $f_k(\Omega)$ angular dependent part: θ_K, θ_I, ϕ
- Flavour tagging is determined using two algorithms:
 - Same Side charge kaon which is correlated with B_c^0
 - Opposite Side charge lepton or kaon from second *B* decay
 - Self tagging decays to calibrate the algorithms: $B^+ \to J/\psi K^+$ for OS and $B_s^0 \to D_s^- \pi^+$ for SS
 - Estimation of the algorithm efficiency:
 - tagging efficiency $\varepsilon_{\textit{tag}}$ and corrected mistag probability ω
 - total efficiency $\varepsilon_{eff} = \varepsilon_{tag} (1-2\omega)^2 = (3.73 \pm 0.15)\%$ for $B_s^0 \to J/\psi \phi$

V. Batozskaya NCBJ, Poland


CP Violation
CKM matrix
Introduction to ϕ_s

LHCb D

 ϕ_s measurement Analysis method

 $B_{0}^{0} \rightarrow J/\psi K^{+} K^{-}$ $B_{0}^{0} \rightarrow J/\psi \pi^{+} \pi^{-}$

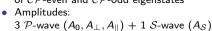
 $B_s^{0} \rightarrow \psi(\mathbf{2}S)\phi$ $B_s^{0} \rightarrow J/\psi KK HN$

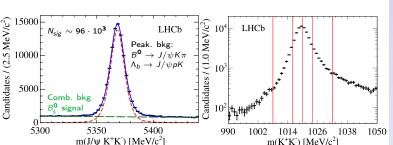
AYSS2017 7 / 15

[PRL 114 (2015) 041801]

Determination of φ_c at LHCb

V. Batozskava NCBJ, Poland



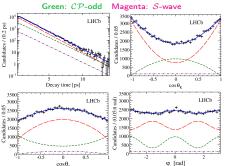


 $B^0 \rightarrow \eta_c \phi$

CKM matrix Introduction to ϕ .

 P→VV decay ⇒ final state is an admixture of \mathcal{CP} -even and \mathcal{CP} -odd eigenstates

Fit is carried out in 6 bins of $m(K^+K^-)$ region to measure S-wave contribution



AYSS2017 8 / 15 Red: CP-even

Blue: Total

[PRL 114 (2015) 041801]


```
\begin{array}{lll} \phi_S &=& -0.058 \pm 0.049 \pm 0.006 \ \text{rad} \\ \Gamma_S &=& 0.6603 \pm 0.0027 \pm 0.0015 \ \text{ps}^{-1} \\ \Delta \Gamma_S &=& 0.0805 \pm 0.0091 \pm 0.0032 \ \text{ps}^{-1} \\ \Delta m_S &=& 17.711 ^{+0.055}_{-0.057} \pm 0.0032 \ \text{ps}^{-1} \\ |\lambda| &=& 0.964 \pm 0.019 \pm 0.007 \end{array}
```

* First uncertainty is statistical, second is systematic uncertainty

- ▶ $B_s^0 \to J/\psi K^+ K^-$ is a golden channel: measurement of ϕ_s , Γ_s , $\Delta\Gamma_s$, Δm_s , $|\lambda|$
- ▶ Consistent with SM predictions, no direct \mathcal{CP} violation $(|\lambda| = 1)$
- Decay time efficiency, angular efficiency and background subtraction give dominant contribution to systematic uncertainty
- lacktriangle No polarisation-dependent \mathcal{CP} violation observed (see backups)

Most precise measurement of lifetime parameters to date!

Determination of ϕ_{ε} at LHCb

V. Batozskaya NCBJ, Poland

CF Violation

Introduction to ϕ_s

LHCb Detector

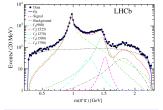
 ϕ_{S} measurement

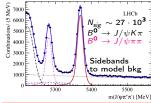
Analysis method $B^{0} \rightarrow J/\psi K^{+} K^{-}$ $B^{0} \rightarrow J/\psi \pi^{+} \pi^{-}$ $B^{0} \rightarrow \psi(2s) \phi$ $B^{0} \rightarrow J/\psi KK HM$

Exp. re

 $\phi_{\scriptscriptstyle S}$ in future ${}^{f 0}_{\scriptscriptstyle S} o \eta_{\scriptscriptstyle c} \phi$

Conclusion





 ϕ_s in $B_s^0 \to J/\psi(\to \mu^+\mu^-)\pi^+\pi^-$

[PRD 89 (2014) 092006]

- Amplitude analysis to study resonance structure of $\pi^+\pi^-$ states $\Rightarrow \mathcal{CP}$ -odd state of $\pi^+\pi^-$ is >97.7% at 95% CL
- Largest component in resonant states is the $f_0(980)$ with $\sim 70\%$

$$\phi_s = 0.070 \pm 0.068 \pm 0.008 \text{ rad} \ |\lambda| = 0.89 \pm 0.05 \pm 0.01$$

Combination with
$$B_s^0 \rightarrow J/\psi \phi$$

 $\phi_s = -0.010 \pm 0.039 \text{ rad}$
 $|\lambda| = 0.957 \pm 0.017$

- * First uncertainty is statistical, second is systematic uncertainty
- Consistent with SM predictions; no direct \mathcal{CP} violation assumed equal for all $\pi^+\pi^-$ states
- Main contribution to systematic uncertainty from known $\pi^+\pi^-$ resonance model

Most precise $\phi_s^{c\bar{c}s}$ measurement from combination of $B_s^0 \to J/\psi K^+K^-$ and $B_s^0 \to J/\psi \pi^+\pi^-$ to date!

Determination of ϕ_{ε} at LHCb

V. Batozskaya NCBJ, Poland

 ${\cal CP}$ Violatio

CKM matrix Introduction to ϕ_s

LHCb Detector

 ϕ_S measurement Analysis method $\phi_S \to J/\psi \kappa^+ \kappa^- \phi_S \to J/\psi \pi^+ \pi^-$

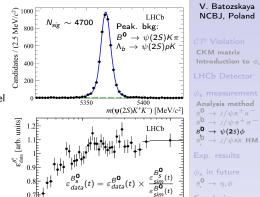
 $B^{0} \rightarrow J/\psi KK HM$

Exp. res

 ϕ_s in future $egin{array}{c} eta_s & eta_$

Conclusio

AYSS2017 10 / 15


$$\phi_s$$
 in $B_s^0 \to \psi(2S)(\to \mu^+\mu^-)\phi(\to K^+K^-)$

[PLB 762 (2016) 253-262]

- Replace $J/\psi \to \psi(2S)$. The B_{ε}^0 yield is decreased by factor ~ 20
- Prompt J/ψ events are used to calibrate decay time resolution model
- Decay time efficiency is determined using control $B^0 \to \psi(2S)K^*(\to K^+\pi^-)$ channel

$$\begin{array}{lll} \phi_s &=& 0.23^{+0.29}_{-0.28} \!\pm\! 0.02 \; \text{rad} \\ \Gamma_s &=& 0.668 \!\pm\! 0.011 \!\pm\! 0.006 \; \text{ps}^{-1} \\ \Delta \Gamma_s &=& 0.066^{+0.041}_{-0.044} \!\pm\! 0.007 \; \text{ps}^{-1} \\ |\lambda| &=& 1.045^{+0.069}_{-0.050} \!\pm\! 0.007 \end{array}$$

First uncertainty is statistical, second is systematic uncertainty

- Consistent with $B_s^0 \to J/\psi K^+ K^-$ fit results
- Limited size of data sample
- Systematic uncertainty is $< 0.2\sigma_{stat}$ except for Γ_s ($\sim 0.6\sigma_{stat}$)

t [ps]

Determination of

φ_c at LHCb V. Batozskava NCBJ, Poland

AYSS2017 11 / 15

- V. Batozskava NCBJ, Poland
- CKM matrix Introduction to ϕ .
- Analysis method $B^{0} \rightarrow I/\psi K^{+}K^{-}$ $B^0 \rightarrow J/\psi \pi^+ \pi^ B^{0} \rightarrow \psi(2S)\phi$
- $B^0 \rightarrow J/\psi KK HM$

 - $B^0 \rightarrow \eta_c \phi$

 $N_{sig} \sim 31 \cdot 10^3$ LHCb $\phi(1020)$ $f_0(1500)$ and $f_0(171)$ 1000 E f₃ (1525) \mathcal{S} -wave 200 f₂(1270) 1.5 f₂(1750) $m_{K^+K^-}[GeV]$

Combination with $B_s^0 \to J/\psi \phi$

 $\Gamma_s = 0.6588 \pm 0.0022 \pm 0.0015 \text{ ps}^{-1}$

 $\Delta\Gamma_s = 0.0813 \pm 0.0073 \pm 0.0036 \text{ ps}^{-1}$

 $-0.025\pm0.045\pm0.008$ rad

 $0.978\pm0.013\pm0.003$

= 0.119 + 0.107 + 0.034 rad $\Gamma_s = 0.650 \pm 0.006 \pm 0.004 \text{ ps}^{-1}$ $\Delta\Gamma_s = 0.066 \pm 0.018 \pm 0.010 \text{ ps}^{-1}$ 0.994 + 0.018 + 0.006

• $B_s^0 \to J/\psi KK$ with M(KK) > 1.05 GeV

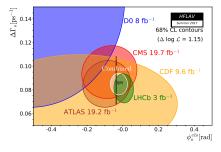
Formalism of the analysis is the same as

using control $B^0 \to J/\psi K^* (\to K^+\pi^-)$

Decay time efficiency is determined

higher than $M(\phi(1020))$

used in $B_s^0 \to J/\psi \phi$


channel

- * First uncertainty is statistical, second is systematic uncertainty
- Combination with $B_s^0 \to J/\psi \phi$ improves a precision of the ϕ_s measurement by over 9%
- Main fractions: $\sim 70\% \ \phi(1020)$, $\sim 10\% \ f_2'(1525)$ and S-wave each
- Largest contribution to systematic uncertainty from the resonance fit model (± 0.0236 rad)

ϕ_s experimental measurements

- $\phi_s^{c\bar{c}s}\stackrel{\text{SM}}{=}$ -0.0370 \pm 0.0006 rad [CKMFitter, PRD 84 (2011) 033005]
- $\Delta\Gamma_s \stackrel{\text{SM}}{=} 0.088 \pm 0.020 \text{ ps}^{-1}$ [M. Artuso et al, arXiv:1511.09466]

HFLAV combination $\phi_s^{c\bar{c}s} = -0.021 \pm 0.031 \text{ rad}$ $\Delta\Gamma_s = 0.085 \pm 0.006 \text{ ps}^{-1}$ $\Gamma_s = 0.6640 \pm 0.0020 \text{ ps}^{-1}$

- $B_s^0 \to J/\psi KK$ gives the lowest uncertainties
- LHCb dominates world average
- Consistent with SM predictions but still a lot of window for NP

Determination of ϕ_{ε} at LHCb

V. Batozskaya NCBJ, Poland

CP Violation

CKM matrix Introduction to φ,

LHCb Detector

 ϕ_S measurement

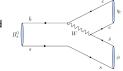
Analysis method $B_0^0 \rightarrow J/\psi \kappa^+ \kappa^ B_0^0 \rightarrow J/\psi \pi^+ \pi^ B_0^0 \rightarrow \psi(2S)\phi$

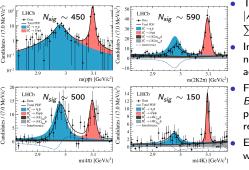
 $B_s^{\bullet} \rightarrow \psi(2S)\phi$ $B_s^{\bullet} \rightarrow J/\psi KK \text{ HM}$

Exp. results

 ϕ_s in future $B_s^{m{0}} o \eta_c \phi$

onclusion




AYSS2017 13 / 15

Observation of $B_{\epsilon}^0 \to \eta_c \phi$

[JHEP 1707 (2017) 021]

- Dominantly decay through the $b \rightarrow c\bar{c}s$ transition
- Purely \mathcal{CP} -even state \Rightarrow no angular analysis is required
- $\eta_c \rightarrow \text{into } p\bar{p}, 2K2\pi, 4\pi \text{ and } 4K \text{ final states}$
- J/ψ decaying to same final states is used as normalisation

Total decay amplitude $|A(m_i; c_k^i, \vec{x})|^2 =$ $\sum_{J} |\sum_{k} c_{k}^{i} R_{k}^{J}(m_{i}; \vec{x})|^{2}$

Interference between η_c and non-resonant states taken into account

First evidence for the $B_s^0 \to \eta_c(\to p\bar{p})\pi^+\pi^-$ (decay proceeds via the $f_0(980)$ resonance)

Expected the ϕ_s measurement with more data statistics

$$\mathcal{B}(\mathcal{B}_s^0 \to \eta_c \phi) = (5.01 \pm 0.53(\text{stat}) \pm 0.27(\text{syst}) \pm 0.63(\mathcal{B})) \cdot 10^{-4}$$

 $\mathcal{B}(\mathcal{B}_s^0 \to \eta_c \pi^+ \pi^-) = (1.76 \pm 0.59(\text{stat}) \pm 0.12(\text{syst}) \pm 0.29(\mathcal{B})) \cdot 10^{-4}$

Determination of φ_c at LHCb

V. Batozskava NCBJ, Poland

CKM matrix Introduction to ϕ .

Analysis method $B^{0} \rightarrow J/\psi K^{+}K^{-}$

 $B^0 \rightarrow I/\psi \pi^+ \pi^ B^{0} \rightarrow \psi(2S)\phi$ $B^{0} \rightarrow J/\psi KK HM$

 $B^0 \rightarrow \eta_c \phi$

AYSS2017 14 / 15

Conclusion

- Most precise measurement of ϕ_s in the B_s^0 system has been made at LHCb using Run I data
- Future perspectives:
 - Run I: $B_s^0 \to J/\psi(\to e^+e^-)KK$, $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$
 - Run II: new modes with more data
 - Estimations (only σ_{stat}) for LHCb [LHCb-PUB-2014-040]

Decay mode	Run I (3 fb $^{-1}$)	Run II (8 fb $^{-1}$)	LHCb upgrade	Theory
$\sigma_{\sf stat}(\phi_{\sf S})$ [rad]	(2010-2012)	(2015-2018)	(+2020, 50 fb ⁻¹)	limit
$B_s^0 \rightarrow J/\psi KK$	0.049	0.025	0.009	\sim 0.001
$\tilde{B}_{s}^{0} \rightarrow J/\psi f_{0}$	0.068	0.035	0.012	\sim 0.01

• Penguin effects in $B_{\rm s}^{\rm o}$ mixing are under control: $\Delta\phi_{\rm s}\sim 0.001\pm 0.020$ rad ... but more work still be needed for LHCb upgrade

0.12

0.08

0.06

0.04

0.02

[PLB 742 (2015) 38]

 $B_{*}^{0} \rightarrow J/\psi \pi \pi \text{ LHCb}$

[LHCb-PUB-2014-040]

2020

■ SM upper limit on $|\phi_x^{ab}| B_x^0 \rightarrow \phi \phi$ ■ SM $\phi(\phi^{ccs}) B_x^0 \rightarrow J/\psi \phi$

2030

Year

Determination of ϕ_s at LHCb

V. Batozskaya NCBJ, Poland

CF Violation

Introduction to ϕ_s

_HCb Detector

 ϕ_s measurement

Analysis method $B_s^0 \to J/\psi \kappa^+ \kappa^ B_s^0 \to J/\psi \pi^+ \pi^-$

 $B_{s}^{0} \rightarrow J/\psi \pi^{+} \pi^{-}$ $B_{s}^{0} \rightarrow \psi(2s)\phi$ $B_{s}^{0} \rightarrow J/\psi KK HM$

Exp. results

 $egin{array}{l} ar{\phi}_s & ext{in future} \ ar{\mathcal{B}}_s^{oldsymbol{0}} & o \eta_c \phi \end{array}$

Conclusion

Thank you for your attention!

LHCb

AYSS2017 15 / 15

Backups

Determination of ϕ_s at LHCb

V. Batozskaya NCBJ, Poland

CP Violatio

CKM matrix Introduction to ϕ_s

LHCb Detector

s measureme

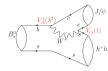
Analysis method

 $B_{0}^{0} \rightarrow J/\psi \kappa^{+} \kappa^{-}$ $B_{0}^{0} \rightarrow J/\psi \pi^{+} \pi^{-}$

 $B_{s}^{0} \rightarrow \psi(2S)\phi$ $B_{s}^{0} \rightarrow J/\psi KK \ HM$

Exp. re

 ϕ_s in future $B_s^{oldsymbol{0}} o \eta_c \phi$


Conclusion

AYSS2017

Violation of the CP symmetry

• Direct (in decay amplitudes): $\phi_D = \arg(V_{cs}V_{ch}^*)$

*Ignoring sub-leading penguin contributions

- Mixing (indirect): $\phi_M = 2 \arg(V_{ts} V_{tb}^*)$
 - Described by phenomenological Schrödinger equation:

$$i rac{d}{dt} inom{|B_s^0(t)\rangle}{|ar{B}_s^0(t)\rangle} = \left(\mathbf{M} - rac{i}{2}\Gamma
ight) inom{|B_s^0(t)\rangle}{|ar{B}_s^0(t)\rangle}$$

• Solutions give two mass eigenstates: B_H and B_L $|B_I\rangle = p|B_s^0\rangle + q|\bar{B}_s^0\rangle$

$$|B_L\rangle = p|B_s^0\rangle + q|B_s^0\rangle$$

 $|B_H\rangle = p|B_s^0\rangle - q|\bar{B}_s^0\rangle$
• Mixing parameters

$$\Delta m_s = M_H - M_L \qquad \Delta \Gamma_s = \Gamma_L - \Gamma_H$$

$$\Gamma_s = \frac{\Gamma_L + \Gamma_H}{2} \qquad \phi_{12} = \arg(-M_{12}/\Gamma_{12})$$

Interference between direct decays and decays with mixing

$$\begin{split} \phi_{s} &\equiv -\text{arg}(\lambda_{f}) \equiv -\text{arg}\left(\frac{q}{p}\frac{A_{f}}{A_{f}}\right) \neq 0 \quad |\lambda| \equiv \left|\frac{q}{p}\frac{A_{f}}{A_{f}}\right| \approx 1 \\ \phi_{s}^{SM} &= \phi_{M} - 2\phi_{D} = -2\text{arg}(-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}) = -2\beta_{s} \end{split}$$

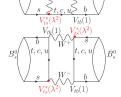
Determination of ϕ_s at LHCb

V. Batozskaya NCBJ, Poland

 ${}^{2}\mathcal{P}$ Violation

CKM matrix Introduction to φ,

LHCb Detector


 ϕ_s measurement

Analysis method $B_s^0 \rightarrow J/\psi \kappa^+ \kappa^ B_s^0 \rightarrow J/\psi \pi^+ \pi^ B_s^0 \rightarrow \psi(2s) \phi$ $B_s^0 \rightarrow J/\psi \kappa \kappa$ HM

Exp. res

 $\phi_{\scriptscriptstyle S}$ in future $_{\scriptscriptstyle B}{}^{m 0}
ightarrow \eta_{\scriptscriptstyle C} \phi$

Conclusion

Polarisation-dependent CP violation

[PRD 89 (2014) 094010] [PRL 114 (2015) 041801]

- Results of the $B_s^0 o J/\psi K^+K^-$ analysis are obtained with the assumption that ϕ_s and $|\lambda|$ are independent of the final state polarisation
- Condition is relaxed to allow the measurement of these parameters separately for each polarisation

Parameter	Value		
$- \lambda^0 $	$1.012 \pm 0.058 \pm 0.013$		
$ \lambda^{\parallel}/\lambda^{0} $	$1.02 \pm 0.12 \pm 0.05$		
$ \lambda^{\perp}/\lambda^{0} $	$0.97 \pm 0.16 \pm 0.01$		
$ \lambda^{\mathrm{S}}/\lambda^{\mathrm{0}} $	$0.86 \pm 0.12 \pm 0.04$		
ϕ_s^0 [rad]	$-0.045 \pm 0.053 \pm 0.007$		
$\phi_s^{\parallel} - \phi_s^0 \text{ [rad]}$	$-0.018 \pm 0.043 \pm 0.009$		
$\phi_s^{\perp} - \phi_s^0 \text{ [rad]}$	$-0.014 \pm 0.035 \pm 0.006$		
$\phi_s^{\mathrm{S}} - \phi_s^0 \; [\mathrm{rad}]$	$0.015 \pm 0.061 \pm 0.021$		

No evidence for a polarisation-dependent \mathcal{CP} violation in the decay.

Determination of ϕ_{ε} at LHCb

V. Batozskaya NCBJ, Poland

 ${}^{2}{\cal P}$ Violatio

CKM matrix
Introduction to φ,

LHCb Detector

measuremer

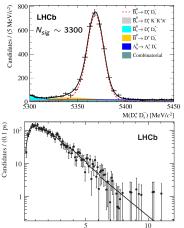
Analysis method $B^{0} \rightarrow J/\psi \kappa^{+} \kappa^{-}$ $B^{0} \rightarrow J/\psi \pi^{+} \pi^{-}$ $B^{0} \rightarrow \psi(2S)\phi$ $B^{0} \rightarrow J/\psi KK HM$

xp. resi

 ϕ_s in future $g^0 \to \eta_c \phi$

Conclusion

AYSS2017 18 / 15


 ϕ_s in $B_s^0 o D_s^+ D_s^-$

- Purely CP-even state ⇒ no angular analysis is required
- Candidates are reconstructed in four final states ⇒ combinations of D_s[±] into KKπ, Kππ and πππ
- $B^0 \to D^-(\to K^+ 2\pi^-) D_s^+(\to K^{\pm}\pi^+)$ is used as control channel
- Time dependent ($\sigma_t \approx 54$ fs) tagged ($\varepsilon \mathcal{D}^2 = (5.33 \pm 0.18 \pm 0.17)\%$) analysis

$$\phi_s = 0.02 \pm 0.17 \pm 0.02 \text{ rad}$$

 $|\lambda| = 0.91^{+0.18}_{-0.15} \pm 0.02$

* First uncertainty is statistical, second is systematic uncertainty

[PRL 113 (2014) 211801]

- Determination of ϕ_s at LHCb
- V. Batozskaya NCBJ, Poland
- CP Violation
 CKM matrix
 Introduction to ϕ_s
- LHCb Detector
- ϕ_{S} measurement

 Analysis method $B_{S}^{0} \rightarrow J/\psi K^{+}K^{-}$ $B_{S}^{0} \rightarrow J/\psi \pi^{+}\pi^{-}$ $B_{S}^{0} \rightarrow J/\psi \pi^{+}\pi^{-}$ $B_{S}^{0} \rightarrow J/\psi KK HM$
 - Exp. res

Decay time [ps]

 ϕ_s in future $B_s^{\mathbf{0}} \to \eta_c \phi$

- Consistent with SM predictions, no direct \mathcal{CP} violation ($|\lambda|=1$)
- Systematics dominated by the decay time resolution
- Decay time uncertainty calibrated from the simulation

rnep LHCb

AYSS2017 19 / 15

ϕ_s and $\Delta\Gamma_s$ experimental measurements

Mode	ϕ_s [rad]	$\Delta\Gamma_s$ [ps ⁻¹]	Reference			
		CDF (9.6 fb ⁻¹)				
$J/\psi\phi$	[-0.60,+0.12], 68% CL	$+0.068\pm0.026\pm0.009$	[PRL 109 (2012) 171802]			
		D0 (8.0 fb ⁻¹)				
$J/\psi\phi$	$-0.55^{+0.38}_{-0.36}$	$+0.163^{+0.065}_{-0.064}$	[PRD 85 (2012) 032006]			
ATLAS (19.2 fb ⁻¹)						
$J/\psi\phi$	$-0.090 \pm 0.078 \pm 0.041$	$+0.085\pm0.011\pm0.007$	[JHEP 08 (2016) 147]			
CMS (19.7 fb ⁻¹)						
$J/\psi\phi$	$-0.075 \pm 0.097 \pm 0.031$	$+0.095\pm0.013\pm0.007$	[PLB 757 (2016) 97-120]			
LHCb (3.0 fb ⁻¹)						
$J/\psi KK$	$-0.058\pm0.049\pm0.006$	$+0.0805\pm0.0091\pm0.0032$	[PRL 114 (2015) 041801]			
$J/\psi\pi\pi$	$+0.070\pm0.068\pm0.008$	-	[PLB 736 (2014) 186]			
$J/\psi KK HM$	$+0.119\pm0.107\pm0.034$	-	[arXiv:1704.08217]			
ψ (25) ϕ	$+0.23^{+0.29}_{-0.28}\pm0.02$	$+0.066^{+0.41}_{-0.44}\pm0.007$	[PLB 762 (2016) 253-262]			
D_sD_s	$+0.02\pm0.17\pm0.02$	=	[PRL 113 (2014) 211801]			

Determination of ϕ_s at LHCb

V. Batozskaya NCBJ, Poland

 ${\cal CP}$ ${\sf Violatio}$

CKM matrix Introduction to ϕ_s

LHCb Detector

measuren

Analysis method $B_{0}^{0} \rightarrow J/\psi K^{+} K^{-}$ $B_{0}^{0} \rightarrow J/\psi \pi^{+} \pi^{-}$ $B_{0}^{0} \rightarrow \psi(2S)\phi$

 $B_s^{\bullet} \rightarrow \psi(23)\psi$ $B_s^{\bullet} \rightarrow J/\psi KK \ HM$

xp. re

be in futur

 $B_s^{\mathbf{0}} \rightarrow \eta_c \phi$

Conclusio

AYSS2017 20 / 15