STUDYING THE STRONG INTERACTION WITH BARYON-(ANTI)BARYON FEMTOSCOPY IN PB-PB COLLISIONS MEASURED BY ALICE

> Jeremi Niedziela on behalf of the ALICE Collaboration

> > Warsaw University of Technology, CERN

AYSS 2-6.10.2017

OUTLINE

- I) Motivation and introduction.
- 2) Fitting procedure and experimental correlation functions.
- 3) Measured strong interaction parameters.
- 4) Interpretation of the results.
- 5) Conclusions.

Motivation

The strong interaction between particles is an important problem in nuclear physics.

- What is the interaction cross section for baryon-antibaryon (bb) pairs?
- Do baryons and antibaryons attract or repel with strong interaction?
- Can a pair of non-identical baryons (e.g. pΛ̄) annihilate?

- baryon-baryon cross sections not well known,
- bb (baryon-antibaryon) parameters are practically unknown (except pp, np, dp),
- LHC is a baryon-antibaryon factory,
- ALICE can register and identify different (anti)baryons,
- **femtoscopy** provides a means for measuring bb interactions!

Do bb bound states exist?

INTRODUCTION

Femtoscopy is a technique of measuring the distribution of relative momenta of pairs of particles. This distribution depends on the shape and **size of the source** and **interactions** between those particles.

INTRODUCTION

We can use data collected by ALICE to extract strong interaction parameters.

MEASUREMENT LHC AND ALICE

- ► LHC is a 27 km particle collider (pp, p-Pb, Pb-Pb),
- pp collisions up to 13 TeV center of mass energy, Pb-Pb up to 5.02 TeV per nucleon pair,
- ▶ four large experiments: ALICE, ATLAS, CMS, LHCb.

MEASUREMENT LHC AND ALICE

- ALICE (A Large Ion Collider
 Experiment) is designed mainly
 to register heavy-ion collisions,
- ▶ 19 sub-detectors,
- excellent PID at low-momenta.

Measurement

The experimental correlation function is defined as follows:

$$C(p_1, p_2) = \frac{P(p_1, p_2)}{P(p_1) \cdot P(p_2)}$$

- P(p1,p2) probability of observing particles with momenta
 p1 and p2 simultaneously (in the same event),
- P(p₁), P(p₂) probability of observing particles with momenta
 p₁ and p₂ independently (in two different events).

In ALICE we observe almost **the same number of particles and antiparticles**. ALICE allows identification of (anti)protons and (anti)lambdas with high precision, making femtoscopic studies possible.

Experimental correlation functions

A few examples of measured $b\overline{b}$ correlation functions:

- $\Lambda\bar{\Lambda}$ correlation function measured for the first time in history.
- **pp** correlation function never published before.
- pΛ analysed for the first time together with other systems, in centrality bins and with full regard of residual correlations.

FITTING PROCEDURE COMBINING DIFFERENT SYSTEMS

- χ^2 is calculated from all functional fits we have (**36 functions** in total):
 - ▶ 2.76 TeV + 5.02 TeV,
 - ▶ pp̄, pΛ̄, ΛΛ̄,
 - ▶ 6 centrality bins.
- 3 sets of parameters: $p\bar{\Lambda}$, $\Lambda\bar{\Lambda}$ and the same parameters for heavier $b\bar{b}$ pairs,
- all parameters which are the same for different functions are **shared** between them.

FITTING PROCEDURE RESIDUAL CORRELATIONS

The experimental correlation functions are indirectly influenced by decays of heavier particles.

The final correlation function is a weighted sum of correlation functions of all residual components:

 $C_{xy}(k^*) = 1 + \sum_{i} \lambda_i [C_i(k^*) - 1]$ from Monte Carlo simulation (AMPT) In this example, we plot proton-proton correlation function, but actually interaction was between proton and lambda...

FITTING PROCEDURE SOURCE SIZES

 For different particle pairs, we assume approximate scaling with m_T (transverse mass):

- Data for ππ, KK and pp come from previous ALICE measurements,
- Assume that $R_{b\overline{b}} = R_{bb}$.
- We extract bb radii from fit to the data.

For different centralities, we assume that source sizes scale with multiplicity:

 Radius set for one centrality, then scaled for all others using calculated multiplicities for each centrality bin.

FITTING PROCEDURE

- χ^2 calculated for **36 functions**,
- residual correlations taken into account,
- radii scaling with multiplicity for different centrality bins,
- ▶ radii **scaling with m**^T for different pairs (including residual ones),
- 3 sets of interaction parameters (\Re f₀, \Im f₀, d₀) for p $\overline{\Lambda}$, $\Lambda\overline{\Lambda}$ and heavier b \overline{b} pairs,
- parameters shared between systems.

MEASURED INTERACTION PARAMETERS

- **Combined fit** of $p\overline{p}$, $p\overline{\Lambda}$ and $\Lambda\overline{\Lambda}$ performed for the first time.
- we have measured 3 sets of parameters for $p\overline{\Lambda}$, $\Lambda\overline{\Lambda}$ and effective parameters for heavier $b\overline{b}$.
- we have good precision relative to other measurements,
- values are similar for all measured pairs,
- results for $p\overline{\Lambda}$, $\Lambda\overline{\Lambda}$ and $b\overline{b}$ similar to $p\overline{p}$,
- \Im fo is non-zero for all $b\overline{b}$ pairs,
- \Re **f**₀ **is negative** for all $b\overline{b}$ pairs.

MEASURED INTERACTION PARAMETERS

- **Combined fit** of $p\overline{p}$, $p\overline{\Lambda}$ and $\Lambda\overline{\Lambda}$ performed for the first time.
- we have measured 3 sets of parameters for $p\overline{\Lambda}$, $\overline{\Lambda \Lambda}$ and effective parameters for heavier $b\overline{b}$.
- we have good precision relative to other measurements,
- values are similar for all measured pairs,
- results for $p\overline{\Lambda}$, $\Lambda\overline{\Lambda}$ and $b\overline{b}$ similar to $p\overline{p}$,
- \Im **f**₀ **is non-zero** for all $b\overline{b}$ pairs,
- \Re **f**₀ **is negative** for all $b\overline{b}$ pairs.

INTERPRETATION OF RESULTS

Conclusions

femtoscopy is a powerful tool capable of measuring the strong interaction

- pp, p \overline{p} , p Λ , p $\overline{\Lambda}$, $\Lambda\Lambda$, $\Lambda\overline{\Lambda}$ correlations functions were measured by ALICE at 2.76 and 5.02 TeV
- this type of analysis was performed for the first time

• scattering parameters (\Re f₀, \Im f₀ and d₀) were extracted for $p\bar{\Lambda}$, $\Lambda\bar{\Lambda}$ and heavier $b\bar{b}$ pairs

Cuts

- Event, tracks and pair **cuts** were directly taken from previously approved analyses:
 - Two-proton correlations in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV from the ALICE experiment at the LHC (paper)
 - Proton-lambda correlations in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV in the ALICE experiment (preliminary, QM)
 - Two-Lambda femtoscopy correlations in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV from the ALICE experiment (preliminary, QM)
 - One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76 \text{ TeV}$ (arxiv.org/abs/1506.07884)

DESCRIPTION OF THE PROCEDURE

Background removing procedure:

- Correlation functions were generated from Therminator, excluding all femtoscopic interactions,
- fits with different form of the background were performed (linear, quadratic, 3rd and 4th order polynomials),
- quadratic function was chosen and fitted to the experimental data for k* from 0.15-0.30 to 0.80 GeV/c (depending on the system),
- fitted background was subtracted from the CF before fitting,
- influence of the choice of the background function is taken into account in systematic uncertainties studies.

DESCRIPTION OF THE PROCEDURE

Momentum resolution correction:

- for each pair and each centrality a matrix of qgen vs. qrec was generated,
- for each slice in q_{rec} a gaussian fit was done,
- dependance of σ_{mr} vs. q_{rec} was plotted,
- as it is almost constant, the average width was taken for fit function smearing.

Average $\sigma_{\sf mr}$ (k * frame)					
Pair	2011 data (LHC12a17b)	2015 data (LHC16g1)			
рр	0,010	0,010			
pp	0,010	0,010			
р Л	0,010	0,010			
pλ	0,010	0,010			
$\wedge \wedge$	0,009	0,009			
$\overline{\Lambda}$	0,009	0,009			

Momentum resolution correction is crucial for proper analysis - it affects shape of the correlation function very significantly.

DESCRIPTION OF THE PROCEDURE

AMPT

0.37

0.03

0.04

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Ξ-Σ0

Σ0**Σ**0

0.03

0.06

• Residual correlation **fractions** from AMPT or HIJING:

Pair	HIJING	AMPT	Pair	HIJING	AMPT	Pair	HIJING
DD	035	0.25	pΛ	0.36	0.29	$\wedge \wedge$	0.21
		0120	$\wedge \wedge$	0.07	0.08	\ =0	0.04
р Л	0.17	0.12	р Ξ -	0.04	0.02		0.01
$\wedge \wedge$	0.02	0.02	р Ξ 0	0.03	0.02		0.05
Σ +	0.04	0.04	ΛΞ-	0.01	0.00		0.00
			ΛΞΟ	0.01	0.00		0.00
$\Lambda \Sigma^+$	0.01	0.01	$\Lambda\Sigma^+$	0.02	0.03	Ξ-Ξ-	0.00
$\Sigma^+\Sigma^+$	0.00	0.00	Ξ0Σ+	0.00	0.00	V Z 0	\bigcirc 22
			Ξ-Σ+	0.00	0.00		0.22
			ΛΣΟ	0.04	0.00	ΞοΣο	0.02

p**Σ**⁰

Σ+Σ0

0.19

0.01

0.00

0.00

2011	Centrality	$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}oldsymbol{\eta}$	$\langle N_{ m part} angle$	$\left(\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta \right) / \left(\langle N_{\mathrm{part}} \rangle / 2 \right)$	$0_{-}5\% \cdot 1601$
	0–5%	1601 ± 60	382.8 ± 3.1	8.4 ± 0.3	0-370.1001
	5-10%	1294 ± 49	329.7 ± 4.6	7.9 ± 0.3	5-10%:1294
	10–20%	966 ± 37	260.5 ± 4.4	7.4 ± 0.3	0-20%: 966
	20-30%	649 ± 23	186.4 ± 3.9	7.0 ± 0.3	20 200/. (10
	30–40%	426 ± 15	128.9 ± 3.3	6.6 ± 0.3	20-30%: 649
	40–50%	261 ± 9	85.0 ± 2.6	6.1 ± 0.3	30-40%: 426
	50-60%	149 ± 6	52.8 ± 2.0	5.7 ± 0.3	40 50% 261
	60–70%	76 ± 4	30.0 ± 1.3	5.1 ± 0.3	10-3070. 201
	70–80%	35 ± 2	15.8 ± 0.6	4.4 ± 0.4	https://arxiv.org/pdf/1012.1657.pdf

2015

Centrality	$\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta angle$	$\langle N_{ m part} angle$	$ rac{2}{\langle N_{ m part} angle}\langle { m d}N_{ m ch}/{ m d}oldsymbol\eta angle$	
0-2.5%	2035 ± 52	398 ± 2	10.2 ± 0.3	C
2.5-5.0%	1850 ± 55	372 ± 3	9.9 ± 0.3	5
5.0-7.5%	1666 ± 48	346 ± 4	9.6 ± 0.3	
7.5–10%	1505 ± 44	320 ± 4	9.4 ± 0.3	
10–20%	1180 ± 31	263 ± 4	9.0 ± 0.3	2
20-30%	786 ± 20	188 ± 3	8.4 ± 0.3	*)
30-40%	512 ± 15	131 ± 2	7.8 ± 0.3	4
40–50%	318 ± 12	86.3 ± 1.7	7.4 ± 0.3	
50-60%	183 ± 8	53.6 ± 1.2	6.8 ± 0.3	
60–70%	96.3 ± 5.8	30.4 ± 0.8	6.3 ± 0.4	
70–80%	44.9 ± 3.4	15.6 ± 0.5	5.8 ± 0.5	https

0-5%: 1923 5-10%: 1586 10-20%: 1180 20-30%: 786 30-40%: 512 40-50%: 318

https://arxiv.org/pdf/1512.06104.pdf

• Baryon-baryon scattering parameters from ESC08c:

Pair	$f_0^s \ (fm)$	$d_0^s \; (fm)$	$f_0^t \; (fm)$	$d_0^t \; (fm)$
$p\Lambda$	2.46	3.14	1.73	3.55
ΛΛ	-	-	0.85	5.13
$p \Xi^{0/-}$	-0.56	-2.52	5.36	1.43
$\Lambda \Xi^{0/-}$	9.83	2.38	12.90	2.00
Ξ ^{0/−} Ξ ^{0/−}	7.25	2.00	-0.53	1.63
$p\Sigma^+$	3.91	3.41	-0.61	-2.35
$\Xi^{0/-}\Sigma^{+/0}$	2.80	2.46	10.90	1.92
$\Sigma^+\Sigma^+$	-	-	0.65	19.97
$\Lambda\Sigma^{+/0}$	from $\Lambda\Lambda$			
$\Sigma^0 \Sigma^0$	from $\Lambda\Lambda$			
$p\Sigma^0$	from $p\Lambda$			
$\Sigma^0 \Sigma^+$	from $\Lambda\Lambda$			

Extended-soft-core Baryon-Baryon Model ESC08 I. Nucleon-Nucleon Scattering <u>https://arxiv.org/abs/1408.4825</u>

Extended-soft-core Baryon-Baryon Model Esc08 II. Hyperon-Nucleon Interactions <u>https://arxiv.org/abs/1501.06636</u>

Extended-soft-core baryon-baryon model III: S=-2 hyperon-hyperon/nucleon interaction <u>https://arxiv.org/abs/1504.02634</u>

Recent Nijmegen Extended-Soft-Core ESC08models http://www.phys.kyushu-u.ac.jp/fb20/PresentationFiles/

Plenary/FB20_Rijken.pdf

Parameter	$bar{b}$	$ar{p}\Lambda\oplus par{\Lambda}$	$\Lambdaar{\Lambda}$
$\Re f_0 \; (fm)$	$-1.04^{\pm 0.24(syst)}_{\pm 0.15(stat)}$	$-1.11^{\pm 0.18(syst)}_{\pm 0.04(stat)}$	$-0.96^{\pm 0.16(syst)}_{\pm 0.06(stat)}$
$\Im f_0 \; (fm)$	$0.51^{\pm 0.30(syst)}_{\pm 0.19(stat)}$	$0.63^{\pm 0.15(syst)}_{\pm 0.05(stat)}$	$0.50^{\pm 0.13(syst)}_{\pm 0.08(stat)}$
$d_0 \; (fm)$	$2.96^{\pm 0.52(syst)}_{\pm 0.73(stat)}$	$2.56^{\pm 0.55(syst)}_{\pm 0.14(stat)}$	$2.71^{\pm 0.26(syst)}_{\pm 0.31(stat)}$